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ABSTRACT
In many applications we have a social network of people and would
like to identify the members of an interesting but unlabeled group
or community. We start with a small number of exemplar group
members – they may be followers of a political ideology or fans
of a music genre – and need to use those examples to discover the
additional members. This problem gives rise to the seed expan-
sion problem in community detection: given example community
members, how can the social graph be used to predict the identi-
ties of remaining, hidden community members? In contrast with
global community detection (graph partitioning or covering), seed
expansion is best suited for identifying communities locally con-
centrated around nodes of interest. A growing body of work has
used seed expansion as a scalable means of detecting overlapping
communities. Yet despite growing interest in seed expansion, there
are divergent approaches in the literature and there still isn’t a sys-
tematic understanding of which approaches work best in different
domains.

Here we evaluate several variants and uncover subtle trade-offs
between different approaches. We explore which properties of the
seed set can improve performance, focusing on heuristics that one
can control in practice. As a consequence of this systematic un-
derstanding we have found several opportunities for performance
gains. We also consider an adaptive version in which requests are
made for additional membership labels of particular nodes, such
as one finds in field studies of social communities. This leads to
interesting connections and contrasts with active learning and the
trade-offs of exploration and exploitation. Finally, we explore topo-
logical properties of communities and seed sets that correlate with
algorithm performance, and explain these empirical observations
with theoretical ones.

We evaluate our methods across multiple domains, using pub-
licly available datasets with labeled, ground-truth communities.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining

Keywords: Seed set expansion; Ground-truth communities
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1. INTRODUCTION
There are many settings in which we are interested in accessing

or studying a group of people in a social network, but instead of
the full membership of the group we know only a few examples. A
natural goal in this case is to expand these examples into a larger
set that approximates the full extent of the group, and this goal has
been the focus of recent work on seed set expansion in networks.
Phrasing the problem slightly informally for purposes of this dis-
cussion, we are given a graph G that contains a group of nodes C
whose identities we’d like to uncover, and we are told the identities
of a small subset S of C. Given a budget k, can we find k additional
nodes such that as many of them as possible come from C?

Examples of the seed set expansion problem are numerous. For
example, recent work studying political activism has started from a
small set of representatives of each competing ideology, collected
through detailed field work, and then attempted to expand these
representatives into the larger groups that they come from [18].
Recommendation tools for forming on-line groups have the poten-
tial to collect a few initial suggestions from a user and then produce
a longer list of recommended group members. Similarly, a mar-
keter may want to expand a set of a few interested consumers of a
product into a longer list of people who might also be interested in
the product. Seed set expansion has also been used to infer missing
attributes in user profile data [14] and to detect e-mail addresses of
spammers [20]. Nor are the applications limited to social networks;
as we will see below, we could ask similar questions in which we
start with a few items such as products for sale, and we then attempt
to use a co-purchase network to expand these items into a product
category that contains all of them.

It is useful to note a few properties of the seed set expansion
problem, consistent with these sources of motivation. First, we
focus on cases in which the expansion is guided by an underlying
graph structure — the basic premise is that if a person or item v is
“tightly linked” in the graph to many members of the group C, then
this provides evidence that v may also be a member of the group.
Second, the goal in the seed set expansion problem as it has been
studied in prior work — and the goal we pursue here — is neither
to find the full extent of the group C nor to sample uniformly from
it, but instead to “collect” a fixed number of members from it with
as little error as possible.

The present work: Principles for seed set expansion. The num-
ber of approaches to seed set expansion has proliferated rapidly,
but there is still very little understanding of the principles through
which we can reason about trade-offs between different approaches
or the types of instances on which we can expect good perfor-
mances. In this work we seek to begin developing some of the
principles underlying the seed set expansion problem. Among the
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questions that guide our study, we consider the following. Do cer-
tain approaches to seed set expansion produce consistently better
results than others, across a range of domains? Can characteristics
of the initial seed set S help us understand when seed set expan-
sion will be effective? And how do structural characteristics of the
group C affect the quality of the solution?

We can go further in our analysis by taking into account the fol-
lowing issue. If we think about many of the applications that moti-
vate the seed set expansion problem, there is a potentially rich inter-
action available between the expansion algorithm and the “expert”
who can recognize members of the group C. Consider for example
the problem of identifying members of political movements noted
earlier [18]. In such a setting there is a domain expert who has pro-
vided the initial representatives of a group, and if we are trying to
expand these representative members into a larger set, we may well
have the ability to adaptively query the expert — a few nodes at a
time — and make future choices based on the result of this feed-
back. There is thus an opportunity to incorporate such interaction
between the algorithm and the domain expert into the formalism of
seed set expansion. Such interaction clearly has a structure simi-
lar to work in active learning, although we should emphasize that
unlike traditional work in that domain, we are not seeking a classi-
fication of the full underlying graph, nor do we have a subset of the
data available for training; rather, we want to collect a set of nodes
from C based only on the initial examples S.

The present work: Overview of results. We first consider a wide
range of techniques that have been used in prior work for seed set
expansion, applying them to three main datasets: two social net-
works (a co-authorship network among researchers and the YouTube
social network among its users), and a product co-purchase net-
work in which the groups are product categories. We find that mea-
sures based on PageRank are by far the most effective. Moreover,
almost all of the performance gains from PageRank come from run-
ning just two or three iterations of the PageRank update rule — a
finding that is novel to the best of our knowledge, and consistent
with our analysis of where PageRank is achieving most of its rel-
ative performance gains over more local neighbor-based methods,
on nodes that are outside the immediate vicinity of the seed set S.

We then consider how properties of the seed set affect perfor-
mance. In thinking about trade-offs here, it is useful to consider the
interaction between the expansion algorithm and the domain expert
discussed above: in that context, our motivation is to identify how
a domain expert should best use their knowledge to compile a seed
set of members. In practice we are highly constrained by those
community members about which a domain expert has knowledge.
One natural question is to ask whether performance is better when
S consists of the highest-degree nodes in C or a uniformly random
subset of C. In choosing a large-degree seed set, we model a do-
main expert who returns a list of the most popular or most famous
nodes in the network. In choosing a random seed set, we model a
domain expert who returns a seed set that is representative of the
community, to wit, one potentially consisting of high and low de-
gree nodes. We also consider the effect of seed set size, exploring
a basic trade-off: if the seed set is too large a fraction of the group,
it can be hard to find the remaining members, but if it is too small,
then it is not providing a sufficiently useful set of examples for the
full extent of the group.

