
Learning Multifractal Structure in Large Networks

Austin R. Benson
Stanford University

Institute for Computational and
Mathematical Engineering

arbenson@stanford.edu

Carlos Riquelme
Stanford University

Institute for Computational and
Mathematical Engineering

rikel@stanford.edu

Sven Schmit
Stanford University

Institute for Computational and
Mathematical Engineering
schmit@stanford.edu

ABSTRACT
Using random graphs to model networks has a rich history. In this
paper, we analyze and improve the multifractal network genera-
tors (MFNG) introduced by Palla et al. We provide a new result
on the probability of subgraphs existing in graphs generated with
MFNG. This allows us to quickly compute moments of an impor-
tant set of graph properties, such as the expected number of edges,
stars, and cliques for graphs generated using MFNG. Specifically,
we show how to compute these moments in time complexity inde-
pendent of the size of the graph and the number of recursive levels
in the generative model. We leverage this theory to propose a new
method of moments algorithm for fitting MFNG to large networks.
Empirically, this new approach effectively simulates properties of
several social and information networks. In terms of matching sub-
graph counts, our method outperforms similar algorithms used with
the Stochastic Kronecker Graph model. Furthermore, we present a
fast approximation algorithm to generate graph instances follow-
ing the multifractal structure. The approximation scheme is an im-
provement over previous methods, which ran in time complexity
quadratic in the number of vertices. Combined, our method of mo-
ments and fast sampling scheme provide the first scalable frame-
work for effectively modeling large networks with MFNG.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Theory
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graph mining; real-world networks; multifractal; method of mo-
ments; graph sampling; stochastic kronecker graph; random graphs
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1. RECURSIVE GRAPH STRUCTURE
Generative random graph models with recursive or hierarchical

structure are successful in simulating large-scale networks [5, 15].
The recursive structure produces graphs with heavy-tailed degree
distribution and high clustering coefficient. Random samples from
recursive models are used to test algorithms, benchmark computer
performance [13], anonymize data, and to understand the structure
of networks.

A relatively new model is the multifractal network generators
(MFNG, [14]). However, there are two issues that are barriers to
making MFNG a practical model for large-scale networks. First,
results for fitting MFNG models to graphs have been extremely
limited. Current procedures can only match a single graph property,
such as the number of nodes with degree d. Second, to our knowl-
edge, all MFNG sampling techniques areO(|V |2) algorithms, where
V is the vertex set. This makes the generation of large graphs in-
feasible.

In this paper, we address both barriers and demonstrate that MFNG
can be a better alternative to the more popular stochastic Kronecker
graphs. In Section 3, we show how to compute several key prop-
erties of MFNG (e.g., expected number of edges, triangles, stars,
etc.) with computational complexity independent of |V | and the
recursion depth. This result lets us develop an extremely efficient
method of moments algorithm to fit networks to MFNG. We test
our new method of moments algorithm on synthetic data and large
social and information networks. In Section 5, we provide a heuris-
tic fast approximate sampling scheme to randomly sample MFNG
with complexity O(|E| log |V |), where E is the edge set of the
network. In Section 6.1, we show that our algorithm can identify
model parameters in synthetic graphs sampled from MFNG, and
in Section 6.2, we see that our algorithm can match the number
of edges, wedges, triangles, 4-cliques, 3-stars, and 4-stars in large
networks. Our contributions are summarized as follows:

• We show how to efficiently compute moments of several fea-
ture counts in random graphs generated with MFNG and use
this to accelerate a method of moments algorithm for fitting
large networks to MFNG.

• We provide a fast sampling algorithm for MFNG, so that
large networks can be randomly generated in reasonable time.

• We empirically show that MFNG models graph feature counts
better than alternatives and that global graph properties are
accurately matched.

1.1 Related work
Popular recursive and hierarchical models include Stochastic Kro-

necker Graphs (SKG, [5]), Block Two-Level Erdős-Rényi (BTER,
[15]), and Random Typing Generator (RTG, [1]). An older, popu-
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lar model is the recursive matrix (R-MAT, [2]), which is a specific
instance of an SKG model with a 2× 2 generator matrix.

SKG is popular for several reasons including capturing degree
distributions, clustering coefficients, and diameter in large networks.
There are several methods for fitting SKG parameters to simulate
a target network, including maximum likelihood estimation (the
KronFit algorithm, [5, 6]) and the method of moments [3]. Max-
imum likelihood estimation is also used for the Multiplicative At-
tribute Graph model [4], and a simulated method of moments is
used for mixed Kronecker product graph models [11, 12]. Finally,
SKG produces graph samples in time complexity O(|E| log(|V |))
rather than O(|V |2). On the other hand, SKG is constrained by a
rather strong assumption on the relationship between the number of
recursion levels and the number of nodes in the graph. Specifically,
the number of recursive levels is dlog(|V |)e.

MFNG decouples the relationship between the recursion depth
and the number of nodes and also naturally handles graphs where
|V | is not a power of two. While there are ad-hoc methods for
SKG when |V | is not a power of two, all analyses in the literature
make the assumption. We do not assume that |V | is a power of
two in our analysis in Section 3. Furthermore, the variable interval
lengths in MFNG allow for more flexibility than is offered by the
SKG framework. These reasons make MFNG more flexible as a
generator for graphs.

