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ABSTRACT
Sequential pattern analysis targets on finding statistically
relevant temporal structures where the values are delivered
in a sequence. With the growing complexity of real-world
dynamic scenarios, more and more symbols are often needed
to encode a meaningful sequence. This is so-called “curse of
cardinality”, which can impose significant challenges to the
design of sequential analysis methods in terms of computa-
tional efficiency and practical use. Indeed, given the over-
whelming scale and the heterogeneous nature of the sequen-
tial data, new visions and strategies are needed to face the
challenges. To this end, in this paper, we propose a “tempo-
ral skeletonization” approach to proactively reduce the rep-
resentation of sequences to uncover significant, hidden tem-
poral structures. The key idea is to summarize the temporal
correlations in an undirected graph. Then, the “skeleton” of
the graph serves as a higher granularity on which hidden
temporal patterns are more likely to be identified. In the
meantime, the embedding topology of the graph allows us to
translate the rich temporal content into a metric space. This
opens up new possibilities to explore, quantify, and visualize
sequential data. Our approach has shown to greatly allevi-
ate the curse of cardinality in challenging tasks of sequential
pattern mining and clustering. Evaluation on a Business-
to-Business (B2B) marketing application demonstrates that
our approach can effectively discover critical buying paths
from noisy customer event data.

Categories and Subject Descriptors
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1. INTRODUCTION
Unraveling meaningful and significant temporal structures

from large-scale sequential data is a fundamental problem
in data mining with diversified applications, such as mining
the customer purchasing sequences, motion gesture/video
sequence recognition, and biological sequence analysis [11].
While there have been a large amount of research efforts
devoted to this topic and its variants [1, 2, 7, 10, 25], we
are still facing significant emerging challenges. Indeed, with
the growing complexity of real-world dynamic scenarios, it
often requires more and more symbols to encode a meaning-
ful sequence. For example, in Business to Business (B2B)
marketing analytics, we are interested in finding critical buy-
ing paths of B2B customers from historical customer event
sequences. Due to the complexity of the B2B marketing pro-
cesses, as well as the difficulty of manually annotating the
great variety of customer activities, a large number of sym-
bols is often needed to represent the sequential data. This is
known as the “curse of cardinality”, which can impose signif-
icant challenges to the design of sequential analysis methods
from the following perspectives.

• Complexity. The computational complexity of finding
frequent sequential patterns is huge for large symbol sets.
Many existing algorithms have a time complexity that
grows exponentially with decreasing pattern supports.

• Rareness. In general, the support of a specific sequential
pattern decreases significantly with the growing cardinal-
ity. To see this, let us consider k symbols that appear
with uniform probability in a sequence. The possibility of
locating a particular pattern of length ` is `−k. In other
words, the higher the cardinality, the rarer the patterns
are. Since the number of unique subsequences grows with
the cardinality, the number of sequences required to iden-
tify significant patterns also tends to grow drastically.
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• Granularity. A large number of symbols in a sequence
can “dilute” useful patterns which themselves exist at a
different level of granularity. As we will discuss in more
detail later, semantically meaningful patterns can exist at
a higher granularity level, therefore pattern mining on the
original, huge set of symbols may provide little clues on
interesting temporal structures.

• Noise. Due to the stochastic nature of many practical
sequential events, or the multi-modality of events, useful
patterns do not always repeat exactly but instead can hap-
pen in many permutations. For example, the customers
may accidentally download some trial products by mistake
when they are looking for the desired information. With-
out dealing with such irregular perturbations, we may fail
to discover some meaningful patterns.

In the literatures, there have been some related works on
how to reduce the cardinality in pattern mining by perform-
ing a grouping operation on the original symbols. A com-
monality of these approaches is that they all exploit extra
knowledge associated with the symbols as a guidance to per-
form clustering. For example, a taxonomy of the items may
already exist in the form of domain knowledge [18] or can
be derived from the structured description of the product
features [9]. In Giannotti et al. [7], the 2-dimensional coor-
dinates of spatial points are used to group them into regions
to further facilitate the finding of the trajectory patterns.
Generally speaking, these approaches first apply clustering
on the items whose features are relatively easy to extract,
and then search the patterns in different clustering levels.

While these methods have been successfully applied in
some application scenarios, there are some emerging issues
to be addressed when we face the overwhelming scale and the
heterogeneous nature of the sequential data. First, in some
applications, it might be difficult to obtain the knowledge
of symbols. For example, many sequential data simply use
an arbitrary coding of events either for simplicity or security
reasons. Second, there are circumstances where it is difficult
to define distance among symbols, and therefore clustering
becomes impractical. For example, it is unclear how to de-
fine the distance between actions customers have taken in
their purchasing process. Finally, the biggest concern is that
the grouping in these methods is performed irrespective of
the temporal content. As a result, these methods may not
be able to find statistically relevant temporal structures in
sequential data. Therefore, there is a need to develop a new
vision and strategy for sequential pattern mining.

To this end, this paper proposes a temporal skeletoniza-
tion approach to proactively reduce the representation of
sequences, so as to expose their hidden temporal structures.
Our goal is to make temporal structures of the sequences
more concise and clarified, and thus more prone to discov-
ery. Our basic assumption is the existence of symbolic events
that tend to aggregate temporally. Then, by identifying
temporal clusters and mapping each symbol to the cluster
it belongs to, we can reduce not only the cardinality of se-
quences but also their temporal variations. This allows us to
find interesting hidden temporal structures which are other-
wise obscured in the original representation.