We similarly look at trade-offs in the structural properties of the
group C, finding that denser groups — those with a higher ratio of
edges to nodes — tend to result in better performance for seed set
expansion.

Dataset Nodes Edges Communities
DBLP 317080, 1049866, 13477,

authors co-authorship conferences
Amazon 334863, 925872, 151037,

products co-purchased product categories
YouTube 1134890, 2987624, 8385,

users friendship user-defined groups

Table 1: The number and substantive interpretation of nodes,
edges, and communities in each network. All sourced from [21].

Finally, we look at different ways of managing the interaction
between the algorithm and the domain expert. We find contexts in
which regularly interspersing expansion steps with queries to the
expert can outperform approaches in which the queries are batched
in larger blocks. We also find that for our objective function of
collecting members of C as quickly as possible, asking the expert
about nodes on the “margin” of C can be effective in finding the
boundaries of the group, but this benefit is more than offset by the
downside of querying the expert about a greater number of nodes
that turn out not to be in C.

2. SETUP: DATA, PERFORMANCE,
ALGORITHMS

Data. We use network data with ground-truth community mem-
bership from the Stanford Network Analysis Project (snap.stanford.edu).
Table 1 gives a summary of the datasets used in this paper; see Yang
& Leskovec [21] for additional background on these datasets.

Seed Sets and Performance. We are given a graph G that con-
tains a collection of potentially overlapping communities C, and we
have an interest in a particular community C 2 C. We are given a
set of labeled community members S ⇢ C. Thus C�S consists of
the unlabeled, not-yet-discovered community members. We have a
budget to make a prediction consisting of a set of nodes of size k,
and we will call the prediction P . We wish to maximize the recall,
|P \ C|/|C � S|, i.e. the fraction of the unlabeled community
recovered by the algorithm.

Unless otherwise specified we choose S to be a random subset
of C of size |C|/10.

Communities. From Table 1 we see that there are roughly 10

4-
10

5 labeled, ground-truth communities in each dataset. These com-
munities vary in size from 6 to roughly 10

4. In this paper we focus
on the 600 communities closest in size to m3/4, where m is the
size of the largest community; let us call this set C600

3/4 .1

Stopping criteria. Here we model the scenario in which a re-
searcher knows that there are approximately k community mem-
bers, and so they select the top k results from their choice algo-

1Given the same number of guesses, it would be unfair to compare
the recall of an algorithm on a community of size 10000 with one
of size 100. We find that there are 600 communities centered about
this log-space third-quartile all close enough in size that such biases
do not taint our results. Rather, thanks to the large number of mod-
erately sized communities, we are able to estimate performances
with good standard error estimates. In point of fact, good statis-
tical convergence that distinguishes the various algorithms can be
achieved with only 20 communities, and so our consideration of all
600 provides a large extra margin.
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Figure 1: Recall averaged over C600
3/4 . Rankings for YouTube are the same as for DBLP. The envelopes represent two standard errors

centered about the mean.

rithm, A, as the predicted community. That is, we choose a simple
stopping criterion of a fixed number of guesses equal to the size of
the central value; for example on C600

3/4 we fix k = m3/4 and set
our prediction P to be the k top nodes according to A’s ranking. As
we will see in Figures 1, 3, and 5, the relative performance rankings
are not very sensitive to the choice of k.

This stopping rule has the advantage that it is not sensitive to the
topology of the prediction P , which would be undesirable given
that the algorithms we compare produce communities with a va-
riety of typical topologies (this is discussed in detail in [1]). We
discuss alternate stopping criteria in §7.

3. RESULTS: PREDICTION ALGORITHMS

3.1 PageRank’s success
Figure 1 shows the recall values for a wide range of algorithms

detailed in §7 and the appendix. Variants of PageRank — in which
we rank by the stationary probability of a random walk with restarts
originating at the seed set — are the clear winners. This is consis-
tent with PageRank’s success in other applications, but it is nonethe-
less perhaps surprising that it is so much more powerful than other
methods that have been used for this problem. We also note that
in two of our three domains, pure unnormalized PageRank signif-
icantly outperforms variants such as degree-normalized PageRank
(DN-PageRank); this poses an interesting contrast to the fact that
DN-PageRank rather than pure PageRank has typically been the
preferred method for seed set expansion.

We now consider three questions that suggest insights into the
problem and how to the use these approaches in practice.

1. Why does PageRank outperform other methods such as neigh-
bor counting?

2. In computing PageRank with the power method, how many
iterations (random walk steps) does it need to take to achieve
this high performance?

3. Could variations beyond DN-PageRank and PageRank achieve
even better performance?

3.2 Whom does PageRank find?
In addition to the success of PageRank and its variants in Figure

1, it is also striking to see how PageRank climbs smoothly with k
in contrast with neighbor-counting methods that flatten abruptly as
k is increased.

Looking into this behavior helps us understand where PageRank
gets some of its power. In particular, we ask which true positives

Figure 2: Number of community members found within
ego(S), the seed set’s ego network, and outside of it for pos-
itive PageRank and positive neighbor counting. Results are
averaged over C600

3/4 . Envelopes represent two standard errors
centered about the mean.

are found by PageRank compared to Neighbors, categorizing based
on whether they belong to ego(S), the set of nodes directly adjacent
to the seed set S. Neighbor-counting methods cannot effectively
use information about nodes outside ego(S). Is this hindrance the
sole factor underlying PageRank’s advantage over Neighbors?

