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ABSTRACT

Core decomposition has proven to be a useful primitive for
a wide range of graph analyses. One of its most appealing
features is that, unlike other notions of dense subgraphs, it
can be computed linearly in the size of the input graph.

In this paper we provide an analogous tool for uncertain
graphs, i.e., graphs whose edges are assigned a probability
of existence. The fact that core decomposition can be com-
puted efficiently in deterministic graphs does not guarantee
efficiency in uncertain graphs, where even the simplest graph
operations may become computationally intensive. Here we
show that core decomposition of uncertain graphs can be
carried out efficiently as well.

We extensively evaluate our definitions and methods on
a number of real-world datasets and applications, such as
influence maximization and task-driven team formation.

Categories and Subject Descriptors

H.2.8 [Database Management]: [Database Applications-
Data Mining]; G.2.2 [Discrete Mathematics]: [Graph
Theory-Graph Algorithms]
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1. INTRODUCTION
Uncertain graphs, i.e., graphs whose edges are assigned a

probability of existence (see an example in Figure 1), arise
in several emerging applications [24, 14, 15]. For instance,
in biological networks and protein-interaction networks ver-
tices represent genes and/or proteins, while edges represent
interactions among them. Since the interactions are derived
through noisy and error-prone laboratory experiments, the
existence of each edge is uncertain [4, 26, 24]. In social
networks uncertainty arises for various reasons [1]. Edge
probabilities may represent the outcome of a link-prediction
task [20] or the influence of one person on another, like in
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Figure 1: An uncertain graph and its (k, η)-core de-
composition for η = 0.04. Vertex 1 has core number
1, vertices 2 and 7 have core number 2, and vertices
3, 4, 5 and 6 have core number 3.

viral marketing [11]. Uncertainty can also be intentionally
injected for privacy purposes [7].

Finding dense subgraphs is a fundamental primitive in
many graph-analysis tasks [21]. There exist many differ-
ent definitions of what a dense subgraph is, e.g., cliques,
n-cliques, n-clans, k-plexes, f-groups, n-clubs, lambda sets,
most of which are NP-hard to compute or at least quadratic
in the size of the input graph. In this respect, the notion of
core decomposition is particularly appealing as (i) it can be
computed in linear time [5], and (ii) it is related to many
other definitions of a dense subgraph (as discussed later).

The k-core of a graph is defined as a maximal subgraph
in which every vertex is connected to at least k other ver-
tices within that subgraph. The set of all k-cores of a graph
G forms the core decomposition of G [25]. The fact that
core decomposition can be performed in linear time in de-
terministic graphs does not guarantee efficiency in uncertain
graphs. Indeed, in such graphs even the simplest tasks may
become hard. As an example, consider the two-terminal-
reachability problem, which asks whether two query vertices
are connected. In a deterministic graph the solution to this
problem requires a simple scan of the graph. Instead, in un-
certain graphs, computing the probability that two vertices
are connected is a #P-complete problem [28].

Thus, a major question we aim at answering in this pa-
per is: can the core decomposition of an uncertain graph be
computed efficiently?

Related work and applications. Existing research on
uncertain graphs has mainly focused on querying [15, 33,
24, 31] and mining, particularly on extracting frequent sub-
graphs [34] or subgraphs that are connected with high prob-
ability [14], and clustering [22, 18].

Core decomposition of deterministic graphs has been ex-
ploited to analyse the nature of a network and discover dense
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substructures [2, 17]. It has been applied in many different
domains, such as bioinformatics [30], software engineering
[32], and social networks [17]. Core decomposition has been
also used to speed-up the computation of more complex def-
initions of a dense subgraph. For instance, it serves to find
maximal cliques more efficiently [10], and it is at the ba-
sis of linear-time approximation algorithms for the densest-
subgraph problem [19] and the densest at-least-k-subgraph
problem [3]. It is also used to approximate betweenness cen-
trality [13]. A core-decomposition tool for uncertain graphs
would thus provide a natural extension of all these appli-
cations to the context of uncertain graphs. Other direct
applications of core decomposition of uncertain graphs in-
clude influence maximization and task-driven team forma-
tion, which we showcase in Section 6 and 7, respectively.

In influence maximization [16], the probability of an edge
(u, v) represents the influence that u exerts on v, i.e., the
likelihood that some action/information propagates from u
to v. The greedy algorithm [12] traditionally used to find
the users that maximize the information spread over the
network requires a number of Monte Carlo simulations that
largely limit its efficiency. In Section 6 we show how our
probabilistic core-decomposition tool can be used to speed-
up the influence-maximization process.