Exploring temporal clusters from a large number of se-
quences can be challenging. To achieve this, we have re-
sorted to graph-based manifold learning. The basic idea
is to summarize the temporal correlations in the data in

an undirected graph. The “skeleton” of the graph (i.e., the
temporal clusters) can then be extracted through the graph
Lapacian, which serves as a higher granularity where hid-
den temporal patterns are more likely to be identified. A
nice interpretation of such temporal grouping is that when
individual symbols are replaced by their cluster labels, the
averaged smoothness of all sequences is maximized. Intu-
itively, this can greatly improve the possibility of finding
significant sequential patterns, as we shall observe empir-
ically. In addition, the embedding topology of the graph
allows us to translate the rich temporal content of symbolic
sequences into a metric space for further analysis and vi-
sualization. Compared with existing methods that attempt
to reduce the cardinality via clustering, our approach does
not require specific knowledge about the items. Instead, it
caters directly to the temporal contents of given data se-
quences. To the best of our knowledge, using the temporal
correlations to perform clustering and reduction of represen-
tation is a novel approach in sequential pattern mining.

Temporal skeletonization can be deemed as a transforma-
tion that maps the temporal structures of sequences into the
topologies of a graph. Such a dual perspective provides not
only more insights on pattern mining, but also brings pow-
erful new tools for analysis and visualization. For example,
many techniques in graph theories can be used to analyze
symbolic sequences, which appear as random walks on the
created graph. On the other hand, due to the explicit em-
bedding, symbolic sequences are represented as numerical
sequences or point clouds in the Euclidean space, for which
visualization becomes much more convenient.

Experimental results on real-world data have shown that
the proposed approach can greatly alleviate the problem of
curse of cardinality for the challenging tasks of sequential
pattern mining and clustering. Also, we show that it is
convenient to visualize sequential patterns in the Euclidean
space by temporal skeletonization. In addition, the case
study on a Business-to-Business (B2B) marketing applica-
tion demonstrates that our approach can effectively identify
critical buying paths from noisy marketing data.

2. TEMPORAL SKELETONIZATION
In this section, we introduce the detail of the proposed

method. The key concept is the “temporal cluster”, namely
group of symbols which tend to aggregate more closely to-
gether in the sequences. By transforming the sequential data
into graphs, we can identify such temporal clusters to greatly
simplify the representation of the sequences.

2.1 Temporal Clusters
We believe that temporal clusters often exist in practical

sequence data. Otherwise, if there is no such “preferential”
structures and everything becomes uniform, we may not find
anything interesting. In the following, we discuss two typi-
cal scenarios. One involves stage-wise patterns where each
stage can be deemed as a temporal cluster; another scenario
involves frequent associative patterns.

2.1.1 Case I: Stage-Wise Patterns
First, some sequential processes exhibit stage-wise behav-

iors; that is, the process typically goes through a number of
stages before reaching the final goal, with each stage marked
by a collection of representative events. For example, in
B2B markets, the business customer will go through stages
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such as “Investigating more product information”, “Trial ex-
perience and evaluation”, “Contacting customer service for
specific information”, and “Contacting sales to finalize the
purchase”. Here, each stage includes a number of events,
and the global structure of the underlying process is shaped
by the stages as backbones. Note that the order of stages can
vary with regard to different customers. Also, events within
a stage may or may not have a dominant ordering. However,
collectively, we can observe that each stage forms temporally
compact clusters. It will be very useful to find such clusters
for understanding the global patterns of sequences.

In case of stage-like sequences, it is obviously more mean-
ingful to detect patterns at the stage level. However, the
stages are unknown and typically cannot be determined by
grouping the symbols based on their features. Therefore,
few existing methods could handle such situations. In the
following we use one simple example to show that the large
number of symbols in stage-like sequences can “dilute” use-
ful patterns which themselves exist at a different level of
granularity, posing a big challenge on existing methods.

1 : m, h, j, f, d, a, i, k, b
2 : j, l, m, a, n, f, b, o, g
3 : e, h, l, c, f, n, i, b, o
4 : h, l, e, c, a, f, k, o, i

For the four sequences above, if we apply pattern mining on
the original level of symbols, we would be unable to find any
frequent pattern. However, if we cleverly group the symbols
in the following way

A = {m, h, j, e, l}
B = {a, f, c, d, n}
C = {k, g, o, b, i}

then all the four sequences read as

A, A, A, B, B, B, C, C, C

It is obvious that A, B, C is a frequent (stage) pattern with
100% support.

2.1.2 Case II: Frequent Associative Patterns
Temporal cluster also has an interesting connection with

frequent associative patterns. Since associative items tend
to occur closely to each other, they are temporally more
coherent and can likely form temporal clusters. In other
words, there must exist temporal clusters if there are sig-
nificant frequent patterns. However, temporal clusters can
be more general than frequent patterns. Another challenge
for finding frequent patterns is the noise in the data. If fre-
quent sub-sequences are somewhat perturbed, special cares
have to be taken in finding exact patterns. In comparison,
the temporal clusters we try to discover are identified via
the temporal distribution of all existing event pairs, thus
our approach is inherently more resistant to noise.