2. OVERVIEW OF MFNG
MFNG is a recursive generative model based on a generating

measure,Wk. The measureWk consists of an m-vector of lengths
` with

∑m
i=1 `i = 1 and a symmetric m × m probability matrix

P. The subscript k is the number of recursive levels, which we will
subsequently explain. In this paper, we refer to the m indices of `
as categories. Also, since the measure is completely characterized
by P, `, and k, we write Wk(P, `) to explicitly describe the full
measure.

An undirected graph G = (V,E) is distributed according to
Wk(P, `) if it is generated by the following procedure:

1. Partition [0, 1] intom subintervals of length `i, i = 1, . . . ,m.
Recursively partition each subinterval k times into m pieces,
using the relative lengths `i. This createsmk intervals `i1,...,ik
of length

∏k
r=1 `ir such that

∑
i1,...,ik

`i1,...,ik = 1.

2. Sample N points uniformly from [0, 1] and create the nodes
V = {x1, . . . , xN}. Each node xi is identified by its k-tuple
of categories c(xi) = (i1, . . . , ik), based on its position on
[0, 1] and the partitioning in Step 1.

3. For every pair of nodes xi and xj identified by the k-tuple of
categories c(xi) = (i1, . . . , ik) and c(xj) = (j1, . . . , jk),
add edge (xi, xj) to G with probability

∏k
r=1 pirjr .

While the generation is intricate, MFNG admit a geometric in-
terpretation. Consider first the partition of the unit square into
m2 rectangles according to the lengths `. The rectangle in posi-
tion (q, s) has side lengths `q and `s, 1 ≤ q, s ≤ m. The point
(xi, xj) ∈ [0, 1]× [0, 1] lands in the unit square, inside some rect-
angle R with side lengths `i1 and `j1 . The edge ‘survives’ the first
round with probability pi1,j1 . In the next round, we recursively
partition R according to the lengths `. The relative positions of xi
and xj land the point in a new rectangle with side lengths `i2 and
`j2 . The edge survives the second round with probability pi2,j2 .
The process is repeated k times and is illustrated in Figure 1. If an
edge survives all k levels, then it is added to the graph.

p22

p31

p12

xi

xj

P ((xi, xj) ∈ G) = p22p31p12

�1 �2 �3

Figure 1: MFNG’s recursive edge generation with m = k = 3.

3. THEORETICAL RESULTS
The original work on MFNG [14] shows how to compute the ex-

pected feature counts for graph properties by examining the entire
expanded measureWk(P, `). In other words, to count the features,
the entire probability matrix of size mk ×mk is formed. However,
in some cases mk is of the order of O(|V |) (see the examples in
Section 6.2). Clearly, computing and storingO(|V |2) probabilities
is infeasible for large networks. Thus, current methods for count-
ing and fitting features are intolerably expensive. Theorem 2 shows
that we can count many of the same features by only looking at the
probability matrix P a constant number of times (independent of
|V |). Hence, we are able to scale these computations to graphs
with a large number of nodes.

3.1 Decoupling of recursive levels
We start with a lemma that shows how to decompose a generat-

ing measureWk with k recursive levels in k measures with depth
one. This will make it easier to count subgraphs in Theorem 2.

LEMMA 1. Consider generating measuresW1(P, `) andWk(P, `),
which are parameterized by the same probability matrix P and
lengths ` but different recursion depths. Let graphs H1, . . . , Hk ∼
W1(P, `) be independently drawn, and also denote Hi = (V,Ei),
with nodes labelled arbitrarily. Then the intersection graph G =
(V,∩ki=1Ei) = (V,EG) ∼ Wk(P, `).

PROOF. We prove the lemma by conditioning on the categories
to which the nodes belong (recall that a category is the set of inter-
vals that a node falls into at each level of the recursion). Each node
u ∈ V is identified with some real number in [0, 1]. The proba-
bility that the k-tuple of categories corresponding to u is c(u) =

(c1, . . . , ck) in any graph H ∼ Wk(P, `) is simply
∏k
r=1 `cr . By

independence of the Hi, the probability that the same node u is in
the same categories c1, . . . , ck in the graphs H1, . . . , Hk, respec-
tively, is also

∏k
r=1 `cr . Note that

P ((u, v) ∈ EG|c(u) = (cu1 , . . . , c
u
k), c(v) = (cv1 , . . . , c

v
k))

=P
(

(u, v) ∈ ∩ki=1Ei|c(u) = (cu1 , . . . , c
u
k), c(v) = (cv1 , . . . , c

v
k)
)

=

k∏
i=1

P ((u, v) ∈ Ei|c(u) = (cu1 , . . . , c
u
k), c(v) = (cv1 , . . . , c

v
k))

=

k∏
i=1

P ((u, v) ∈ Ei|[c(u)]i = cui , [c(v)]i = cvi ) =

k∏
i=1

pcui ,cvi .

In the first equality, we use the definition of EG; in the second
and third equalities, we use the independence of the Hi; and in the
final equality, we use the definition ofW1. However, for any graph
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H1 H2 H3 G

∩

Figure 2: Illustration of Lemma 1. If three graphs H1, H2, and H3

are generated fromW1(P, `), then their intersection G follows the
distribution ofW3(P, `).

G′ ∼ Wk(P, `), we have

P
(
(u, v) ∈ G′|c(u) = (cu1 , . . . , c

u
k), c(v) = (cv1 , . . . , c

v
k)
)

=

k∏
i=1

pcui ,cvi .

Figure 2 illustrates Lemma 1. Our main result is a straightfor-
ward consequence of this lemma.