In task-driven team formation, the input is a collabora-
tion graph G = (V,E, τ ), where vertices are individuals and
edges exhibit a probabilistic topic model τ representing the
topic(s) of past collaborations. A query is a pair 〈T,Q〉,
where T is a set of terms describing a new task, and Q
is a set of vertices. The goal is to find an answer set of
vertices A, such that A ⊇ Q is a good team for the task
described by T . The given query task T , along with the
topic model τ , induces a (single) probability value pT for
each edge (u, v) ∈ E, such that pT (u, v) represents the like-
lihood that u and v collaborate on T . This gives rise to
an uncertain graph to which one can naturally apply core
decomposition in order to find the desired team (Section 7).

Challenges and contributions. In this paper we study
the problem of core decomposition of uncertain graphs,
which, to the best of our knowledge, has never been con-
sidered so far. We introduce (Section 2) the notion of (k, η)-
core as a maximal subgraph whose vertices have at least k
neigbours in that subgraph with probability no less than η;
here η ∈ [0, 1] is a threshold defining the desired level of
certainty of the output cores.

Let the η-degree of a vertex v be the maximum degree
such that the probability for v to have that degree is no
less than η. We design an algorithm for finding a (k, η)-
core decomposition that iteratively removes the vertex hav-
ing the smallest η-degree and prove its correctness (Section
3). The proposed algorithm resembles the traditional al-
gorithm for computing the core decomposition of a deter-
ministic graph [5]; however, as usual when the attention is
shifted from the deterministic context to uncertain graphs,
the adaptation of that algorithm is non-trivial. A major
challenge is the capability of handling large graphs.

Two main critical steps affect our algorithm: computing
initial η-degrees and updating η-degrees whenever a vertex
is removed from the graph. While the corresponding steps
in the deterministic case (i.e., computing and updating the
degree of a vertex) are straightforward, performing them
efficiently in uncertain graphs needs a great deal of atten-
tion; approaching them näıvely, indeed, may even lead to

intractable (exponential) time complexity. We show how
to overcome the exponential-time complexity by devising a
novel yet efficient dynamic-programming method to com-
pute η-degrees from scratch. We also exploit the same intu-
ition underlying the dynamic-programming algorithm so as
to efficiently update η-degrees after a vertex removal. As a
result, we show that computing a (k, η)-core decomposition
takes O(m∆) time, where m is the number of edges in the
input uncertain graph and ∆ is the maximum η-degree.

As a further contribution, we devise a novel method
to improve the efficiency of the proposed (k, η)-core-
decomposition algorithm (Section 4). The idea is to exploit
a fast-to-compute lower bound on the η-degree that can be
used as a placeholder during the first iterations while being
replaced with the actual η-degree only when the vertex at
hand is selected and the graph has become smaller.

Finally, we report experiments on efficiency and numeri-
cal stability on real-world graphs (Section 5) and show our
proposal at work in two real-life applications (Sections 6–7).

2. PROBLEM DEFINITION

Cores of deterministic graphs. Before focusing on un-
certain graphs, we briefly recall the problem of computing
cores of deterministic graphs. Let G = (V, E) be an undi-
rected graph, where V is a set of n vertices and E ⊆ V × V
is a set of m edges. For every vertex v ∈ V , let deg(v)
and degH(v) denote the degree of v in G and in a sub-
graph H of G, respectively. Also, given a set of vertices
C ⊆ V , let E|C denote the subset of edges induced by C,
i.e., E|C = {(u, v) ∈ E | u ∈ C, v ∈ C}.

Definition 1 (k-core). The k-core (or core of order
k) of G is a maximal subgraph H = (C,E|C) such that
∀v ∈ C : degH(v) ≥ k. The core number (or core index) of
a vertex v, denoted c(v), is the highest order of a core that
contains v. The set of all k-cores of G, for all k, is the core
decomposition of G.

The notion of k-core is strictly related to the notion of k-
shell, that is the subgraph induced by the set of all vertices
having core number equal to k. Note that neither k-cores
nor k-shells are necessarily connected subgraphs. Also, while
these two notions usually refer to subgraphs of the input
graph, in the remainder we slightly abuse of notation and de-
note by k-core (or k-shell) both the subgraph H = (C,E|C)
itself and the vertex set C that induces H .

All k-shells of a graph G form a partition of the vertex
set V , while all k-cores are nested into each other: G =
C0 ⊇ C1 ⊇ · · · ⊇ Ck∗ (k∗ = maxv∈V c(v)). As a result, the
core decomposition of G is unique and fully determined by
the core number c(v) of all vertices v in G: the k-core of G
simply corresponds to (the subgraph induced by) the set of
all vertices v having core number c(v) ≥ k.