2.2 Temporal Graph and Skeletonization
Since large cardinality hampers pattern mining, we pro-

pose to find meaningful temporal clusters to alleviate it. The
key role of temporal clusters is that they can be used to re-
encode the original sequences. Since temporal clusters are
composed of symbols that are temporally more coherent, the
newly encoded sequences will be temporally smoother than
the original sequences. By doing this, we can greatly reduce
not only the cardinality but also the temporal variations of

the sequences. The latter makes it much easier to find se-
mantically useful patterns. Specifically, we put this under
the following optimization framework.

Suppose we have a set of symbols S = {e1, e2, · · · , e|S|}.
The n-th sequence is denoted by Sn = (sn1 , s

n
2 , · · · , snTn

),
where snt ∈ S for t = 1, 2, · · · , Tn and Tn is the length of the
nth sequence.

Problem 1 (Temporal skeletonization). Given a set
of sequences {Sn|n = 1, 2, · · · , N}, we want to find a new
encoding scheme of the symbols e ∈ S, denoted by the map-
ping y = f(e) ∈ {1, 2, · · · ,K}, such that when encoded with
f , the temporal variation of resultant sequences is minimized

min
y∈{1,2,...,K}

1

N

N∑
n=1

∑
1≤p,q≤Tn
|p−q|≤r

(
f(snp )− f(snq )

)2
. (1)

Here r is a pre-defined integer that controls the range that
local sequence variations are computed, and the cardinality
of the encoding scheme, K, is a pre-defined integer that is
much smaller than that of the original representation |S|.

Here, in each of the N sequences, we only consider pairs of
events snp and snq that are within r intervals to each other,
such that when they are re-encoded with f(snp ) and f(snq ),
they are similar to each other.

This is an integer programming problem which has shown
to be NP-hard. Therefore, we propose to relax the integer
constraint to real numbers. In addition, we will define the
so-called “temporal graph” to re-phrase the problem as a
graph optimization one.

Definition 1 (Temporal graph). Let G be a weighted
graph G = 〈V,E〉 with vertex set V = S and edges E. The
i-th node of G corresponds to the i-th symbol ei in the sym-
bol set S. The weight of the edge between node i and node j
is defined as the ij-th entry of an |S|× |S| matrix W , where

Wij =
1

N

∑
1≤n≤N
ei,ej∈Sn

δ (|`(ei, Sn)− `(ej , Sn)| ≤ r) . (2)

Here, we say e ∈ Sn if the symbol e can be observed in the se-
quence Sn and `(e, Sn) ∈ {1, 2, · · · , Tn} is the corresponding
location of e in the sequence Sn.

We call G “temporal graph”, because the edge weight of the
graph captures the averaged temporal closeness between any
pair of symbols/events across all the input sequences. With

this definition, and let y ∈ R|S| where yi = f(ei), Problem 1
can be written in the following compact form

min
y∈R|S|

∑
i,j

Wij(yi − yj)
2. (3)

Problem (3) has a standard form of graph-based optimiza-
tion. Let us define the graph Laplacian of G as L = D−W ,
where D is a diagonal degree matrix with Dii =

∑
jWij .

Then, Equation 3 can be formalized as

min
y∈R|S|

y′(D −W )y (4)

s.t. 1′Dy = 0

y′Dy = 1

where 1 is a vector of all 1’s. Here, the translation and scale
constraints are added to avoid trivial solutions. This is also
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known in the literatures as Laplacian eigenmap [3], which
has also been applied in spectral clustering [14]. To the best
of our knowledge, it is a novel application to use graph-
based algorithm to extract interesting temporal structures
from multiple sequences.

Note that the more often symbol ei and symbol ej appear
close to each other in the sequences, the higher the Wij

is and the larger the penalty it induces on the objective
(Equation 4), and as a result, the closer yi and yj should
be. This equivalently achieves a grouping of the symbols,
which are the temporal clusters we try to extract. As can be
expected, by re-encoding the sequence with the label of the
temporal clusters, we can improve the temporal smoothness
which is beneficial to subsequent pattern mining.

The level of smoothness can be adjusted effectively by the
order parameter r. The order parameter controls the reso-
lution on which clusters are extracted. A larger r captures
the similarities among events in a longer temporal range,
which potentially lead to fewer clusters, while a small r only
considers directly adjacent symbols as similar, which lead to
more clusters. In the extreme case when r approaches in-
finity, W becomes a constant matrix, and all the events will
be categorized into one cluster. In practice, instead of using
the delta function (δ (|`(ei, Sn)− `(ej , Sn)| ≤ r)) to measure
the similarity, one can also use a smoother function such as

Wij =
1

N

∑
1≤n≤N
ei,ej∈Sn

κh (|`(ei, Sn)− `(ej , Sn)|) , (5)

where κh is a non-increasing function parametrized by h.
For example, we can use the exceedance of the Exponential
distribution κh(d) = exp(−hd).

2.3 Embedding and Visualization
The optimal solution of Equation 4 is the eigenvector of

the graph Lapacian corresponding to the second smallest
eigenvalue. In practice, one usually computes several eigen-
vectors and applies some simple clustering algorithms such
as K-means or GMM (Gaussian mixture model) in this low-
dimensional space. The useful eigenvectors of the graph La-
pacian not only provide a relaxed solution for finding tem-
poral clusters, but also more interestingly, naturally connect
to the manifold embedding of the graph.