THEOREM 2. LetW1(P, `) andWk(P, `) be generating mea-
sures defined by the same probabilities P and lengths ` but with
different recursion depths. Consider k multifractal graphs Hi =
(V,Ei) generated independently fromW1(P, `) and a multifractal
graph G = (V,EG) generated from Wk(P, `). For any event A
on G that can be written as A = {S ⊂ EG}, where S ⊂ {(i, j) :
i, j ∈ {1, . . . , n}, i < j},

PWk (A) = PW1(A)k.

PROOF.

PWk (A) = PWk (s ∈ EG, ∀s ∈ S)

= P(W1)k (s ∈ Ei, ∀s ∈ S,∀i ∈ {1, . . . , k})

=

k∏
i=1

P(W1)k (s ∈ Ei, ∀s ∈ S)

= P(W1)k (s ∈ E1,∀s ∈ S)k

= PW1(A)k.

In other words, the probability that a subset of the edges exists
if the graph is drawn fromWk is the k-th power of the probability
that these edges exist if the graph is drawn fromW1. The condition
that A can be written as A = {S ⊂ E} is subtle. It states that
Theorem 2 holds if we can specify a subset of the edges that must
be present in the graph. We can be indifferent about certain edges,
but we cannot specify that an edge is not present in the graph.

We can now easily compute the moments of subgraph counts,
such as the number of edges, triangles, and larger cliques in MFNG.
The following corollary shows how to use Theorem 2 for these cal-
culations. for graphs generated by MFNG.

COROLLARY 3. The expected number of edges |E| in a graph
sampled from MFNG is

E[|E|] =

(
n

2

)
sk, (1)

where s =
∑
i,j∈[m] pij`i`j .

PROOF. Let u and v, u 6= v, be two random nodes of G. Let A
denote the event A = {(u, v) ∈ E}, and we define Ai to denote
the analogous event restricted to Hi in the multifractal generator.
By Theorem 2, we have that

P(A) =

k∏
i=1

P(Ai) = P(A1)k.

Now we can restrict ourselves to A1,

P(A1) =
∑

i,j∈[m]

P(A(1)|cu1 = i, cv1 = j) P(cu1 = i, cv1 = j) (2)

=
∑

i,j∈[m]

pij P(cu1 = i)P(cv1 = j) (3)

=
∑

i,j∈[m]

pij `i`j = s. (4)

We conclude that

P(A) = P((u, v) ∈ E) = sk. (5)

The expected number of edges is then given by

E[|E|] =

(
n

2

)
sk. (6)

COROLLARY 4. Graphs sampled from MFNG also have the
following moments. The expected number of d-stars 1 Sd is:

E[Sd] = n

(
n− 1

d

) ∑
i1,...,id+1∈[m]

d+1∏
j=2

pi1ij

d+1∏
j=1

`ij

k

.

In particular, the expected number of wedges (2-stars) is

E[S2] = n

(
n− 1

2

) ∑
i1,i2,i3∈[m]

pi1i2pi1i3 `i1`i2`i3

k

.

The variance σE = Var(|E|) of the number of edges is

σE =

(
n

2

)
sk
(

1−

(
n

2

)
sk
)

+ 2 E[S2] +

(
n

2

)(
n− 2

2

)
s2k,

where s is the same as in Corollary 3.
The expected number of t-cliques 2 Ct is

E[Ct] =

(
n

t

)
skt , (7)

where

st :=
∑

i1,...,it∈[m]

 ∏
j,q∈[t]
j<q

pijiq

 `i1`i2 · · · `it . (8)

In particular, the expected number of triangles (3-cliques) is:

E[C3] =

(
n

3

) ∑
i,j,t∈[m]

pijpitpjt `i`j`t

k

. (9)

1A d-star is a graph with d + 1 vertices and d edges that connect
the first node to all other vertices.
2A t-clique is a graph with t vertices where every possible edge
between the vertices exists.
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Finally, the expected number of nodes with degree d, Ed, satisfies
E[E|V |−1] = E[S|V |−1] and

E[Ed] = E[Sd]−
|V |−1∑
i=d+1

(
i

d

)
E[Ei]. (10)

PROOF. The proofs follow the same patterns as of the proof of
Corollary 3. We include the proofs in supplementary material on-
line 3.

These are some examples of properties for which we can com-
pute the exact expectation. However, we can also compute useful
approximations. For a given measure Wk, we could empirically
compute the value of E[Ct] for each t until we find E[Ct∗ ] ≥
1 > E[Ct∗+1], which is a good estimator of the expected maxi-
mum clique size.

Finally, we note that there are graph properties which will cer-
tainly not translate to this theoretical framework. Let µ(G) be the
chromatic number of G, i.e., the smallest number of colors needed
to color the vertices such that vertices connected by an edge are not
the same color. Suppose we want to compute P(µ(G) < 10). If
the theorem is used directly, then the result is P(µ(G) < 10) =
P(µ(H1) < 10)k. But P(µ(G) < 10) ≥ P(µ(H1) < 10) since
taking the intersection of graphs can only reduce the chromatic
number. In this case, P(µ(G) < 10) cannot be written as an event
on the subset of the edges of the graph. Hence, the assumptions of
the theorem are violated.