Batagelj and Zaveršnik [5] show how to compute the core
decomposition of a graph G in linear time (Algorithm 1).
The algorithm iteratively removes the smallest-degree ver-
tex and sets the core number of the removed vertex accord-
ingly. Vertices are thus required to be ordered based on
their degree. Defining the initial vertex ordering and keep-
ing vertices ordered during the execution of the algorithm
takeO(n) and O(1) time, respectively. The idea is to employ
an n-dimensional vector D whose single cells D[i] store all
vertices having degree equal to i in the current graph. The
overall time complexity of the algorithm is hence O(n+m).
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Algorithm 1 k-cores

Input: A graph G = (V, E).
Output: An n-dimensional vector c containing the core number

of each v ∈ V .
1: c← ∅, d← ∅, D← [∅, . . . , ∅]
2: for all v ∈ V do
3: d[v]← deg(v)
4: D[deg(v)] ← D[deg(v)] ∪ {v}
5: end for
6: for all k = 0, 1, . . . , n do
7: while D[k] 6= ∅ do
8: pick and remove a vertex v from D[k]
9: c[v]← k
10: for all u : (u, v) ∈ E, d[u] > k do
11: move u from D[d[u]] to D[d[u]− 1]
12: d[u]← d[u]− 1
13: end for
14: remove v from G
15: end while
16: end for

Cores of uncertain graphs. Let G = (V,E, p) be an
uncertain graph, where p : E → (0, 1] is a function that
assigns a probability of existence to each edge.1 For the
sake of brevity, we hereinafter denote the probabilities p(e)
with pe. For every vertex v ∈ V , let Nv = {(u, v) ∈ E}
denote the set of edges incident to v, and dv = |Nv | its size.

To define our notion of core decomposition of an uncertain
graph, we resort to the well-known possible-world semantics,
which has been recognized as a sound principle to define
queries on probabilistic data [9]. Broadly, such a princi-
ple interprets the probabilistic data as a set of deterministic
instantiations, called possible worlds, each of which associ-
ated with its probability of being observed. In the context
of uncertain graphs, the bulk of the literature assumes the
probabilities of existence of the edges independent from one
another [24, 14, 15]. Under this assumption, the possible-
world semantics interprets an uncertain graph G with m
edges as a set of 2m possible deterministic graphs (worlds),
each of which containing a subset of the edges in E. More
precisely, an uncertain graph G = (V,E, p) yields a set of
possible graphs {G = (V,EG)}EG⊆E , and the probability of
observing a possible graph G = (V,EG) ⊑ G is:

Pr(G) =
∏

e∈EG

pe
∏

e∈E\EG

(1− pe). (1)

According to the possible-world semantics, answering a
probabilistic query q means to derive a probability distri-
bution over all possible deterministic answers a to the query
q, where the probability of an answer a corresponds to the
sum of the probabilities of all worlds where a is the an-
swer to q. As this answer distribution is usually too large
and sparse to be explicitly interpreted or computed/stored,
the general turnaround adopted is to assign a score to each
domain object based on its probability of being part of an
answer to the probabilistic query q, and return the objects
having highest scores as a final answer to q [9].

We cast such a general framework to our context by defin-
ing the score of each vertex v to be part of a k-core H as

1
We consider undirected graphs for the sake of presentation and con-

sistency with the literature on core decomposition. However, all our
definitions/methods apply to directed graphs too, by simply replacing
the notion of degree with either in-degree or out-degree. Indeed, in
Section 6, where we focus on influence maximization, the graph is
directed and we define probabilistic cores based on out-degree.

the probability that v has degree no less than k in H, i.e.,
Pr[degH(v) ≥ k]. Then, we employ a classic threshold-based
approach to decide which vertices should actually form a k-
core based on their scores. As a result, the notion of proba-
bilistic (k, η)-core we come up with is the following:

Definition 2 (Probabilistic (k,η)-cores). Given
an uncertain graph G = (V,E, p), and a threshold η ∈ [0, 1],
the probabilistic (k, η)-core of G is a maximal subgraph
H = (C,E|C, p) such that the probability that each vertex
v ∈ C has degree no less than k in H is greater than or
equal to η, i.e., ∀v ∈ C : Pr[degH(v) ≥ k] ≥ η.

The notion of η-core number immediately follows from the
definition of (k,η)-core and is defined as the highest order k
of a (k,η)-core containing v.

The problem we address in this work is the following.

Problem 1 (ProbCores). Given an uncertain graph
G and a probability threshold η ∈ [0, 1], find the (k, η)-core
decomposition of G, that is the set of all (k,η)-cores of G.

Our definition of core decomposition of an uncertain
graph, has the desirable feature of being unique, as formally
shown in the next theorem.

Theorem 1. Given an uncertain graph G and a probabil-
ity threshold η, the (k, η)-core decomposition of G is unique.

Proof. We prove the theorem by showing that G cannot
have more than one (k, η)-core, for all k. Assume that G has
two (k, η)-cores and denote them byH1 andH2, respectively.
According to Definition 2, it holds that H1 is a maximal
subgraph of G such that ∀v ∈ H1 : Pr[degH1

(v) ≥ k] ≥
η, and the same happens for H2. Combining the (k, η)-
core conditions of H1 and H2 leads to the subgraph H1 ∪
H2 to satisfy the (k, η)-core condition too, as ∀v ∈ H1 :
Pr[degH1

(v) ≥ k] ≥ η ∧ ∀v ∈ H2 : Pr[degH2
(v) ≥ k] ≥ η

clearly implies that ∀v ∈ H1 ∪ H2 : Pr[degH1∪H2
(v) ≥ k] ≥

η. This means that neither H1 nor H2 are maximal, thus
contradicting the hypothesis. The theorem follows.