Note that the eigenvectors of the graph can be deemed as a
low-dimensional embedding, in which the proximity relation
among objects preserves that in the original space [24]. Since
the similarity measurements in Wij of the graph reflect the
temporal closeness of the events, the embedding eigenvectors
of the graph will also inherit this configuration. Namely, if
two symbols, ei and ej are temporally more related, their
distance will also be small in the embedded space. In other
words, our approach provides a direct platform for visualiz-
ing the temporal structures of sequential data. We believe
that such visualization can provide interesting insights al-
lowing domain experts to draw useful conclusions.

To provide more intuition on the temporal embedding re-
sults, in Figure 1, we give several examples. Figure 1a is the
embedding of a collection of random sequences. As can be
seen, the embedded symbols (each represented by one point)
are distributed uniformly and there is hardly any interesting
structure. Figure 1b is a simulated data containing 5 stages
of events (more details in Section 4). As can be seen, there
are clear clusters in the embedding, each representing ex-

actly events belonging to one stage. In Figure 1c we used a
real-world data set composed of thousands of B2B customer
event sequences. As can be seen, the cluster structures are
complicated: some clusters are well separated while others
are diffusing. This has to do the complicated relationships
between practical events in the data set. From these exam-
ples, we can see that our temporal skeletonization approach
can translate the temporal structures in the sequential data
into their topological counterparts. The resultant visualiza-
tion can bring useful insights.

In the literatures, there are many algorithms for manifold
learning. Many of these approaches rely on the eigenvalue
decomposition of a similarity matrix to obtain the manifold
embedding. For example, Isomap [20] is another popular
method that embed a graph into an Euclidean space. In our
experiments, we also use Isomap to visualize the data, and
find that it can provide spatially more unfolded embedding.
The details of using Isomap are provided in the Appendix.

2.4 Post-Temporal-Smoothing
By finding temporal clusters in the embedded Euclidean

space, and use it to re-encode the sequence, we can ob-
tain temporally smoother representation. For example, we
can transform the original customer event sequences to se-
quences of stages, with each stage being defined as the groups
of symbols (marketing campaigns) in the temporal clusters
identified. However, although the embedded graph is es-
timated robustly with the integrated data from all the se-
quential observations, the individual sequence might still be
noisy in some cases, for instance, the order parameter r is
chosen too small. Thus, one might want to further smooth
away the irregularities in the sequences. To this end, we
propose a multi-series post-smoothing using fused lasso [21].

Specifically, we use the Gaussian mixture models to per-
form a soft clustering on the embedded symbols. We denote
this by a partition matrix Y ∈ R|S|×K where Ysk is the prob-
ability that the symbol s ∈ S belongs to the k-th temporal
cluster. Then we can use this partition matrix to trans-
form each individual sequence Sn = (sn1 , s

n
2 , · · · , snTn

) into

a multiple of K sequences, denoted by Y n ∈ RTn×K where
Y ntk is the probability that the t-th interaction snt in Sn be-
longs to the k-th cluster. Then we try to find a smoother
version of the multiple sequences Y n, denoted by Xn. To
achieve this, we encourage sparsity of the differences be-
tween the successive rows in Xn, i.e.,

∑Tn−1
t=1 ‖X

n
t −Xn

t+1‖1
where ‖Xn

t − Xn
t+1‖1 =

∑K
k=1 |X

n
tk − Xn

(t+1)k|. We opti-
mize the approximation of Xn by maximizing the alignment∑Tn
t=1

∑K
k=1X

n
tkY

n
tk and with probability constraints. Thus,

we would like to maximize
∑Tn
t=1

∑K
k=1X

n
tkY

n
tk, subject to

1

Tn − 1

Tn−1∑
t=1

‖Xn
t −Xn

t+1‖1 ≤ λ,

in addition to
∑K
k=1X

n
tk = 1 and Xn

tk ≥ 0. Here λ is a
tuning parameter controlling smoothness of Xn.

To solve the approximation problem with the smooth con-
straint, we let Xn

tk−Xn
(t+1)k = αntk−βntk for t = 1, · · · , Tn−1

and k = 1, · · · ,K where αntk, β
n
tk ≥ 0. Let An ∈ R(Tn−1)×Tn

with Antt = 1, Ant(t+1) = −1 and Antt′ = 0 otherwise so that
AnXn = αn − βn. We can rewrite the smooth approxima-
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(a) Random sequences.
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(b) Stage-wise sequences.
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(c) B2B customer event sequences.

Figure 1: The embedding of symbols in different types of sequence data.

tion as a linear programming problem:

max

Tn∑
t=1

K∑
k=1

Xn
tkY

n
tk,

s.t.

K∑
k=1

Xn
tk = 1,∀t = 1, · · · , Tn,

AnXn = αn − βn,

1

Tn − 1

Tn−1∑
t=1

K∑
k=1

(αntk + βntk) ≤ λ,

in addition to the non-negative constraints Xn, αn, βn ≥ 0.

3. APPLICATIONS
In this section, we discuss the applications of the proposed

temporal skeletonization method in several interesting prob-
lems. The reduced representation makes it much easier to
perform these tasks than on the original sequences.

3.1 Sequence Visualization
Our framework embeds symbolic events in sequence data

into an Euclidean space, which allows to visualize each se-
quence as a trajectory. Such visualization can provide direct
insights on the relationship between events, which, when
subject to examination of domain expert, can greatly facil-
itate them making analysis and decisions. In Section 5, we
will report how temporal clusters in the B2B customer event
data can help to understand typical purchase patterns.