4. METHOD OF MOMENTS LEARNING
ALGORITHM

Now we change gears and look at how we can use the theory
laid out above to fit multifractal measures to real networks. Given a
graphG, we are interested in finding a probability matrix P, a set of
lengths `, and a recursion depth k, such that graphs generated from
the measureWk(P, `) are similar to G. The theoretical results in
Section 3 make it simple to compute moments for MFNG, so a
method of moments is natural. In particular, given a set of desired
features counts fi (such as number of edges, 2-stars, and triangles),
we seek to solve the following optimization problem:

minimize
P,`,k

∑
i

|fi − EWk [Fi]|
Fi

subject to 0 ≤ pij = pji ≤ 1, 1 ≤ i ≤ j ≤ m
0 ≤ `i ≤ 1, 1 ≤ i ≤ m
m∑
i=1

`i = 1

(11)

Here, Fi denotes the actual count of feature fi in the MFNG.
If certain features are more important to fit, then we can weight

the terms in the objective function, but for simplicity of our nu-
merical experiments, we only use an unweighted objective in this
paper. Similar objective functions were proposed for SKG [3] and
for mixed Kronecker product graph models [12]. In Section 6, we
see that the simple objective function works well on synthetic and
real data sets.

4.1 Desired features
We want to model real world networks accurately and efficiently.

Theorem 2 shows that, given a generating measureWk(P, `), we
3http://stanford.edu/~arbenson/mfng.html

can quickly compute moments of several (local) feature counts.
However, (global) graph properties such as degree distribution and
clustering coefficient are not covered by our theoretical results.
Therefore, we use local feature counts, such as number of d-stars
and t-cliques4, as a proxy. If the number of d-stars and t-cliques
are similar, then we expect the degree distribution and clustering
to be similar as well. For example, the global clustering coeffi-
cient is three times the ratio of the number of triangles (3-cliques)
to the number of wedges (2-stars) in the graph. In Section 6.2, we
show that matching star and clique subgraph counts in social and
information networks leads to a generating measure that produces
graphs with a similar degree distribution.

4.2 Solving the optimization problem
Optimization problem (11) is not trivial to solve, as there are

many local minima and some of them turn out to be very poor. On
the other hand, if we are given the feature counts of a graph and
fix k, running a standard optimization solver such as fmincon in
Matlab, we find a critical point quickly: we only have to fit m2 +
m+1 variables, where, typically,m is two or three. Thus, we solve
the optimization problem with many random restarts and use the
best result. For each random restart, we first choose a random k and
then solve the optimization problem with k fixed. We demonstrate
that this crude method works on several practical examples (see
Section 6). More sophisticated methods are beyond the scope of
this work. We also point out that the bottleneck of the estimation is
performing the feature counts, not solving the above optimization
problem (despite the many restarts).

5. FAST SAMPLING FOR SPARSE GRAPHS
In this section, we discuss a heuristic method for generating

sample graphs following the multifractal measure that is effective
when the graph to be generated is sparse, i.e. has relatively few
edges. This is important because the naive sampling method takes
O(|V |2) time—it considers the edge for every pair of nodes in
the graph. The fast heuristic algorithm is inspired by the “ball-
dropping” scheme for SKG (see Section 3.6 of [5]). Unlike the
SKG case, however, our algorithm is merely a heuristic due to the
stochastic nature of the location of the nodes. The speed-up is ob-
tained by fixing the number of edges in advance and only consid-
ering O(|E|) pairs of vertices. We will demonstrate that our sam-
pling algorithm runs in time O(|E| log(|V |)). The pseudo-code is
given in Algorithm 1. In the next sections, we give the details of
the algorithm and briefly discuss the performance.

5.1 The algorithm
In order to avoid looping over all pairs of nodes, we fix the num-

ber of edges. The number of edges is sampled from a normal
random variable with mean E[|E|] and variance σE , as provided
by Corollaries 3 and 4. Since the number of edges is a sum of
Bernoulli trials, this is well approximated using a Gaussian random
variable.

Once the number of edges in the graph is fixed, we start adding
edges. Because node locations are random (i.e., every node has a
random category), it is nontrivial to select a candidate edge. This
contrasts with SKG, where the edge probabilities for a given node is
deterministic. The algorithm selects node categories level by level,
for each edge. To select categories, we sample an index (c, c′) of a
matrix Q:

Qij = pij`i`j .

4From now on we implicitly mean counting subgraphs if we say
counting d-stars or t-cliques.
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The sampling is done proportional to the entries in Q. The matrix
Q reflects the relative probability mass corresponding to an edge
falling into those categories. In other words, it is the probability of
selecting the categories c and c′ at a given level and the edge sur-
viving the level. The category sampling is performed k times, one
for each level of recursion. This gives two k-tuples of categories:
c = (c1, . . . , ck) and c′ = (c′1, . . . , c

′
k).

Now we want to add an edge between nodes u and u′ that have
the categories c and c′. However, we have to be careful about the
number of nodes that have the same category. We can think of
the category pair (c, c′) as a box B on the generating measure.
Consider two boxes B1 and B2 and suppose that both have the
same area in the unit square, and the probability between potential
boxes in B1 and B2 is the same.

A simple example is the following case:

• k = m = 2

• p11 = p22 = p12 = 0.5

• `1 = `2 = 0.5

The edge probabilities in any two boxes B1 and B2 in the measure
are the same, and the probabilities of selecting either box (from
sampling the Q matrix) are the same. However, because of the
randomness categories for nodes, there may be 10 node pairs in B1

and only one node pair in B2. If we simply pick a node pair at
random from a box, the probability of connecting the node pair in
B2 is much higher than in B1.