An example of (k, η)-core decomposition of an uncertain
graph is provided in Figure 1.

3. COMPUTING PROBABILISTIC CORES
For a vertex v of the input uncertain graph G, the proba-

bility Pr[deg(v) ≥ k] can be expressed as:

Pr[deg(v) ≥ k] =
∑

G⊑G
≥k
v

Pr(G), (2)

where G≥k
v is the set of all possible graphs drawn from G

where v has degree ≥ k, i.e., G≥k
v = {G ⊑ G | degG(v) ≥ k}.

It is easy to see that such a probability value is mono-
tonically non-increasing with k, i.e., Pr[deg(v) ≥ 0] ≥
Pr[deg(v) ≥ 1] ≥ . . . ≥ Pr[deg(v) ≥ dv]. Then, given a
threshold η, for every vertex v in the graph, there exists a
value k̂ ∈ [0..dv ] such that Pr[deg(v) ≥ h] ≥ η, for all h ≤ k̂,

and Pr[deg(v) ≥ h] < η, for all h > k̂. We call this value the
η-degree of vertex v.

Definition 3 (η-degree). Given an uncertain graph
G = (V,E, p) and a threshold η ∈ [0, 1], the η-degree
η-deg(v) of a vertex v ∈ V is defined as

η-deg(v) = max{k ∈ [0..dv ] | Pr[deg(v) ≥ k] ≥ η}.

Let also η-degH(v) be the η-degree of v in a subgraph H.
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Algorithm 2 (k,η)-cores

Input: An uncertain graph G = (V,E, p), a threshold η ∈ [0, 1].
Output: An n-dimensional vector c containing the η-core num-

ber of each v ∈ V .
1: compute η-deg(v) for all v ∈ V
2: c← ∅, d← ∅, D← [∅, . . . , ∅]
3: for all v ∈ V do
4: d[v]← η-deg(v)
5: D[η-deg(v)] ← D[η-deg(v)] ∪ {v}
6: end for
7: for all k = 0, 1, . . . , n do
8: while D[k] 6= ∅ do
9: pick and remove a vertex v from D[k]
10: c[v]← k
11: for all u : (u, v) ∈ E, d[u] > k do
12: recompute η-deg(u)
13: move u from D[d[u]] to D[η-deg(u)]
14: d[u]← η-deg(u)
15: end for
16: remove v from G
17: end while
18: end for

Intuitively, the notion of η-degree gives an idea of the de-
gree of a vertex given a specific threshold η. We exploit the
notion η-degree to adapt the k-cores algorithm used for de-
terministic graphs to the context of uncertain graphs. The
proposed algorithm, called (k,η)-cores (Algorithm 2), fol-
lows the same scheme as in the deterministic case with the
main difference of the use of the η-degree. The soundness of
the proposed algorithm is shown in the following theorem.

Theorem 2. Given an uncertain graph G and a threshold
η, Algorithm 2 provides the (k,η)-core decomposition of G.

Proof. For every v ∈ V and every subgraph H =
(C,EC , p|C) of G, it is easy to see that η-degH(v) ≤
η-deg(v), as the η-degree computation in G relies on more
successful events than those encountered in H. This implies
that η-degH(v) is a monotonic vertex property function [5],
where, for every v ∈ V and C ⊆ V , a vertex property func-
tion on G is a function φ(v, C) : V ×2V → R, and the mono-
tonicity property holds if ∀ C1, C2 ⊆ V : C1 ⊆ C2 implies
that ∀ v ∈ V : φ(v, C1) ≤ φ(v, C2). The proof is completed
by the result by Batagelj and Zaveršnik [5], who show that,
for a monotonic vertex property function φ(v,C), the algo-
rithm that repeatedly removes a vertex with the smallest φ
value gives the desired core decomposition.2

Instead of computing/updating standard degrees, in the
probabilistic case one thus needs to (i) compute all η-degrees
at the beginning of the algorithm (Line 1), and (ii) update
the η-degree of a neighbour of the currently being processed
vertex v (Line 12). While computing/updating degrees in
the deterministic case is straightforward, for the η-degrees
such steps are non-trivial, as shown next.