Figure 2 untangles this issue: first, we see that PageRank’s rate
of discovery of members within ego(S) is significantly higher than
that of Neighbors; second, we see that it finds true positives outside
the ego at a constant linear rate. So in addition to having this broad
reach beyond the ego, which we expected, PageRank is even better
at identifying which members of the seed set’s immediate neigh-
bors are true positives. PageRank’s success over neighbor-counting
is thus both inside and outside ego(S).

3.3 How many steps does it take to get to the
community?

Next we consider a question regarding PageRank itself: in com-
puting PageRank with the power method, how many random walk
steps are needed for PageRank to realize its maximum performance?
This is a basic question about PageRank’s iterative nature, and the
concrete performance measures underlying our problem formula-
tion make it natural to evaluate the question in this context.

The results in Figure 3 indicate that after only three random walk
steps PageRank’s performance has converged to its upper limit, and
it is already close to this limit after two steps. It is striking that
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Figure 3: Comparison of PageRank performance for a variety
of walk lengths. For each community the same random seed set
was used as the walk length was varied. Results are averaged
over C600

3/4 and the envelopes represent two standard errors cen-
tered about the mean.

most of PageRank’s power on these networks comes from just its
first few iterations. To appreciate this we consider PageRank’s in-
terpretation at each step and the corresponding performance. 0-step
PageRank represents random guessing. 1-step PageRank is closely
related to DN-Neighbors2 — and indeed the performance curve of
1-step PageRank has the same “flattening out” that stood out in
the performance curve for neighbor-counting, as well as a compa-
rable final performance value. 2-step PageRank reaches one step
beyond ego(S) and in Figure 3 we see that in the transition from
1 to 2 steps PageRank’s performance exhibits a dramatic increase,
nearly reaching its full potential. This indicates that most of the
members found by PageRank are within 2-steps of the seed set. Fi-
nally, 3-step PageRank yields PageRank’s full potential, and t-step
PageRank continues at this level as t ! 1.

3.4 Variations on PageRank

To normalize or not to normalize. Not to normalize. As men-
tioned, essentially the only PageRank-derivative used in the litera-
ture for community detection by seed set expansion has been DN-
PageRank [3,16,19,21]. Yet PageRank yields much higher perfor-
mance than degree-normalized PageRank in DBLP and Youtube
and they reach a tie on the Amazon network.

In Figure 1 we find that in DBLP and Youtube (not pictured) un-
normalized PageRank, or simply PageRank, finds true community
members with greater accuracy than degree-normalized PageRank
does. This performance increase is robust after controlling for and
considering all community sizes, and it is true in both “easy to de-
tect” and “hard to detect” communities. Indeed, PageRank is best
or tied for best on roughly 80% of the communities, on an instance-
by-instance basis.

On the Amazon product network, in contrast, PageRank and DN-
PageRank reach a statistical tie. It would be interesting to under-
stand the differences in domain that lead to this, including the natu-
ral contrast that Amazon is a network on items for purchase, rather
than a social network on people as in both DBLP and YouTube.

A continuum: degree-normalization to amplification. Finally
we note that DN-PageRank and PageRank are two special cases
of using the sorting metric ⇢ · dx with x = �1 for normalization
and x = 0 for pure PageRank. It’s therefore natural to consider

2But instead of normalizing by the target’s user degree, the normal-
ization happens with respect to the outgoing nodes

Figure 4: Mean performance as a function of x, where x is a
variable exponent in the sorting heuristic PageRank*degreex.
The performances have been shifted vertically such that the
lowest performance is grounded at 0, resulting in shifts for
Amazon, DBLP, and YouTube of 0.52, 0.18, and 0.049, respec-
tively. The star symbol indicates a curve’s maximum. Results
are averaged over C600

3/4 and the envelopes represent two stan-
dard errors centered about the mean.

the performance for all values of x, and we show this for all three
datasets in Figure 4.

As we see there, the optimal exponents for DBLP and YouTube
are both close to 0, indicating the power of unnormalized PageR-
ank on these two social networks, whereas in Amazon the results
were statistically indistinguishable for exponents x 2 [�1, 0]. It is
interesting that the optimal exponent x in DBLP is in fact slightly
positive — in other words, rather than normalizing PageRank, the
optimal strategy is to inflate it slightly. This can perhaps be moti-
vated by the fact that many of the false positives being recovered
by the algorithm are low degree nodes.3

3.5 Combining Multiple Measures
A natural extension of the current framework is to treat each of

these network measures as a feature, and to choose nodes for C
by training a classifier on the labeled examples and classifying the
remaining nodes each according to their corresponding feature vec-
tor. We tried this using a support vector machine (SVM) on a fea-
ture in which node v’s features are the values of the network mea-
sures (PageRank, Neighbors, etc.) evaluated on v. For example, for
a simple classifier that combines Neighbors and PageRank, the fea-
ture vector for a node u was [ego(u), ⇢(u)] and the feature matrix
used to train the classifier was (|S| + |N |) ⇥ 2. The result is in-
teresting in the negative direction: we were not able to realize any
performance gains by combining multiple measures. Rather, the
higher-dimensional classifiers performed only as well as its best-
performing single-dimensional classifier submember. For example,
3Who are the false positives?
Note that because the communities in these datasets are overlap-
ping, the nodes recovered by the algorithm should really be clas-
sified as being one of three types: true positives, false positives,
and neutral positives. Neutral positives are nodes that are in some
community together with the seed node, simply not in the commu-
nity of interest C. In that sense, when the algorithm recovers a
neutral positive it is accurately discovering information about the
graph’s community structure. If we relabel the original group of
false positives into neutral positives or false positives, we find that
in DBLP the ‘real’ false positives have a much lower average de-
gree and very low variance in degree compared to the neutral or
true positives. This distinction is not evident if one only consid-
ers the original binary labeling of being in the target community
or not. That PageRank is making most of its big mistakes on low-
degree nodes motivates the slight degree-amplification that we see
is optimal for DBLP in Figure 4.
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the 2D SVM consisting of PageRank and Neighbors performed as
well as PageRank, and the 2D SVM consisting of Neighbors and
BinomProb performed as well as Neighbors.