To overcome this discrepancy, we take into account the differ-
ence between the expected number of nodes pairs in a box and the
actual number of node pairs in a box. Note that the joint distribu-
tion of nodes is Multinomial(n; l1, l2, . . . , lmk ) where li denotes
the length of interval i (after recursive expansion). Let pc,c′ be
the edge probability in the box corresponding to the category pair
(c, c′). Let the box’s sides have lengths l and l′. Using standard
properties of the Multinomial distribution, the expected number of
nodes in a box, nc,c′ , is:

nc,c′ =

{
|V |(|V |l2 − l2 + l) if c = c′

|V |(|V | − 1)ll′ if c 6= c′

Finally, we sample

eto add ∼ Poisson
(

nc,c′

λ|Vc|||Vc′ |

)
,

where Vc = {v ∈ V |category of v is c}. We then add eto add edges
to the box (c, c′). Thus, if there are more node pairs in a box than
expected, we add more edges to the box.

There are a couple of details we have swept under the rug. First,
we haven’t discussed what to do if the box (c, c′) is empty. In this
case, we simply re-sample c and c′. In practice, this does not oc-
cur too frequently. Second, we have introduced some dependence
between edges, and MFNG samples edges independently. For this
reason, we use the accuracy factor λ. By increasing λ, the sampling
takes longer, but there is less dependency between edges.

5.2 Performance
The speedup achieved by this fast approximation algorithm re-

ally depends on the type of graph. We trade an O(|V |2) algorithm
for an algorithm that takes O(|E| log |V |) time if there are no re-
jected tries due to empty boxes, edges that are already present, etc.
In the case that the graph is sparse and k <≈ logm n, this is fine.
However, for denser graphs, this fast method will actually turn out
to be slower. To arrive at a complexity of O(|E| log |V |) we note
that it takesO(|V | log |V |) time to compute the categories for each

Algorithm 1 Fast approximate sampling algorithm

1: Input: Generating measureWk(P, `), accuracy factor λ
2: Output: Graph G with distribution approximatelyWk(P, `).
3: Add |V | nodes by uniformly sampling on [0, 1] and assigning

the proper categories to each node.
4: Set Vc = {v ∈ V |category of v is c} for each category c.
5: Fix number of candidate edges |E| = bEc, where E ∼
N(µ|E|, σ|E|).

6: Compute Q, where Qij = pij`i`j for 1 ≤ i, j,≤ m
7: Set eglobal = 0
8: while eglobal < |E| do
9: for h = 1 to k do

10: Pick category ch, c′h independently and with probability
proportional to Qch,c

′
h

11: end for
12: c = (c1, . . . , ck), c′ = (c′1, . . . , c

′
k).

13: Set l, l′ to lengths of interval corresponding to c, c′

14: if |Vc|||Vc′ | 6= 0 then
15: if c = c′ then
16: nc,c′ = |V |(|V |l2 − l2 + l)
17: else
18: nc,c′ = |V |(|V | − 1)ll′

19: end if
20: Draw eto add ∼Poisson(nc,c′/(λ|Vc|||Vc′ |))
21: Set k = 0
22: Set elocal = 0
23: while elocal < eto add and k < maxk do
24: Pick u ∈ Vc and v ∈ Vc′ uniform at random.
25: if (u, v) /∈ E and u 6= v then
26: Add (u, v) to E
27: Set elocal = elocal + 1
28: end if
29: Set k = k + 1
30: end while
31: eglobal = eglobal + elocal

32: end if
33: end while
34: Return G = (V,E)

u ∈ V . Then, assuming that the number of retries is small, the
while loop of Algorithm 1 is executed O(|E|) times, each taking
O(k) = O(log |V |) steps. Therefore, in total, the algorithm has
complexity O(|E| log |V |).

6. EXPERIMENTAL RESULTS
In the next sections, we demonstrate the effectiveness of our ap-

proach to modeling networks. First, we show that our method is
able to recover the multifractal structure if we generate synthetic
graphs following the MFNG paradigm. Thereafter, we consider
several real-world networks and compare the performance of our
method to alternative methods that use the SKG framework.

6.1 Identifiability and learning synthetic
networks

Before turning to real networks, it is important to see if our
method of moments algorithm recovers the structure of graphs that
are actually generated by MFNG with some measureWk. In other
words, can our method of moments identify graphs generated from
our model? There are two success metrics for recovery of the gen-
erating measure. First, we want the method of moments to recover
a measure similar to Wk. Second, even if we cannot recover the
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Figure 4: Empirical distributions of feature counts and clustering coefficient for the original MFNG (green) and the retrieved MFNG (red)
found with the method of moments algorithm. The blue line is the feature count from the single sample of the original MFNG used in the
method of moments. In this case, the original MFNG followed an Erdős-Rényi model. The original and retrieved measures produce similar
distributions.

Generating Measure |V | m k `1 `2 p11 p12 p22

OriginalWk 5,000 2 12 0.5 0.5 0.73 0.73 0.73
Retrieved W̄k̄ 5,000 2 10 0.0574 0.9425 0.0074 0.7273 0.6829

Table 1: Comparison of original measure to the measure retrieved by using the method of moments algorithm from Section 4. The graph
features used for the method of moments were: number of edges, number of d-stars for d = 2, 3, 4, 5, and number of t-cliques for t = 3, 4.
The original generative measure is an Erdős-Rényi random graph model. While the recursion depth, probabilities, and lengths vector are
quite different, the retrieved measure is similar to the same Erdős-Rényi model (see the discussion in Section 6.1).