Computing initial η-degrees

To show how to derive η-degrees from scratch, we first fo-
cus on the computation of Pr[deg(v) ≥ k] for a vertex v, and

2
That work states that the time complexity of such an algorithm is

O(m × max{D, log n}), where D is the maximum degree. But this
is a general result for vertex property functions that can be updated
linearly in the degree of a vertex. For any specific vertex property
function, such as our η-degree, the complexity can be higher or lower.

note that Pr[deg(v) ≥ k] is equal to the sum of the probabil-
ities Pr[deg(v) = i] either for all i ∈ [k..dv ] or, equivalently,
for all i ∈ [0..k − 1]:

Pr[deg(v)≥k] =

dv∑

i=k

Pr[deg(v)= i] =1−

k−1∑

i=0

Pr[deg(v)= i]. (3)

Furthermore, we observe that each individual Pr[deg(v) =
i] can in turn be computed considering all subsets of edges
N ⊆ Nv of size i and summing over the probabilities that
all and only the edges in these various N exist:

Pr[deg(v) = i] =
∑

N⊆Nv ,
|N|=i

∏

e∈N

pe
∏

e∈Nv\N

(1− pe). (4)

The sum in the above formula is over all subsets N ⊆ Nv,
|N | = i; thus, a näıve computation would lead to a time
complexity exponential in the size of Nv . We can however
manage this by rearranging the formula as

Pr[deg(v) = i] = PvR(i,Nv),

where Pv =
∏

e∈Nv
(1 − pe), R(i,Nv) =

∑
N⊆Nv ,
|N|=i

∏
e∈N

p̃e,

and p̃e = pe
1−pe

. This rearrangement allows us to exploit the
next recursive formula, which has originally been introduced
in [8] for sampling from a finite population with unequal
probabilities and without replacement:

R(i,Nv) =
1

i

i∑

j=1

(−1)j+1
T (j,Nv)R(i− j, Nv), (5)

where T (j,Nv) =
∑

e∈Nv
(p̃e)

j . Now, it is easy to see that

Equation (5) allows for computing all individual Pr[deg(v) =
i] values, for all i ∈ [0..k − 1] (which, according to Equa-
tion (3), are needed to derive the desired Pr[deg(v) ≥ k]) in
polynomial time, precisely in O(kdv) time.

A dynamic-programming method. Although the above
way of computing Pr[deg(v) = i] solves a seemingly
exponential-time problem, it still has weaknesses due to the
recursive formula in Equation (5). Firstly, as the formula in-
volves both products and sums of p̃e values that can be either
very large (when pe → 1) or very small (when pe → 0), it
may incur numerical-stability issues, which might make the
computation of Pr[deg(v) = i] problematic when executed
by a computer. Secondly, using such a formula, the η-degree
of a vertex v when one of its incident edges is removed can-
not be recomputed faster than a from-scratch computation.

For the above reasons, we propose here an alternative way
of computing Pr[deg(v) = i]. Consider a vertex v and an
edge e incident to v, and let G\{e} denote the subgraph of G
where e is not present. The method is based on the following
key observation: the event “v has degree k in G” implies
that either “e exists and v has degree k − 1 in G\{e}” or
“e does not exist and v has degree k in G\{e}”. This way,
the probability for v to have degree k in the original graph G
can be computed as a linear combination of the probabilities
that v has degree either k − 1 or k in the subgraph G\{e}.

The above reasoning can be generalised to every subgraph
of G and formally expressed in the next theorem (for which
we omit a formal proof due to limited space).

Theorem 3. Given an uncertain graph G = (V,E, p) and
a vertex v ∈ V , let Nv = {e1, . . . , edv} be the set of all edges
incident to v ordered in some way. Also, given a subset
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N ⊆ Nv, let deg(v|N) denote the degree of v in the subgraph

Ĝ = (V,E \ (Nv \N), p). For all h ∈ [1..dv − 1] it holds that:

Pr[deg(v|{e1, . . . , eh+1}) = i] =

= peh+1
Pr[deg(v|{e1, . . . , eh}) = i− 1] + (6)

+(1− peh+1
)Pr[deg(v|{e1, . . . , eh)} = i].

Theorem 3 provides a principled way to efficiently com-
pute Pr[deg(v) = i] based on the dynamic-programming
paradigm. Particularly, we take an arbitrary ordering of
the edges incident to the vertex v being currently under
consideration and define a proper recursive formula that
allows for computing partial solutions relying only on the
first i edges. The ultimate score (i.e., the actual value of
Pr[deg(v) = i]) is available only when all the edges have
been considered; this makes the overall computation inde-
pendent from the specific ordering of the edges. Formally,
let X(h, j) = Pr[deg(v|{e1, . . . , eh}) = j], for all h ∈ [0..dv ],
j ∈ [−1..i]. We set the following base cases:





X(0, 0) = 1,
X(h,−1) = 0, for all h ∈ [0..dv ],
X(h, j) = 0, for all h ∈ [0..dv ], j ∈ [h+ 1..i],

while we exploit Equation (6) to compute the generic
dynamic-programming recursive step as

X(h, j) = pehX(h− 1, j − 1) + (1− peh)X(h− 1, j),

for all h ∈ [1..dv ], j ∈ [0..h]. We need to compute all X(·, ·)
values so as to get to X(dv, i), which corresponds to the
desired probability Pr[deg(v) = i]. This requires O(idv)
time.