To construct the classifier we build a feature vector for each of
the PageRank-based and Neighbor-based methods, e.g. all the al-
gorithms except Conductance and Modularity. (The latter were ex-
cluded because they do not assign attributes for every node in the
graph – only for ones local to the seed set.) We build the feature
vectors by seeding each of the algorithms with 25% of the input
nodes; we reserve such a large fraction so as to emphasize teach-
ing the algorithm about the attributes of ‘hidden’ positive members,
rather than seeded ones (which will typically have much larger val-
ues of, for example, PageRank). To choose the C value for the
SVM classifier we perform 3-fold cross validation with a 75/25
train/test split. We consider linear and radial basis function kernels
and normalize all features to have unit ||L2|| norm before training.

Negative examples and information. Note that to train the SVM
we require both positive and negative examples, and so for the
learning framework we introduce the notion of a negative seed set,
T . Much like S, the seed set of known community members, T
consists of nodes that are known from the outset (e.g. thanks to
a domain expert’s knowledge) to be non-members. To choose the
negative seed set we tested the same heuristics as we did for the
positive seed set, namely random nodes as in §2 and higher degree
nodes as we will see in §4.1.

The introduction of the negative examples lead us to consider the
possibility that the information about their non-membership could
help improve classification. For example, just as we expect nodes
tightly knit with the positive seed set S to more likely be members
themselves, we expect nodes tightly knit to the negative seed set T
to be less likely to be members.

We used SVMs to empirically verify both of these intuitions.
That is, we seed PageRank with the negative seed set T and call
the resulting metric on the nodes Negative-PageRank. For the pur-
poses of this discussion, we call the original PageRank seeded with
S Positive-PageRank. We then train an SVM using these two at-
tributes as node features, and find that the SVM’s weight vector has
a positive coefficient for the Positive-PageRank feature and a neg-
ative coefficient for the Negative-PageRank feature, as expected.

However, the introduction of Negative-PageRank ultimately had
no significant effect, neither improving nor hurting the performance
of the classifier. The same is true regarding analogous versions of
Negative-Neighbors and Negative-BinomProb.

4. RESULTS: SEED SETS
Having looked at the relative performance of different algorithms

for seed set expansion, we now consider the effect that different
structural properties of the seed set itself can have on performance.

4.1 Heuristics for seed set selection
We begin by considering the effect of the node degrees in the

seed set. In Figure 5 we see that for seeding PageRank it is highly
advantageous to use a random positive seed set compared with one
consisting of high-degree nodes. Though we have not pictured it
here, this result holds for all domains, community sizes, and high-
performing algorithms. It is true for the neighbor counting metrics
as well (with the exception of binomial probability), however for
the neighbor counting metrics the improvement is not as striking.

In many settings we should expect to have relatively little control
over which members are in the seed set: the community is hidden to
us and the seed set consists of those members for whom we happen
to have labels. However, the particular contrast we analyze here,

Figure 5: Comparison of algorithm performance for positive
seed sets composed of random versus high-degree nodes, us-
ing PageRank and Neighbors. Results are averaged over C600

3/4

from DBLP and the envelopes represent two standard errors
centered about the mean.

Figure 6: Performance as a function of the fraction of the com-
munity used to seed PageRank for all DBLP communities. For
each community C ten seed sizes were tested, with size uni-
formly spaced between 1 and b0.99|C|c. We distinguish be-
tween two types of recall: relative recall is |P \ C|/|C � S|,
i.e. the fraction of unlabeled members that were discovered;
whereas absolute recall is |P \ C|/|C|, the fraction of the all
members recovered during the evaluation stage. Envelopes rep-
resent two standard errors centered about the mean.

between random and high-degree nodes, corresponds naturally to
two distinct scenarios for interacting with a domain expert: if the
expert knows the most popular or most famous nodes in the com-
munity, this would lead to a high-degree seed set, while if the expert
returns a more representative seed set, this would be modeled by a
set consisting of random nodes. Some experience indicates that ex-
perts will often have a tendency to identify high-degree members,
which, we see here, is not in fact the most effective way to gather a
seed set for further expansion.

This lesson is an important heuristic to consider. Given that
our recommendation is to use PageRank over more local methods
when possible, it would also be advantageous for domain experts
to heuristically search for nodes with a more diverse degree distri-
bution, rather than searching for and validating the membership of
those with highest degree. Note that even when this is not possi-
ble, and PageRank is seeded with a large degree seed set, it still
outperforms Neighbors as a method.

4.2 Seed set size and performance
In Figure 6 we examine the algorithm’s performance as a func-

tion of the fraction of the community C used in the seed set S,
|S|/|C|. We evaluate performance using two measures of recall:
the relative recall |P \ C|/|C � S|, and the absolute recall |P \
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Figure 7: Left: Performance as a function of the target commu-
nity’s ratio of internal to external edge density. Right: Perfor-
mance as a function of the fraction of edges the seed has within
the community. Both plots use PageRank as the sorting metric
and test on C600

3/4 .

C|/|C|. We find that the relative recall eventually plateaus as |S|/|C|
is increased whereas the absolute recall has an interior maximum.

Intuitively we expect this interior maximum in absolute perfor-
mance: by starting off with very little of the community C we will
be lacking sufficient information about C and will find it difficult
to accurately characterize and identify additional members. In the
other extreme, if we begin with all but a few of the members, we
are inherently limited in the number of additional members we can
discover. Thus we expect there to be some internal maximum in
absolute performance, as we see at |S|/|C| = 0.1 in Figure 6.

For relative recall, in contrast, we find that performance simply
plateaus after a certain point, meaning that the additional informa-
tion is neither helping nor hindering our relative rate of discovery.

4.3 Internal seed set structure
Finally, we consider how well the seed set is connected both in-

ternally and to the (unobserved) remainder of the community. Al-
though we have seen that seed nodes with overall high degree point
to reduced performance, we find here that performance is signif-
icantly higher when a large fraction of the seed nodes’ edges are
to nodes that lie in the community. Figure 7 (right panel) shows
the performance in terms of this fraction; the left panel of the fig-
ure establishes a related point, that performance is better when the
community C has a high ratio of internal edge density to external
edge density.