In choosing the embedding dimensions, we typically choose
two or three dimensions, which correspond to the dominant
components of the temporal graph. Usually, these few di-
mensions can encode a sufficient amount of the temporal
relations. To see this, we investigate the residual variance in
the Isomap with regard to the number of selected embedding
dimensions. As shown in Figure 2, in both the simulation
and real-world data sets, the residual variance drops most
significantly with the first few dimensions.

3.2 Sequential Pattern Mining
By identifying meaningful temporal clusters, our method

transforms the original sequence of events to the sequence
of temporal clusters (the cluster labels are used as a new
set of symbols to encode events). This helps to reduce the
cardinality of the sequence representation, and the supports
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(a) Simulation data.
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(b) B2B customer data.

Figure 2: The residual variance vs. dimensionality.

of the sequential patterns are increased. As a result, conse-
quent sequential pattern mining is able to discover signifi-
cant knowledge which otherwise would be diluted in the raw
data. Indeed, the patterns discovered in this way are defined
with a higher level of granularity, i.e., the temporal clusters.
Therefore, to interpret the patterns, we can first annotate
the temporal clusters with domain knowledge.

For example, in the B2B customer event data, the tempo-
ral event clusters can be semantically labelled as Webinar,
Tradeshow, Direct Marketing Mail, Web Marketing Ads,
Trial Product Download, and Unsubscribe, etc. As we shall
see, these temporal clusters correspond to stages in the pur-
chasing route of the customers, which are much easier to
understand and interpret compared with the raw sequences.

3.3 Sequence Clustering
Sequence clustering is an important task, however, it is

not always easy to extract appropriate features or define
distances among sequences so that clustering can be per-
formed properly. This is particularly true when sequences
are represented by a huge number of symbols. The tempo-
ral skeletonization method we have proposed can be used
to tackle these difficulties. This is because the temporal
skeletonization can remove noises in the sequences based on
their collectively temporal behaviours. More importantly, it
re-summarizes the events in the form of groups of events,
therefore we will observe much more repeated subsequence
on which sequential features can be more meaningful.

For example, when there is only a reasonably small num-
ber of symbols in the sequences, we can extract the following
useful features, such as the counts of each temporal cluster
passed by the sequence, or how many times one symbol ap-
pears in precedence of another, and so on. It turns out
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such a straightforward approach can effectively cluster the
sequences. To incorporate more temporal information, we
can also leverage the frequent sequential patterns discov-
ered by the aforementioned sequential pattern mining, as
suggested by Lee et al. [13].

4. EMPIRICAL EVALUATION
In this section, we evaluate the performances of our ap-

proach in comparison with several state-of-the-art methods.
All the experiments are performed on a GNU/Linux system
with 8 CPUs (Intel i7 2.93GHz) and 8G RAM.

4.1 Synthetic Data
We have simulated symbolic sequential data composed of

stages of events. We define 5 stages {A,B,C,D,E}, where
each contains 25 symbols. Then, we create 5000 sequences
that are of two patterns. The first 2500 sequences mainly
follow stage pattern A → B → C → D; the other 2500 se-
quences follow B → E → C. The simulation proceeds as
follows. After deciding which stage to sample from based
on the two patterns, we randomly pick d symbols from that
stage, where d is a random integer. Then, we inject the se-
lected symbols into the sequence, and continue to the next
stage in the pattern. Indeed, such a simulation process is
equivalent to a standard Hidden Markov Model (HMM),
where 5 stages correspond to 5 hidden states and symbols
within each stage correspond to observations. Let the tran-
sition probability from each stage to itself be p, and that to
the next stage (as specified in the two patterns) be 1 − p.
Then, the stage duration d follows a geometric distribu-
tion d ∼ (1 − p)pd−1, with the expected value E[d] = 1

1−p .
To have significant stage-wise patterns in the produced se-
quences, we have used a large probability p = 14

15
, leading to

E[d] = 15. In other words, on average, we randomly pick 15
symbols for each stage in the sequences.

4.2 Baselines
First, we apply state-of-the-art Frequent Sequence Mining

(FSM) algorithms, including GSP [19], SPADE [25], Pre-
fixSpan [10], SPAM [2]. The results in Figure 3 show that,
when desired pattern support drops, the time consumption
of these algorithms grow super-exponentially, indicating the
difficulties introduced by the large numbers of symbols. The
number of detected patterns also becomes explosive, most of
which are non-informative and provide no clear insight of the
underlying sequence generating processes (as shown in Ta-
ble 1). In comparison, using the temporal clusters identified
via our approach (more details in Section 4.3), the mining
process succeeds quickly in one second.
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Figure 3: FSM algorithms on the simulated data.

In addition to the improvement on efficiency, we also com-
pare the pattern mining results on the original and the re-

encoded sequences via our method in Table 1. For the task
of pattern mining, we compute the precision (fraction of dis-
covered patterns that are relevant) and recall (fraction of the
relevant patterns that are discovered) of the discovered pat-
terns against the ground truth. The results show that when
working on the raw data, FSM performs poorly with an F-
measure around 0.281. In contrast, after re-encoding using
our approach, it can lead to an 100% accuracy.

Task
Pattern Sequence Stage
Mining Clustering Recovery

Method FSM Ours HMM Ours HMM Ours
Precision 0.725 1.0 0.997 1.0 0.488 1.0

Recall 0.174 1.0 0.997 1.0 0.448 1.0

Table 1: Utility comparison on the simulated data.