Moreover, one can notice that the values of the entire set
{X(dv , j)}

i
j=0 (not just X(dv, i)) correspond to the actual

probability values {Pr[deg(v) = j]}ij=0. Thus, employing
the proposed dynamic-programming method and setting i =
k−1, the probability values Pr[deg(v) = 0], . . . ,Pr[deg(v) =
k − 1], which are required for computing Pr[deg(v) ≥ k]
according to Equation (3), can all be derived in O(kdv) time.

Thus, the dynamic-programming method just described
has the same complexity as the method based on Equa-
tion (4). But, at the same time, it (i) alleviates the
numerical-stability shortcomings, as the numbers involved
into Equation (6) are all probabilities ≤ 1 (unlike the num-
bers p̃e which range from [0,∞)), and (ii) can easily be
employed for efficiently updating η-degrees when an edge is
removed from the graph, as described next.

Time complexity. The η-degree of a vertex v can be com-
puted incrementally. We start with k = 0 and Pr[deg(v) ≥
0] = 1. Then, we increase k one by one and compute
Pr[deg(v) ≥ k] as Pr[deg(v) ≥ k−1]−Pr[deg(v) = k−1]. We
stop once Pr[deg(v) ≥ k] < η, and we set η-deg(v) = k − 1.
This way, we need to compute probabilities Pr[deg(v) = k]
only for k = 0, ..., η-deg(v) + 1, which, according to the
findings reported above, leads to a time complexity of
O(η-deg(v) × dv). Clearly, in the worst case, such a com-
plexity equals O(d2v), but we expect in practice η-deg(v) rea-
sonably lower than dv, especially for those vertices having
very large dv and/or large enough η values.

Computing all η-degrees hence takes O(
∑

v∈V
η-deg(v)×

dv). Denoting by ∆ the maximum η-degree over all vertices
in the graph, i.e., ∆ = maxv∈V η-deg(v), the complexity can
be more compactly expressed as O(

∑
v∈V dv∆) = O(m∆).

Updating η-degrees

We now consider the case where the η-degree of a vertex v
needs to be updated because an edge incident to v has been
removed. We recall that this is the other crucial step of our
(k,η)-cores algorithm (Algorithm 2, Line 12).

As anticipated, we can exploit Theorem 3 to avoid
from-scratch recomputations. The problem can be re-
duced to (efficiently) updating the probabilities Pr[deg(v) =
0], . . . ,Pr[deg(v) = η-deg(v)], whose earlier values are avail-
able because of the computation of the earlier η-degree.
Once all these new probabilities are computed, the new
η-degree can be derived by the same incremental process
described in the previous paragraph “Time complexity”.

Let e denote the edge to be removed and let
Pr[deg(v|¬e) = i], for all i ∈ [0, . . . , η-deg(v)], be a short-
hand for the new probabilities Pr[deg(v|Nv \ {e}) = i] to be
computed. Such Pr[deg(v|¬e) = i] values can be derived by
rearranging Equation (6) as follows:

Pr[deg(v|¬e)= i]=
Pr[deg(v)= i]−pePr[deg(v|¬e)= i−1]

1− pe
. (7)

This way, one can set Pr[deg(v|¬e) = 0] = 1
1−pe

Pr[deg(v) =

0], and apply Equation (7) to compute the remaining
Pr[deg(v|¬e) = i] values, for all i ∈ [1..η-deg(v)]. Each prob-
ability Pr[deg(v|¬e) = i] takes constant time. Computing all
the new probabilities, and, hence, updating the η-degree of
v, globally takes O(η-deg(v)) time, thus improving upon the
O(η-deg(v)× dv) time of a from-scratch recomputation.

Overall running time of (k,η)-cores

We analyse now the overall time complexity of our (k,η)-
cores algorithm. The initialisation phase (Lines 1–6) is
dominated by the computation of the initial η-degree for
all vertices, which takes O(m∆) time (∆ is the maximum
η-degree over all vertices). In the main cycle (Lines 7–
18), like the deterministic case, each vertex is visited only
once and then removed from the graph. For each vis-
ited vertex v, the η-degree of all its neighbours has to
be updated. As reported above, for a single neighbour
u, this takes O(η-deg(u)). Thus, the main cycle globally
takes O(

∑
v∈V

∑
u:(u,v)∈Nv

η-deg(u)) = O(
∑

v∈V
dv∆) =

O(m∆). In conclusion, the running time of the (k,η)-cores
algorithm is therefore O(m∆).

4. SPEEDING-UP (k,η)-cores
In this section we show how to further speed-up our

(k,η)-cores algorithm. Our key observation is that the
main bottleneck of (k,η)-cores is the computation of initial
η-degrees (experimentally confirmed in Section 5): although
this step is asymptotically as fast as updating η-degrees af-
ter a vertex removal, the latter is in practice faster as it is
performed on a graph that gets progressively smaller. In
this regard, we derive a fast-to-compute lower bound on the
η-degree and use it as a placeholder during the first itera-
tions, while replacing it with the actual η-degree only when
the vertex at hand is going to be processed. This way, the
initial η-degrees can be computed only when actually needed
and on a smaller graph, thus leading to the desired speed-up.