These findings highlight several points. First, it suggests that in
practice one can form an a priori estimate of the success of seed
set expansion on a per-instance basis, based on structural proper-
ties of the seed set and/or the community, if one has estimates about
these edge density parameters. Second, the strong relation to per-
formance forms an interesting connection to mathematical work on
community detection. The literature has emphasized that a good
mathematical definition of a community is a set of nodes whose
internal edge density is higher than its external one. It is inter-
esting then that in these communities which are defined only by
a shared qualitative property of member nodes that this canonical
metric emerges as being correlated with high performance.

Finally, as with some of our earlier findings about seed set struc-
ture, we cannot necessarily control the seed set properties with
which we make our prediction. But it does suggest a heuristic in
which one can try to elicit from the domain expert a set of seed
nodes that have good internal connectivity into the rest of the com-
munity, relative to their connectivity to the rest of the graph. The
community results are a reminder that when searching for nodes in
a community we should only expect high prediction accuracy if we

can also expect that the members for whom we are searching form
a densely connected subset of the graph.

5. RICHER INTERACTIONS FOR
PRODUCING LABELS

We have been thinking about seed set expansion in terms of in-
teraction with a domain expert who is able to provide us with an
initial set of examples. In this section we enrich this interaction by
asking the expert to initially label some number of selected nodes
beyond the seed set before we make further guesses about nodes
likely to belong to the community. Thus, there are three types of
nodes here, in order: (i) the initial seed set; (ii) the nodes explored
in the interactive phase, when the expert is being actively queried;
and (iii) the nodes explored in the non-interactive phase, when a set
of nodes is guessed and only evaluated afterward for membership
in C.

This second, additional round of interaction introduces several
further questions. (1) How many nodes should be labeled in the
interactive phase? We’ll call this quantity the query budget. (2)
Which nodes should be labeled in the interactive phase? We’ll call
this function the strategy. (3) Should the nodes in the interactive
phase be labeled all at once? Or is there a performance gain to be
had by introducing a feedback loop, in which at every iteration b
nodes (strictly fewer than the query budget) are chosen according
to the strategy, labeled, and used to refine the strategy input on the
next round?

Finally, there are two ways of evaluating the algorithm, and we
will consider both. One approach, in keeping with the initial moti-
vation for seed set expansion, is to say that all nodes after the initial
seed set count toward the performance of the algorithm, including
those in the interactive phase. The other approach, more akin to a
training/test split, is to say that the nodes in the interactive phase
are purely for calibration, and the performance of the algorithm is
only evaluated by its success in the non-interactive phase.

The former case is natural for settings where the goal is simply
to collect members of the community — for example, in the case
of a marketer who simply wants as large a set of likely purchasers
as possible. In this case, there is an interesting trade-off between
collecting nodes likely to belong to C in the interactive phase ver-
sus asking the expert about nodes that are less likely to belong to
C, but which will help refine the boundary of C. This will be one
of the main trade-offs we explore in this section.

Computational experiments. We fix the size of the query budget
to be that of the size of the seed set, that is, 10% the size of the
community. We now focus on questions (2) and (3) above.

We consider four heuristics for choosing which nodes to query
based on the values of one of our classifiers for membership in
C: (1) nodes on the boundary of the decision function; (2) nodes
most likely to be positive, as predicted by the classifier; (3) nodes
most likely to be negative, as predicted by the classifier; (4) ran-
dom nodes. We model this selection process by viewing (1)-(4) as
having the associated probabilities (p0, p+, p�, p⇤) = p, and in
each step of the interactive phase selecting, for example, b+ = p+b
nodes predicted to be positive. We measure performance through-
out this 3-dimensional parameter space (p0 + p+ + p� + p⇤ = 1).
We start with two observations that allow us to simplify our discus-
sion and exploration of this parameter space:

1. It is never advantageous to have p⇤ > 0, that is, there is
no benefit to querying random nodes instead of putting that
probability mass on some other dimension. This is not sur-
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Figure 8: Performance of PageRank with two querying strate-
gies and two evaluation metrics. In batch mode, we use the
query budget in one sweeping request. Single mode is the
other extreme: we query the expert for one node’s label, re-
seed PageRank with the updated label, and repeat for as many
steps as the query budget allows. Here we fix the query bud-
get to be 10% the expected size of the community. The lower
non-interactive only curves indicate the final performance of the
classifier, not including any positive examples recovered during
the interactive phase. The upper interactive + non-interactive

curves include true positives recovered during both the inter-
active and non-interactive phases.

prising and in fact this parameter was introduced as a base-
line.

2. It is never advantageous to have p� > 0, that is, there is no
benefit to querying nodes that are most certainly not in the
community. While this is not very surprising we did find it
worth considering the possibility that having very clear ex-
amples of what community members do not look like could
improve the classifier.

These observations imply that, for the scenarios we have defined,
p� > 0 and p⇤ > 0 are both dominated by strategies with p� =

p⇤ = 0. Thus we are left with a one-dimensional parameter space,
1 = p+ + p0. In Figure 8 we explore how the performance is
affected by labeling boundary nodes (via p0), positive nodes (via
p+), or some combination thereof. We find that the optimal strategy
depends on how performance is being measured:

1. If nodes found in both the interactive and non-interactive
phases are counted towards performance, then p+ = 1 is
optimal.

2. If only nodes from the non-interactive phase count towards
performance , then querying all nodes on the classifier bound-
ary is optimal (p+ = 0).

In the next section, we will see how the trade-off between these
two results is reflected in the contrast between two different ways
of formulating the problem of identifying nodes in a community.

Note, however, that when the interactive phase does not count
towards performance, only a small performance gain is had by
p0 = 1 compared to p0 = 0, though the gain is statistically sig-
nificant (compare the performance of the lower curve on the left
and right extremes in Figure 8). In contrast, when the goal is to
maximize the number of community members collected (the upper
curves in Figure 8), p+ = 1 is a clearly dominant strategy.