Since data simulation process follows the Markov prop-
erty, the second baseline approach we have experimented
with is the classical HMM. In our data, there are two hid-
den patterns, thus we adopt the HMM based clustering
(HMMC) [15] to simultaneously cluster the sequences and
estimate the HMM parameters for each cluster. Specifically,
to group sequences intoM clusters, the HMMC randomly al-
locates all sequences to M disjoint subsets as initial clusters,
then the following two procedures are iterated until conver-
gence. First, for all sequences in cluster Cm, we estimate a
transition matrix φm and a emission matrix θm; Second, we
reallocate each sequence Sn to the cluster Cm on whose tran-
sition and emission matrices it has the highest probability
of being produced, i.e., m = arg maxm Pr(Sn|φm, θm).

We have provided the HMMC method with some ground
truth parameters, i.e., the number of clusters M = 2, and
the number of hidden states (stages) for each cluster. Table 1
shows the accuracy of the HMM based method for the task
of sequence clustering and stage recovery. To be specific,
for these two tasks, we first compute the so-called confusion
matrix C, where Cij is the number of instances in resulted
group i and ground truth class j. Then, the precision is
computed as 1

N
maxσ

∑
j Cσ(j)j where N =

∑
ij Cij and σ

maps classes to different groups; the recall is computed as
1
N

∑
i maxj Cij , which is also termed as clustering purity.

Again, our method gives perfect results on both tasks. The
HMMC only works well for sequence clustering, while its
performance is almost random for the task of stage recovery.

4.3 Our Results
Here, we show that our approach can successfully recover

patterns hidden in the data. In Figure 4a, we see that our
approach embeds altogether 125 symbols in such a way that
5 dominant clusters emerge. This is in perfect consistency
with the ground truth structure we have used in the sim-
ulation. In Figure 4b, we show that, by extracting simple
features as discussed in Section 3.3, we can correctly group
the 5000 sequences into two clusters (in red and green).

Our approach does not require any prior knowledge on
the simulated data. We tried different ways (Equation 2
and Equation 5) to construct the temporal graph, and the
results were very robust with respect to parameters (e.g.,
1 ≤ r ≤ 5 and 1 ≤ h ≤ 5). Also, we can clearly identify the
number of stages based on well clustered symbols. Finally,
the post-temporal-smoothing procedure works with λ in a
wide range, e.g., 1 ≤ λ ≤ 10.
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Figure 4: The embedding of simulated data.

4.4 Noisy Cases
Now we examine the performances of our approach in case

of noisy data. We have injected two types of noises. The first
is introduced on items of each sequence, such that one stage
could contain symbols that belong to other stages. Such a
noisy behavior is quite natural in the buying process of cus-
tomers. For example, customers might occasionally partici-
pate events not very relevant to their current buying stages.
The second kind of noise is introduced as random sequences
not following any certain patterns. In real world, these ran-
dom sequences might correspond to event sequences of some
unintended customers. We have 5% noisy observations for
each type of noise. Moreover, we have added another two
stage-wise patterns to make the problem more challenging.
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Figure 5: The noisy simulated data. a: The temporal clus-
ters. b: The sequences clusters. c: Pattern A → B →
C → D and B → E → C. d: Pattern A → B → D and
A→ C → D.

We can see from Figure 5a that, even in this noisy data,
the temporal clusters are still identifiable, which correspond
to stages of events. The reason is that, our temporal graph
is estimated robustly with integrated temporal content from
all the sequences, therefore a small portion of individual
noisy observations cannot significantly affect the result. In
particular, the post-temporal-smoothing (Section 2.4) can
also be very useful in removing the random events. As shown
in Figure 5b, once noisy random events are removed, we can

discover important patterns (groups of sequences). Indeed,
the 4 stage-wise patterns are all discovered by our approach.

We report the results of standard FSM and HMMC in
Table 2. As can be seen, their performances both degrade
compared with the noiseless case, while our approach still
successfully returns the ground truth patterns.

Task
Pattern Sequence Stage
Mining Clustering Recovery

Method FSM Ours HMM Ours HMM Ours
Precision 0.526 1.0 0.688 1.0 0.480 1.0

Recall 0.134 1.0 0.621 1.0 0.416 1.0

Table 2: Utility comparison on the noisy cases.

5. B2B PURCHASE PATTERN ANALYSIS
In this section, we apply our method to find critical buying

paths of Business-to-Business (B2B) buyers from historical
customer event sequences. Since B2B purchases are often
involved with strategic development of the company, and as
a result, extra cautions and extensive research efforts have
to be taken in making such investment, the decision process
of customers in purchasing certain products or services is
much more complicated than that in our daily purchasing
activities. Thus, it is of significant business value if we can
discover characteristic and critical buying paths from obser-
vations. These can be used to recommend directed adver-
tising campaigns so as to increase potential profits and also
reduce the marketing cost. In addition, we would also like
to visually display the buying processes of the customers.
By doing this, we can better understand the behavior pat-
terns of B2B customers and accordingly develop promising
marketing strategies. In the following, we show that our
framework is effective for these objectives.

5.1 Data Description
We have collected huge amount of purchasing event data

for the customers of a big company. In more detail, we
have event sequences from N = 88040 customers, with the
number of unique events (symbols) |S| = 5028, leading to
altogether T =

∑
n Tn = 248725 event records. We con-

struct the temporal graph using Equation 5 and h = 5, and
then embed the graph using Isomap. In the appendix, we
describe details on how to apply Isomap embedding on the
temporal graph we have constructed.