S2 S3 S4

C3 C4

Figure 3: d-stars and t-cliques features that are counted in the ex-
periments in Section 6.

measure, we want a measure that has similar feature counts. Our
experiments in this section show that we can be successful in both
metrics. If we can recover a measure with similar moments, then
the new measure will be a useful model for the old one.

Our basic setup is as follows:

1. Construct a measure Wk(P, `) and generate a single graph
G from the measure.

2. Run the method of moment algorithm from Section 4 with
G using 10,000 random restarts. Fit the moments for the
following graph features: number of edges, number of d-

stars for d = 2, 3, 4, 5, and number of t-cliques for t = 3, 4.
The measure given by the method of moments is denoted
W̄k(P̄, ¯̀).

3. To compare Wk(P, `) and W̄k(P̄, ¯̀), sample 100 graphs
from each measure and look at the histogram of the features
that were considered by the method of moments algorithm.

We use two different measuresWk for testing. The first is equiv-
alent to an Erdős-Rényi random graph. This is modeled by a gener-
ating measureWk(P, `) where every entry of P is identical. In this
case, MFNG is an Erdős-Rényi generative model with edge proba-
bility Pk

11, independent of `. Table 1 shows the retrieved measure
W̄k̄(P̄, ¯̀) and the original Erdős-Rényi measureWk(P, `). While
P̄ and ¯̀are quite different than P and `, W̄k̄(P̄, ¯̀) still represents a
measure close to an Erdős-Rényi random graph model. The reason
is that the length vector ` is heavily skewed to the second com-
ponent (`2 ≈ 0.94). In expectation, 0.94k̄ ≈ 0.53 of the nodes
correspond to the same category. These nodes are all connected
with probability 0.6829k̄ ≈ 0.022, which is nearly the same as
the edge probability in the original Erdős-Rényi measure. Figure 4
shows the histograms of the features that were used in the method
of moments algorithms (as well as the clustering coefficient). The
green histogram is the data for graphs sampled fromWk(P, `), the
red histogram is the same data for graphs sampled from W̄k̄(P̄, ¯̀),
and the blue line is the feature count in the original graphG used as
input to the method of moments. There is remarkable overlap be-
tween the empirical distribution of the features for W̄k̄(P̄, ¯̀) and
the distribution of the features for the original measure.
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Figure 5: Empirical distributions of feature counts and clustering coefficient for the original MFNG (green) and the retrieved MFNG (red)
found with the method of moments algorithm. The blue line is the feature count from the single sample of the original MFNG used in the
method of moments. The original and retrieved measures produce similar distributions.

Generating Measure |V | m k `1 `2 p11 p12 p22

OriginalWk 6,000 2 10 0.25 0.75 0.59 0.43 0.78
Retrieved W̄k̄ 6,000 2 9 0.2728 0.7272 0.5431 0.4101 0.7593

Table 2: Comparison of original measure to the measure retrieved by using the method of moments algorithm from Section 4. The graph
features used for the method of moments were: number of edges, number of d-stars for d = 2, 3, 4, 5, and number of t-cliques for t = 3, 4.
All parameters in the retrieved measure are remarkably similar to the parameters in the original measure.

For a second experiment, we used an original measureWk(P, `)
that did not possess the uniform generative structure of Erdős-Rényi
random graphs. Table 2 shows the retrieved measure and the origi-
nal measure. In this case, the method of moments identified a simi-
lar generative measure. The parameters k̄, P̄, and ¯̀are remarkably
similar to k, P, and `. Figure 5 shows the distribution of the fea-
tures in graphs sampled from the two measures. Again, there is
rather significant overlap in the empirical distributions.

Finally, we compare the degree distributions of the original and
retrieved measures in Figure 6. The degree distributions are nearly
identical.

These results show that the method of moments algorithm de-
scribed in Section 4 can successfully identify MFNG instances us-
ing a single sample.

6.2 Learning real networks
We now show how the method of moments from Section 4 per-

forms when fitting to the following four real-world networks to
MFNG:

1. The Gnutella graph is a network of host computers sharing
files on August 31, 2012 [8].

2. The Citation network is from a set of high energy physics
papers from arXiv [7].

3. The Twitter network is a combination of several ego net-
works from the Twitter follower graph [9].

4. The Facebook network is a combination of several ego net-
works from the Facebook friend graph [9].

All data sets are from the SNAP collection. We use the optimization
procedure described in Section 4 with 2,000 random restarts. The

features we use (the fi in Section 4) are number of edges, wedges
(S2), 3-stars (S3), 4-stars (S4), triangles (C3), and 4-cliques (C4).
For each network, we use m = 2, 3 and k = dlogm(|V |)e. With
these values of m we are able to effectively fit the networks to
MFNG. We do not believe that larger values of m are useful: we
would need to estimate too many parameters and we lose a lot in in-
terpretability of results. While k can be arbitrary, a smaller value of
k leads to many nodes belonging to the same categories and hence
having the same statistical properties. In large graphs, this causes
a “clumping” of properties such as degree distribution near a small
set of discrete values. While smaller k may be satisfactory for test-
ing algorithms, keeping k near logm(|V |) produces more realistic
graphs. In an additional set of experiments, we only fit the number
of edges, wedges, and triangles. We also compare against KronFit
and the SKG method of moments [3].