Finally we address question (3), whether there is a performance
gain to be had by introducing a feedback loop in the labeling stage.
We find that it is advantageous to use smaller block sizes when

nodes found in the interactive phase count toward performance and
the strategy p+ = 1 is used (which is the optimal one for this
case). In all other cases we find that the performances are statisti-
cally indistinguishable. The performance gain in the first case is all
had in the interactive phase; that is, smaller block sizes do not im-
prove the final classifier, but they do yield improved likelihood of
finding positive nodes in the interactive stage. For the other scenar-
ios there are either few positive nodes to be found by that strategy
(i.e. querying on the boundary) or the nodes found in this stage do
not count towards performance and so are irrelevant for evaluation
purposes. This is also true in both cases that we discussed above:
querying the most positive nodes (p+ = 1) and querying on the
boundary (p0 = 1).

6. SEED SET EXPANSION: THEORETICAL
RESULTS

If we abstract beyond the specific methods used for seed set ex-
pansion, our discussion thus far has highlighted a number of themes
implicit purely in the formulation of the problem itself — the dif-
ference between collecting a fixed number of nodes from a group
C and finding the full set C; the trade-off, as in the previous sec-
tion, between exploring in the vicinity of nodes known to be in C
versus exploring near the estimated boundary of C; and the role of
negative information, about non-membership in C.

We now consider a theoretical framework that seeks to highlight
how these trade-offs and contrasts work across the different prob-
lem formulations. At the top level, it will be based on the distinc-
tion between the following two problems: enumeration, in which
we want to find the full set C; and seed set expansion, in which we
want to collect “many” members of C but not the full set.

Basic Set-up. To set up these problems, let us assume we are given
an undirected n-node graph G = (V,E), and a subset C ✓ V is
specified by a membership oracle that takes a node v 2 V and
reports whether or not v 2 C. We are also given a seed set S ✓ C
of nodes that we know at the outset to belong to C. Finally, we will
make the assumption that C is a connected set of nodes in G.4

In these terms, enumeration is now the problem of finding all
the nodes of C using as few queries as possible to the membership
oracle. Seed set expansion, in contrast is the problem in which,
given a “budget” k, we want to find as many nodes of C � S as
possible using at most k queries to the membership oracle.

A Motivating Example. To get an initial picture of the contrasts
between these two problem formulations, let’s consider them on an
extremely simple graph, the n-node cycle, which just consists of
nodes v0, v1, . . . , vn�1 such that v

i

is connected to v
i�1 and v

i+1

(addition modulo n). The group C we are trying to discover is a
connected subset of the cycle (and hence a contiguous interval of
nodes on it).

Suppose we are given a single seed node v
j

2 C. Then the
optimal algorithm for the seed set expansion problem it to begin
querying nodes for membership in C starting at v

j

and moving in a
clockwise direction. The first time we come to a node v

`

62 C, we

4We view this as a reasonable approximation to the real problem in
practice, since many of the groups C we are interested in studying
will have a giant component ˜C ✓ C. Unless we have seed notes
in the smaller components, it is not reasonable in any case to try
discovering them; thus, we can view our problem as operating on
this giant component. Indeed, some formulations of the seed set
expansion problem have explicitly described it as searching for a
specific component of the group.
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know we have fallen off one end of the interval defined by C. We
then go back to v

j

and do the same thing in the counter-clockwise
direction. In this way, either we discover all of C (if our budget k
is large enough), or else we collect nodes at almost full efficiency;
aside from the node v

`

, every node we query is in C, and so we
collect at least k � 1 nodes with our budget of k.

An efficient algorithm for the enumeration problem has a quite
different structure. First, for the enumeration problem it is natural
to make an extra assumption that we didn’t need for the seed set ex-
pansion problem — that we also know a node z 62 C. (Otherwise,
we would have to begin with an essentially brute-force search for a
non-member of C.) Given s 2 C and z 62 C, there are two paths of
C that run between them: one clockwise from s to z, and the other
one counter-clockwise from s to z. We perform binary search on
the first of these paths to find a pair of adjacent nodes (v, w) such
that v 2 C and w 62 C. We do the same on the other path, and
thus find the two endpoints of the interval defining C in O(log n)
queries to the membership oracle.

Contrasting algorithms. Let us now contrast the approaches to
these two problems. When k ⌧ log n, seed set expansion col-
lects nodes of C with almost no waste (i.e. almost no querying
of non-members of C), while the efficient algorithm for enumera-
tion could spend its first ⌦(log n) without ever identifying another
member of C. On the other hand, when k � log n, seed set expan-
sion is collecting nodes of C one-by-one, whereas after the initial
investment of O(log n) probes, the algorithm for enumeration im-
plicitly knows all of C even though it hasn’t visited all of its nodes
explicitly.

These two contrasting strategies also relate to some other themes
from earlier sections. As in the previous section, the seed set ex-
pansion algorithm does well by focusing attention near the nodes
of C that it already knows about, whereas the enumeration algo-
rithm focuses attention on farther-away nodes as it attempts to find
the boundary of C. And negative information is not particularly
relevant for the seed set expansion algorithm, whereas it is crucial
for the efficiency of the enumeration algorithm — a reflection of
the role that negative information played in our empirical results as
well.

Thus far, however, these insights are all based on an extremely
simple instance of the problem — finding a contiguous interval
on the cycle. Do the same contrasts apply in other graphs? We
now prove two theorems establishing that in fact they do, in a very
strong sense: for every graph G, one can obtain contrasting and
asymptotically optimal bounds for seed set expansion and enumer-
ation that naturally extend the results we obtained for the simple
case of the cycle.

We stress that in this theoretical analysis, we are focusing on
comparing the consequences of the two problem formulations, seek-
ing algorithms for each that are asymptotically optimal in the worst
case, rather than trade-offs among specific heuristics for the prob-
lems.