5.2 Embedding Results and Buying Stages
We plot the embedding of selected 503 events (top 10%

nodes with the largest degrees in the temporal graph) in
Figure 6, and mark it with the clustering results. For each
detected cluster, we are able to extract dominant semantic
keywords for the events in that cluster, as shown in Table 3.
Note that the semantic information here is only used to sum-
marize each temporal cluster for better understanding of our
results, but not for the purpose of grouping the events.

We discuss some interesting observations on the temporal
clusters. First, clusters that are close to each other appear
logically related, e.g., ‘search engine’ (C13) and ‘trial prod-
uct download’ (C3); ‘webinar’ (C12) and ‘trade show’ (C8).
Second, symbols with the same semantic meaning may not
be in the same temporal cluster. For example, C6, C11, C12
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Figure 6: The customer event clusters.

Cluster Top keywords Size
C1 Official Website 12
C2 Corporate Event, Direct Marketing Mail 20
C3 Trial Product Download 45
C4 Conference 27
C5 Unsubscribe 38
C6 Webinar 101
C7 Trial Product Download 70
C8 Tradeshow 37
C9 Corporate Event, Direct Marketing Mail 65
C10 Web Marketing Ads 13
C11 Webinar 21
C12 Webinar 42
C13 Search Engine 12

Table 3: The semantic annotation of event clusters.

are all marked with ‘webinar’ but they form 3 separate clus-
ters. Note that these three clusters are close to ‘direct mar-
keting mail’, ‘trial product download’, ‘trade show’, respec-
tively, indicating that they have different levels of maturity
towards final purchase. Thus, it is reasonable to have them
separated. Nevertheless, the three clusters are still neigh-
bors, after all, since they have the same nature (‘webinar’).
In other words, temporal clusters could be partially consis-
tent with attribute-based clusters, while meanwhile reveal-
ing more fine-grained structure by exploiting the temporal
correlations. This is where the extra value comes from.

5.3 Critical Buying Paths
With the detected temporal clusters, we apply the post-

temporal-smoothing, since the data set we collected is very
noisy and can be subject to human errors. Then, we can
transform the original event sequences to sequences of tem-
poral clusters, and apply the FSM algorithms on the re-
encoded sequences. Figure 7 reports some results of pat-
tern mining on the original and re-encoded sequences re-
spectively. The pattern supports are generally chosen much
smaller than those used in the simulation study, since we
have much more symbols here and more complicated pat-
terns. As can be observed, on the original sequences, the
number of identified patterns again grows super-exponentially
with decreasing support. This would indicate that it is very
hard to have a conclusive and comprehensive understand-
ings of the customers’ purchasing patterns. In contrast, us-
ing the transformed sequences via temporal skeletonization,

the number of detected patterns is much more reasonable.
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Figure 7: Sequential patterns in B2B customer event data.

We then perform clustering on the transformed sequences,
using the frequent patterns detected to extract features as
discussed in Section 3.3. We focus on a few dominant clus-
ters in which the customers have relatively longer event se-
quences. The remaining customers only participated events
in one or two buying stages and their behaviors are almost
random. In Figure 8, we plot the sequences correspond-
ing to some dominant clusters covering 3501 customers, by
connecting each event of the sequence embedded in the two-
dimensional plane. Here, each cluster corresponds to one
type of customers with a unique buying path. We summa-
rized these buying paths in Table 4.
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Figure 8: The customer buying paths.

With the semantic annotation in Table 3, we can see that
the temporal clusters can be used to reveal several inter-
esting buying paths. For example, the blue path P1 passes
through 5 clusters (or stages), as C10 → C1 → C7 → C12 →
C8. These customers were attracted by ‘Web Marketing
Ads’, then they went to ‘Official Website’ and found the
‘Trial Product Download’. When customers needed more in-
formation to make decisions, they continued to attend ‘We-
binar’ and finally went to ‘Tradeshow’. The green path P2

also ends with ‘Trade Show’, but starts with ‘Search Engine’,
indicating that these customers started from their own effort
in acquiring information of the product suiting their needs.
In comparison, the pattern in the red path P3 is simpler,
starting with ‘Webinar’ and ending with ‘Tradeshow’. All
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these three paths can be grouped into the ‘Successful’ class,
which leads to the higher maturity of the customers. The
remaining two paths, P4 and P5, which end with ‘Unsub-
scribe’, indicating these customers do not want to partici-
pate further events any more.

These buying paths reveal different psychologies of B2B
customers. Among the successful class, P1 and P2 represent
customers that are comfortable with self-motivated/directed
actions, e.g., searching product information themselves or
browsing advertisements. In comparison, in the unsuccessful
class, P4 represents customers passively involved via ‘direct
marketing mail’ but finally choose to give up. For paths
P3 and P5, although they both start from webinar, they
branch to opposite routes. We speculate that P3 are easy
customers; while P5 are customers that are relatively more
difficult to persuade. These uncovered patterns can be help-
ful in guiding the marketing campaigns, such as identifying
customer groups, initiating more customer-friendly and less
commercialized advertisements, and so on.