The results are summarized in Table 3. In addition, the online
material lists all recovered parameters. Overall, for both m = 2
and m = 3, the method of moments can effectively match most
feature counts. The number of 4-stars (S4) was the most difficult
parameter to fit. We see that when only fitting the number of edges,
wedges, and triangles, the other feature moments can be signifi-
cantly different from the original graph. In particular, the number of
4-cliques tends to be severely under- or over-estimated. Although
KronFit does not explicitly try to fit moments, the results show that
it severely underestimate several feature counts. The method of
moments approach to SKG can fit three of the features, which is
consistent with results on other networks [3].

As mentioned in Section 4.1, the clustering coefficient is three
times the ratio of the number of triangles (3-cliques) to the number
of wedges (2-stars) in the graph. The results of Table 3 show that
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Figure 6: On the left, degree distribution of graphs generated according to the original Erdős-Rényi measure (red) given in Table 1 and the
retrieved measure (green). On the right, degree distribution of graphs generated according to the original measure (red) described in Table 2
and the retrieved measure (green). The retrieved measure was found by the method of moments algorithm from Section 4. The original and
retrieved measures produce almost identical distributions.

Figure 7: Degree distributions for the original graphs and MFNG graphs with m = 2, 3 for several networks. The degree distributions of the
MFNG graphs are similar to those of the original network, even though we only fit d-star and t-clique moments. In the Twitter, Citation, and
Facebook graphs, the MFNG fit with m = 2 results in oscillating degree distributions. In Section 6.3, we show how to add noise to dampen
the oscillations. The graph samples were generated with the fast sampling algorithm in Section 5.

the method of moments can match both the number of triangles and
the number of wedges in expectation. This does not make any guar-
antees about the ratio of these random variables, but the synthetic
experiments (Section 6.1) demonstrated that their variances are not
too large. Therefore, the expectation of the ratio is near the ratio of
the expectations, and we approximately match the global clustering
coefficient.

Figure 7 shows the degree distributions for the original networks
and a sample from the corresponding MFNG, using the fast sam-
pling algorithm. We see that, even though we only fit feature mo-
ments, the global degree distribution is similar to the real network.
However, the MFNG degree distributions experience oscillations,
especially in the case when m = 2. This is a well-known issue in
SKG [16], and we address this issue in Section 6.3. Finally, note
that we only plot the degree distribution for a single MFNG sample.
The reason is that the samples tend to have quite similar degree dis-
tributions. This lack of variance has been observed for SKG [10],
and addressing this issue for MFNG is an area of future work.

Table 4 shows the diameter, effective diameter, and average node
eccentricity for the original networks and sampled MFNG networks.
Effective diameter is the 90-th percentile of the linearly interpo-

Network Diameter Eff. Diameter Avg. Eccentricity
original / MFNG (m = 2) / MFNG (m = 3)

Gnutella 11 / 13 / 12 6.73 / 5.66 / 5.09 8.94 / 6.05 / 4.27
Citation 13 / 15 / 21 4.99 / 5.62 / 6.56 9.15 / 7.02 / 12.17
Twitter 7 / 11 / 21 4.52 / 4.47 / 6.47 5.92 / 5.57 / 10.94
Facebook 8 / 10 / 14 4.76 / 3.98 / 4.90 6.35 / 5.91 / 8.40

Table 4: Diameter, effective diameter and average node eccentric-
ity for the original networks and sampled MFNG networks. For
MFNG, each value is the median of five samples from the method
described in Section 5. For diameter and effective diameter, 20%
of the nodes were used to approximate the property.

lated distribution of shortest path lengths [5]. The values between
the original network and the MFNG samples are similar.

6.3 Noisy MFNG
Figure 7 shows that the graphs generated with MFNG experience

oscillations in the degree distribution. The oscillations for the de-
gree distribution are a well-known issue in SKG [16]. Seshadhri et

1333



Network m features for |V | |E| S2 S3 S4 C3 C4

method fitting

Gnutella – – 62,586 147,892 1.57e+06 8.17e+06 4.38e+07 2.02e+03 1.6e+01
MFNG MoM 2 all – 1.13 1.00 0.97 1.00 1.00 1.00
MFNG MoM 3 all – 1.00 0.97 1.00 1.00 1.00 1.00
MFNG MoM 2 |E|, S2, C3 – 1.00 1.00 1.10 1.15 1.00 0.05
MFNG MoM 3 |E|, S2, C3 – 1.00 1.00 1.21 1.54 1.00 0.26
SKG MoM – |E|, S2, S3, C3 – 1.14 1.00 1.00 18.34 0.30 < 0.69
KronFit – – – 0.54 0.30 0.23 3.67 0.06 < 0.01

Citation – – 34,546 420,921 2.63e+07 1.34e+09 1.04e+10 1.28e+06 2.57e+06
MFNG MoM 2 all – 0.79 1.02 1.00 0.61 1.00 1.00
MFNG MoM 3 all – 1.00 1.03 1.00 1.00 1.00 1.00
MFNG MoM 2 |E|, S2, C3 – 0.99 1.00 0.77 0.42 1.00 4.65
MFNG MoM 3 |E|, S2, C3 – 1.00 1.00 0.85 0.60 1.00 1.08
SKG MoM – |E|, S2, S3, C3 – 1.00 0.89 1.00 11.60 0.02 < 0.01
KronFit – – – 0.53 0.21 0.09 0.57 < 0.01 < 0.01