General theorems. We continue with the set-up defined at the out-
set, with an arbitrary graph G = (V,E), a connected set of nodes
C ✓ V that we want to discover, and a given seed set S ✓ C. A
key structure for analyzing our algorithms will be the set of edges
�(C), consisting of all edges that have one end in C and the other
end not in C; a central quantity for parametrizing the performance
of the algorithms will be c = |�(C)|.

We begin with the generalization for the seed set expansion prob-
lem, essentially showing that there is an algorithm that can collect
at least k� c nodes of C. This is the same sense in which the algo-

rithm on the cycle was collecting nodes a perfect efficiency except
for the queries in which it fell off the end of C.

THEOREM 1. Given a budget of k queries to the membership
oracle, there is an algorithm that finds at least min(k�c, |C�S|)
nodes in C�S. (In other words, it either finds at least k� c nodes
of C � S, or else it finds all of C � S.) This is asymptotically tight
in the worst case.

PROOF. We show that the guarantee in the statement of the theo-
rem will be achieved by any algorithm with the following structure:
for k iterations, look for a node v 2 C connected by an edge to a
node w whose membership in C is not yet known, and query w. If
at any point before the k iterations are over, there are no such pairs
(v, w), then the algorithm can stop and declare that it has found all
of C.

Let us first verify why the algorithm is correct when it concludes
it has found all of C. Since G[C] is connected, as long as some
nodes of C have not yet been found, there must exist an edge (v, w)

such that v, w 2 C, with node v already known to belong to C and
node w not yet known to belong to C. Hence as long as all of C
has not yet been found, the algorithm can execute another iteration.

Now, in each of the k iterations for which the algorithm does not
discover a new node in C � S, it instead finds an edge (v, w) 2
E for which v 2 C and w 62 C. Thus (v, w) 2 �(C). Since
there are only c edges in �(C), there can be at most c iterations
in which the algorithm does not find a new node in C � S; in the
remaining iterations, at least k � c in total, it must discover a new
node in C � S, and this establishes the performance guarantee of
the algorithm.

To see why the bound of k� c is tight in the worst case, consider
the star graph, equal to a tree with a central node v connected to
n � 1 other nodes w1, w2, . . . , wn�1. If S = {v} and C consists
of v plus all but c of the leaf nodes, then in the worst case the
algorithm will discover all c nodes not in C before moving on to
any nodes in C � S.

We now give the contrasting generalization for the enumeration
problem — that all of C can be found with O(c log n) queries. For
this algorithm, as in the case of the cycle, we need to assume the
presence of negative information; in particular, we assume there is
a set of nodes Z ✓ V � C that is rich enough in its coverage that
Z contains at least one node from each component of G� C.

THEOREM 2. Given seed set S ✓ V and negative set Z ✓ V
satisfying the assumptions above, there is an algorithm to find all
the nodes of C using at most O(c log n) queries to the membership
oracle. This is asymptotically tight in the worst case.

PROOF. The algorithm works as follows. Let s be any node in
the given set S ✓ C; we say that an s-Z path is any path whose
first node is s and whose last node belongs to Z. Edges will get
marked during the execution of the algorithm; initially all edges
start out unmarked. While there is an s-Z path P in G consist-
ing entirely of unmarked edges, we perform binary search over the
ordered sequence of nodes on P to find an edge (v, w) on P for
which v 2 C and w 62 C. We then mark this edge (v, w). This is
one iteration of the algorithm, and it uses O(log n) queries to the
membership oracle in order to perform the binary search.

How many iterations can there be? Each iteration marks an edge
in �(C) that was previously unmarked; since |�(C)| = c, there
can be at most c iterations. It follows that in total the algorithm
performs at most O(c log n) queries.

Let F be the set of marked edges when the algorithm terminates,
and let U ✓ V be the connected component of G�F that contains
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the node s. We claim that U = C. Indeed, suppose there were a
node u 2 C such that u 62 U . Then since G[C] is connected, there
is an s-u path consisting entirely of nodes in C, and hence using
no marked edges. This contradicts the assumption that u 62 U .
Conversely, suppose there were a node u 2 U such that u 62 C.
Let z be a node of Z that belongs to same component of G�C that
u does. There is a u-z path Q such that all nodes belong to V �C;
since each marked edge contains a node of C, there are no marked
edges on Q. Concatenating Q with an s-u path using no marked
edges, we get an s-z path using no marked edges, contradicting the
termination of the algorithm.

These arguments show that C ✓ U and U ✓ C, so U = C and
hence the algorithm produces the correct output set C.

Finally, we argue that there exist instances with a graph G =

(V,E) and a set C ✓ V for which ⌦(c log n) queries are required.
One such graph is a collection of c parallel paths each of length
n/c, that each run from s to z, but which otherwise have no nodes
or edges in common. Any set C obtained by choosing a prefix of
each s-z path, and taking the union of these c prefixes, will have
s 2 C and z 62 C, with �(C) = c. There are ⌦(nc

) such sets
C, and hence any algorithm that uniquely identifies one of them
through a sequence of yes/no questions to an oracle must make at
least ⌦(log nc

) = ⌦ (c log n) queries in the worst case.

7. RELATED WORK
The seed set expansion problem has its roots in a number of over-

lapping areas, including the problem of identifying central nodes
in social networks [6, 9] and finding related and/or important Web
pages from an initial set of query results [10, 15].

In particular, the PageRank algorithm broadened from its ini-
tial focus on Web search [15] to also include methods for find-
ing nodes “similar” to an initial root, by starting short random
walks from the root and seeing which other nodes were likely to be
reached [7]. Spielman & Teng developed methods that started with
a seed node and sorted all other nodes by their degree-normalized
PageRank with respect to this seed [17]; they also introduced ideas
based on truncation of small values, leading to a method known
as PageRank-Nibble. Anderson & Lang and Andersen et al. built
on these methods to formulate an algorithm for detecting over-
lapping communities in networks [2, 3]; in our evaluation, their
method serves as our version of DN-PageRank, short for degree-
normalized, personalized PageRank. DN-PageRank was adopted
by Leskovec et al. [11] and Yang & Leskovec for global and lo-
cal community detection. In a large comparison study they estab-
lished DN-PageRank as competitive with METIS [8], a sophisti-
cated and popular graph partitioning algorithm. Finally, Abrahao
et al. observe that from among approximately ten popular com-
munity detection algorithms, ground-truth communities are struc-
turally most similar to the communities discovered by random walk
methods [1].