Class Path Path/Keyword Size

Successful

P1

C10 → C1 → C7 → C12 → C8 933
Ads→Website→Download→
Webinar→Tradeshow

P2

C13 → C3 → C11 → C12 → C8 1110
Search→Download→Webinar→
Webinar→Tradeshow

P3

C6 → C11 → C12 → C8 702
Webinar→Webinar→Webinar→
Tradeshow

Unsuccessful

P4

C2 → C9 → C5 423
Mail→Corporate Event→
Unsubscribe

P5
C11 → C4 → C5 333
Webinar→Conference→
Unsubscribe

Table 4: The annotation of sequence clusters/buying paths.

From these observations, we can see that temporal clus-
ters do represent meaningful buying stages and they greatly
facilitate the description of typical buying paths. Identify-
ing the buying paths/stages for B2B customers are critical
to many marketing applications. This clearly demonstrates
the advantages of our approach.

6. RELATED WORK
Sequential pattern mining [1] is an important topic in data

mining. Given a database of customer transactions, where
each transaction consists of customer-id, transaction time,
and the items bought, sequential pattern mining finds fre-
quent sequences of item sets. Some research efforts [25, 10, 2]
focused on the computing efficiency. In addition to the cus-
tomer behavior analysis, sequential data from other domains
have also been exploited. For example, Giannotti et al. [7]
proposed to find trajectory patterns from the location traces
of moving objects to study their movement behaviors.

However, limited efforts [18, 9, 7] have been focused on the
“curse of cardinality” problem. As we discussed in Section 1,
these methods typically reduce the cardinality by perform-
ing a grouping of symbols, for which either a taxonomy al-
ready exists [18], or extracted from domain knowledge [9], or
through clustering on the features associated with the sym-
bols [7]. These grouping are irrespective of the temporal
content in the sequences, while our approach achieves the
grouping of symbols based on their temporal relations. It is

worthy to note that combining the two types of clustering is
a very interesting topic we shall pursue in the future.

Instead of reducing the cardinality of original symbols/items,
one can also compress the discovered patterns for more con-
cise interpretation. Pei et al. [16] computed so-called con-
densed frequent pattern bases to approximate the support of
any frequent pattern. Xin et al. [22] proposed to compress
frequent patterns with representative patterns via cluster-
ing. In these methods, an initial set of frequent patterns
has to be identified first, which could suffer from the large
cardinality. In comparison, our approach can be deemed as
compressing the original set of symbols.

Another category of related work is rank aggregation [17],
which tries to find a unified ranking of a set of elements that
is “closest to” a given set of input (partial) rankings. For
example, each customer event sequence can be deemed as a
ranking of the participated events. Methods include position
based statistics [5] and permutation optimization [6, 8], etc.
However, rank aggregation is suited only when there is a
dominant ordering in the data. When there are different
patterns of the ordering, rank aggregation fails to give a valid
result. In comparison, our approach can identify different
types of orders as discussed in Section 3.3.

The HMM is another widely used method for sequence
analysis. Most algorithms for HMM estimation are super-
vised; that is, hidden states in the training data need to
be provided for model estimation. However, in the B2B
customer event sequence analysis, it is very difficult to ob-
tain labels for the buying stages corresponding to individual
events. For unsupervised estimation of HMM, Expectation
Maximization (EM) is often used, which could suffer from
the local optimum problem. In our simulated study (Sec-
tion 4), we observed that unsupervised HMM estimation
often fails to recover the ground truth. In the literature,
there have been convex approaches for the learning of HMM
[23, 12]. However, this is achieved by avoiding explicit es-
timation of model parameters (transition matrix, emission
matrix, etc.), hence not applicable if the model parameters
are needed. Markov models were also used for clustering se-
quential data [4], as we also exploited in our empirical study
[15]. Simultaneous clustering the sequential data and com-
puting the temporal skeletonization shall be an interesting
future work.

7. CONCLUDING REMARKS
In this paper, we proposed a novel approach of temporal

skeletonization to address the problem of “curse of cardi-
nality” in sequential data analysis. The key idea is to map
the temporal structures of sequences into the topologies of a
graph in a way that the temporal contents of the sequential
data are preserved in the so-called temporal graph. Indeed,
the embedding topology of the graph can allow to trans-
late the rich temporal content into the metric space. Such a
transformation enables not only sequential pattern mining at
a more informative level of granularity, but also enables new
possibilities to explore, quantify, and visualize statistically
relevant temporal structures in the metric space. Finally,
the experimental results showed the advantages of temporal
skeletonization over existing methods. Also, the case study
showed the effectiveness of the proposed method in terms of
finding interesting buying paths from real-world B2B mar-
keting data, which otherwise would be hidden.
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APPENDIX
Isomap [20] is a method to embed a graph into a Euclidean
space. It works on graphs weighed by a distance matrix G,
where Gij is the distance between nodes i and j. Isomap
first sparsifies the distance matrix by only preserving edges
betweenK-nearest neighbours. Then, it computes the geodesic
distance Dij ’s using the Dijkstra’s algorithm. The matrix
D is (entry-wise) squared and converted to an inner product
matrix via K = − 1

2
H(D ◦D)H, where H is the centering

matrix. Finally, the eigenvectors of K with dominant eigen-
values are used to construct the embedding X that maxi-
mally preserves the manifold structure. We used the code
from http://isomap.stanford.edu.

To apply Isomap on the temporal graph (Section 2.2), we
convert temporal similarities Wij ’s to distances. Since we
mainly used radial basis function κh(d) = exp(−h ·d), which
gives the relation Wij = exp(−h ·Gij), we can transform
the similarity to distance via Gij = − 1

h
log(Wij).
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