Twitter – – 81,306 1,342,310 2.30e+08 6.35e+10 2.99e+13 1.31e+07 1.05e+08
MFNG MoM 2 all – 1.00 1.59 1.00 0.33 1.00 1.00
MFNG MoM 3 all – 1.00 1.16 1.00 1.00 0.89 1.00
MFNG MoM 2 |E|, S2, C3 – 1.00 1.00 0.44 0.12 1.00 2.83
MFNG MoM 3 |E|, S2, C3 – 1.00 1.00 0.44 0.11 1.00 2.71
SKG MoM – |E|, S2, S3, C3 – 1.00 1.05 1.00 0.01 0.03 < 0.01
KronFit – – – 0.69 0.30 0.10 < 0.01 < 0.01 < 0.01

Facebook – – 4,039 88,234 9.31e+06 7.27e+08 9.71e+10 1.61e+06 3.00e+07
MFNG MoM 2 all – 0.96 1.19 1.00 0.42 1.00 1.00
MFNG MoM 3 all – 1.00 1.06 1.00 0.69 0.90 1.00
MFNG MoM 2 |E|, S2, C3 – 0.90 1.00 0.80 0.34 1.00 1.88
MFNG MoM 3 |E|, S2, C3 – 1.00 1.00 0.75 0.33 1.00 1.13
SKG MoM – |E|, S2, S3, C3 – 1.00 1.03 1.00 0.19 0.08 0.03
KronFit – – – 0.49 0.20 0.07 0.04 0.01 < 0.01

Table 3: Results of method of moments (MoM) fit to MFNG for several graphs. Each column gives the ratio of the expected feature count to
the true feature count. Sd is the number of d-stars in the graph, and Ct is the number of t-cliques in the graph. A value of 1.00 means that the
moment is an exact fit to two decimal places. In all cases, MFNG is able to fit many of the feature counts exactly in expectation. For MFNG,
we fit all feature moments listed and fitting just the number of edges, wedges, and triangles. The SKG MoM and KronFit are included for
comparison. For these methods, S4 and C4 were estimated by taking the mean from 10 sample graphs (closed-form moment formulas are
not available for these feature counts). Our MFNG MoM outperforms both KronFit and SKG MoM in fitting feature moments.

Algorithm 2 Noisy MFNG (m = 2)

1: Input: 2×2 probability matrix P, lengths vector `, number of
recursive levels k, noise level b

2: Output: noisy MFNG matrix G
3: for i = 1 to k do
4: Sample µi ∼ Uniform[−b, b].

5: P(i) =

(
p11 − 2µip11

p11+p22
p12 + µi

p21 + µi p22 − 2µip22
p11+p22

)
6: P(i) = min(max(P(i), 0), 1) entry-wise
7: Sample Hi ∼ W1(P(i), l)
8: end for
9: G := ∩ki=1Hi

al. present a “Noisy SKG” model that perturbs the initiator matrix
at each recursive level, which dampens the oscillations. Inspired by
their work, we present a similar “Noisy MFNG" in this section.

We first note that Figure 7 shows that using m = 3 results in
less severe oscillations in the degree distribution. The intuition be-
hind this is that more categories get mixed at each recursive level,
producing a larger variety of edge probabilities. For m = 2, we

propose a Noisy MFNG model, which is described in Algorithm 2.
The idea is to perturb the probability matrix slightly at each level.
In the context of Lemma 1, this means that the noisy MFNG graph
is the intersection of several graphs generated from slightly differ-
ent probability matrices. The fast generation method still works in
this case—a different matrix at each level determines the categories
instead of one single matrix. The probability perturbations are anal-
ogous to those performed by Seshadhri et al. We test Noisy MFNG
on the citation and Twitter networks, and the results are in Fig-
ure 8. The graphs are sampled using the fast sampling algorithm.
We see that increasing the noise significantly dampens the degree
distribution. However, the far end of the tail still experiences some
oscillations.

7. DISCUSSION
We have shown that the multifractal graph paradigm is well suited

to model and capture the properties of real-world networks by build-
ing on the work of Palla et al. [14] and incorporating several ideas
from SKG. The foundation of our theoretical work is Theorem 2,
which has opened the door to quick evaluation of the expected value
of a number of important counts of subgraphs, such as d-stars and
t-cliques. Combined with standard optimization routines, we are
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Figure 8: Degree distributions for fitting the citation and Twitter
networks to Noisy MFNG with varying degrees of noise. We see
that adding noise dampens the oscillations in the degree distribu-
tions. At the far end of the tail, it is still difficult to control the
degree distribution. The graph samples were generated with the
fast sampling algorithm in Section 5.

able to fit large graphs fast and accurately. Our method of moments
algorithm identifies synthetically generated MFNG and also pro-
duces close fits for real-world networks. It is quite amazing how
fitting a few ‘local’ properties leads to a generator that fits the over-
all structure of graphs well.

This would not be too useful if we were not able to also gener-
ate multifractal graphs of the same scale. For this, we presented a
fast heuristic approximation algorithm that generates such graphs
in O(|E| log |V |) complexity, rather than the naive O(|V |2) algo-
rithm. Since many real-world networks are sparse, this is a signifi-
cant improvement.

7.1 Future work
Future work includes the development of approximation formu-

las for the moments of global properties like graph diameter and a
more tailored approach in the optimization routines for the fitting.
A pressing issue is the theory behind the fast generation method.
While the generation tends to produce similar graphs to the naive
generation in practice, we want to prove that the approximation is
good. Furthermore, it is possible to improve the generation fur-
ther by considering a parallel implementation. Lastly, it would be
interesting to do a theoretical analysis of the oscillatory degree dis-
tribution, similar in spirit to [16].
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