In parallel with the development of PageRank-based methods,
another line of work explored methods for seed set expansion by
adding nodes to a growing community (or removing them) if a tar-
get measure such as conductance or modularity is improved by do-
ing so. Clauset [5] used this idea by adding single nodes to in-
crease modularity; Luo et al. [12] allowed for addition and deletion
of larger sets; and Mislove et al. [14] used greedy node addition to
reduce conductance.

Finally, a number of approaches evaluated nodes based on the
number of neighbors they had in and out of the community, adding
nodes to the community when they optimized a function of these
two quantities. Bagrow [4] did this for a measure called outward-
ness, defined as the degree-normalized difference between neigh-

bors inside and outside the community. Mehler & Skiena [13]
used several variations of neighbor counting methods for seeded
community detection, the main ones being pure neighbor count,
neighbor ratio, and binomial probability of neighbor distribution.
More recently in 2013 Weber et al. used another variation of a
neighbor-counting metric to infer the political ideology of Twitter
users, based on which community a user retweeted more frequently.

In an analysis of the effect of seed-set structure, Whang, Gleich,
& Dillon [19] systematically compared several sophisticated ap-
proaches for choosing the seed sets with which to seed PageRank-
based measures for community detection. Their methods outper-
form existing sophisticated methods, but do not significantly out-
perform the use of random nodes.

Finally, essentially all seed set expansion algorithms need to
make a decision about the choice of stopping criterion — when
does one stop expanding the set? Such a criterion can be treated
relatively independently from the choice of expansion rule. Ander-
sen & Lang [3] and Yang & Leskovec [11] choose the first nodes
that represent a set with a locally minimal conductance (given that
additions happen in the order induced by sorted, DN-PageRank).
Mehler & Skiena continue until the mining rate of reserved la-
beled nodes passes below a certain threshold; Bagrow [4] looks
for transitions and cusps in the modularity that one expects at a
community border. Others such as Mislove et al. [14], Luo et
al. [12], and Clauset [5] greedily add and subtract nodes from the
predicted community until a local maximum is reached. In 2012
Yang & Leskovec used PageRank-type measures to empirically
compare different topological parameters to identify community
boundaries in real-world data sets. They found that the result was
somewhat domain-dependent, but that either the set’s conductance
or its triad participation ratio were, most reliably, high accuracy
stopping rules.

8. CONCLUSION
The seed set expansion problem has been gaining visibility as

a general-purpose framework for identifying members of a net-
worked community from a small set of initial examples. But subtle
trade-offs in the formulation and underlying methods can have a
significant impact on the way this process works, and in this paper
we have identified several such principles about the relative power
of different expansion heuristics, and the structural properties of
the initial seed set. Our investigations have involved analyses of
datasets across diverse domains as well as theoretical trade-offs be-
tween different problem formulations.

There are a number of interesting directions for further work. In
particular, the power of PageRank-based methods raises the ques-
tion of whether these are indeed the “right” algorithms for seed set
expansion, or whether they should be viewed as proxies for a richer
set of probabilistic approaches that could yield strong performance.
Second, the contrast between seed sets consisting of random nodes
versus those consisting of high-degree nodes suggests that deeper
structural contrasts may be present as well; a richer understand-
ing of the seed sets that lead to the most effective expansions to a
larger community could provide useful insights for the application
of these methods. And finally, as noted earlier in the paper, nodes in
a network tend to belong to multiple communities simultaneously,
and a robust way of expanding several overlapping communities
together is a natural question for further study.
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APPENDIX
A. SUMMARY OF ALGORITHMS

Here we provide brief summaries of the algorithms used in the
main text; for more details see citation. We distinguish between
three types of algorithms:

Neighbor counting.
(a) Outwardness, the degree-normalized difference between the num-
ber of edges a node has into and out of the labeled community [4];
(b) Neighbors, the number of neighbors a node has in the labeled
community [13];
(c) DN-Neighbors, the degree-normalized version of Neighbors [13];
(d) BinomProb, the binomial probability that a node is in the com-
munity, given the number of neighbors it has in the labeled com-
munity [13].

Greedy structural optimization.
(e) Modularity, greedy algorithm: in each step add the node that
yields the highest increase in the set modularity of the predicted
community, [5];
(f) SetModularity, greedy algorithm: in each step add the nodes
that yield a positive increase in set modularity, then remove the set
of all nodes whose removal precipitates an increase, [12];
(g) Conductance, greedy algorithm: in each step add the node that
yields the most negative change in conductance, [14].

PageRank.
(h) PageRank, implemented here with personalization and com-
puted using the power method and jumpback probability ↵ = 0.10,
see [7] or footnote 5 for implementation details. For comparison
with [2,21] we also implemented a version with ✏-truncation (semi-
accurate estimate of PageRank); however we found that below a
✏ ⇡ 1/|G|) there were no significant differences in performance,
and past this ✏, the performance steeply plummets to approach that
achieved by random guessing.
(i) DN-PageRank, the degree-normalized version of PageRank [17];
again, see footnote 5.

5Let ⇢t be the tth random walk vector given that the initialization
set S is the set of known community members.
Let �(S) be an indicator vector where �

i

(S) = 1 if i 2 S and
0 otherwise. Let A be the adjacency matrix, where A

ij

= 1 if
j links to i and 0 otherwise. The degree of node j is given by
d
j

=

P
i

A
ij

. The random walk is initialized with ⇢0 = �(S)/|S|.
In step t+1 each node i distributes ↵⇢t

i

probability mass uniformly
over the seed set S and (1� ↵)⇢t

i

probability mass over its neigh-
bors. The corresponding probability transition matrix M(S) is:

M
ij

(S) = ↵
�
i

(S)

|S| + (1� ↵)
A

ij

d
j

.
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