In the following we provide the details of our lower bound
on the η-degree and show how to efficiently update this
bound after vertex removals. Then, we describe how to in-
corporate such findings into the enhanced algorithm.
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Lower bound on the η-degree. We define our lower
bound on the η-degree in terms of the regularised beta func-
tion. Given a real number z ∈ [0, 1] and two integers a and
b, the regularized beta function Iz(a, b) is defined as the ra-
tio between the incomplete beta function B(z; a, b) and the
beta function B(a, b) [29]:

Iz(a, b) =
B(z; a, b)

B(a, b)
=

a+b−1∑

i=a

(
a+ b− 1

i

)
z
i(1− z)a+b−1−i

.

Given a vertex v in the input graph, let pmin(v) denote
the minimum probability on the edges incident to v, i.e.,
pmin(v) = mine∈Nv

pe. The next lemma shows how the
probability for v to have degree no less than k can be lower-
bounded by using the regularised beta function I .

Lemma 1. Given an uncertain graph G = (V,E, p), for
every vertex v ∈ V and for all k ∈ [0..dv ] it holds that

Pr[deg(v) ≥ k] ≥ Ipmin(v)(k, dv − k + 1).

Proof. Consider a vertex v′ having as many incident
edges as v, and assume that each edge incident to v′ has
probability pmin(v). It is easy to see that Pr[deg(v) = i] ≥
Pr[deg(v′) = i], for all i. Exploiting Equation (4) we get:

Pr[deg(v) = i] ≥ Pr[deg(v′) = i] =

=
∑

N⊆N
v′ ,

|N|=i

∏

e∈N

pmin(v)
∏

e∈N
v′\N

(1− pmin(v)) =

=

(
dv

i

)
(pmin(v))

i(1− pmin(v))
dv−i

.

Combining such a result with Equation (3) we obtain:

Pr[deg(v) ≥ k] =

dv∑

i=k

Pr[deg(v) = i] ≥

≥

dv∑

i=k

(
dv

i

)
(pmin(v))

i(1−pmin(v))
dv−i=Ipmin(v)(k, dv−k+1).

The lemma follows.

The desired lower bound on η-degree can now immediately
be derived by exploiting Lemma 1. We denote such a lower
bound by η-lb and formally state it in the next theorem.

Theorem 4. Given an uncertain graph G = (V,E, p), for
every vertex v ∈ V it holds that

η-deg(v)≥η-lb(v)=max{k∈ [0..dv ]|Ipmin(v)(k, dv−k+1)≥η}.

The computation of the above lower bound is very fast. For
a fixed z, the values Iz(a, b) of the regularised beta func-
tion are monotonically non-increasing as a increases and/or
b decreases. Therefore, the lower bounds on Pr[deg(v) ≥ k]
are monotonically non-increasing as k increases and one can
thus perform binary search to derive the maximum k such
that Ipmin

(k, dv−k+1) ≥ η, which, according to Theorem 4,
corresponds to the lower bound η-lb(v). The computation
of η-lb(v) requires a logarithmic (in the number of edges
of v) number of evaluations of Iz. Each evaluation of Iz
can be computed in constant time using tables [23]. Thus,
computing η-lb(v) for a vertex v takes O(log dv) time.

A major feature of the lower bound η-lb is its fast from-
scratch computation. Here we show that it can also be up-
dated very efficiently (i.e., in constant time) when an edge
is removed from the graph. To this end, we first need to
report a couple of results. We start by showing that the
η-degree of a vertex v can decrease at most by one when an
edge incident to v is removed (Lemma 2).

Lemma 2. Given an uncertain graph G = (V,E, p) and a
vertex v ∈ V , let e ∈ Nv be an edge incident to v and let
H = (V,E \ {e}, p) be the subgraph of G where e is missing.
Also, let η-degH(v) be the η-degree of v in H. It holds that
η-degH(v) > η-deg(v)− 2.

Proof.

Pr[deg(v)≥k] =

dv−1∑

i=k

Pr[degH(v)= i] + pePr[degH(v)=k−1]=

=

dv−1∑

i=k−1

Pr[degH(v) = i]

︸ ︷︷ ︸
Pr[degH(v)≥k−1]

−(1− pe) Pr[degH(v) = k − 1] ≤

≤ Pr[degH(v) ≥ k − 1].

By the definition of η-degree we know that Pr[degH(v) ≥
η-degH(v) + 1] < η; thus, setting k = η-degH(v) + 2 in the
above inequality, we get

Pr[deg(v)≥η-degH(v)+2] ≤ Pr[degH(v)≥η-degH(v)+1]<η.

Then, η-deg(v) < η-degH(v) + 2, or, equivalently,
η-degH(v) > η-deg(v)− 2. The lemma follows.

Based on the above lemma, we can also prove that the
lower bound η-lb(v) of a vertex v can decrease at most by
one when an edge incident to v is removed.

Theorem 5. Given an uncertain graph G = (V,E, p) and
a vertex v ∈ V , let e ∈ Nv be an edge incident to v and let
H = (V,E \ {e}, p) be the subgraph of G where e is missing.
Also, let η-lbH(v) be the lower bound on the η-degree of v
in H. It holds that η-lbH(v) > η-lb(v)− 2.

Proof. Consider a vertex v′ having as many incident
edges as v, and assume that each edge incident to v′ has
probability pmin(v). It is easy to see that the η-degree
η-deg(v′) of v′ equals the lower bound η-lb(v). Combin-
ing this with Lemma 1, we get η-lbH(v) = η-degH(v′) >
η-deg(v′)− 2 = η-lb(v)− 2. The theorem follows.

Theorem 5 can be exploited for safely updating η-lb in
constant time. Let e denote again the edge incident to v

to be removed and let H be the subgraph of G where e is
missing. Thus, η-lb(v) denotes the earlier lower bound of v,
while η-lbH(v) denotes the new lower bound to be computed
after the e’s removal. The idea is to compute (in constant
time) just the value Ipmin(v)(η-lb(v), (dv−1)−η-lb(v)+1) =
Ipmin(v)(η-lb(v), dv−η-lb(v)). Lemma 1 ensures that

Pr[degH(v) ≥ η-lb(v)] ≥ Ipmin(v)(η-lb(v), dv − η-lb(v)).

Thus, if Ipmin(v)(η-lb(v), dv − η-lb(v)) is still ≥ η, then
the lower bound has not changed, i.e., η-lbH(v) = η-lb(v).
Otherwise, it means that the lower bound has decreased.
According to Theorem 5, this decreasing can be at most by
one, hence we can safely set η-lbH(v) = η-lb(v)− 1.
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A major shortcoming of updating η-lb as described above
is that, for each vertex v, we need to load/keep-in-memory
O(d2v) values of Iz (i.e., all values within {Ipmin(v)(k, h−k+
1) | h ∈ [0..dv ], k ∈ [0..h]}). This would penalize too much
both time and space complexity of the algorithm. However,
this can be overcome by still relying on Theorem 5. The
idea is to simply set η-lbH(v) = max{0, η-lb(v)− 1} every
time an edge e incident to v is removed, no matter whether
Ipmin(v)(η-lb(v), dv − η-lb(v)) ≥ η or not. Indeed, Theo-
rem 5 guarantees that η-lb(v)− 1 is still a lower-bound for
η-deg(v), even though possibly less tight. This way our algo-
rithm would require only O(dv) values of Iz for each vertex
v, i.e., just the values {Ipmin(v)(k, dv − k + 1) | k ∈ [0..dv ]}.

The E-(k,η)-cores algorithm. We now provide the details
of our enhanced-(k,η)-cores (for short, E-(k,η)-cores)
algorithm (pseudocode omitted for space reasons). The algo-
rithm follows the scheme of the basic (k,η)-cores algorithm
(Algorithm 2). The main difference is that, for each vertex
v, the lower bound η-lb(v) is computed in the initialisation

phase, rather than the exact η-degree. A set Ṽ keeps trace of
the vertices for which the exact η-degree has not been com-

puted yet. Right after initialisation, Ṽ corresponds to the
whole vertex set V . In the main cycle, vertices are processed
based on their (lower bound on) η-degree. When a vertex v
is being processed, it is primarily checked whether its exact
η-degree is already available. If not, the exact η-degree of v
is computed and v is moved to the proper set of the vector
D, so that it can be processed in the correct (possibly later)
iteration. Otherwise, if the exact η-degree of v is available,
the η-core number of v is set and the η-degrees (either the
exact or the lower bounds) of all v’s neighbours are updated.

The worst-case time complexity of E-(k,η)-cores is the
same as the basic (k,η)-cores algorithm, i.e., O(m∆). How-
ever, smaller running times are expected in practice due to
the lazy computation/updating of η-degrees in reduced ver-
sions of the input graph.

5. EXPERIMENTS
In this section we report quantitative experiments on ef-

ficiency and numerical stability of our (k,η)-cores and E-
(k,η)-cores algorithms (Sections 3 and 4).3 For this task
we use the following real-world uncertain graphs.

Flickr (www.flickr.com, |V | = 24 125, |E| = 300 836). We
borrowed the dataset from [24], where the probability of
an edge between two users is defined based on homophily,
the principle that similar interests indicate social ties. Par-
ticularly, [24] uses as a measure of homophily the Jaccard
coefficient of the interest groups shared by the two users.

DBLP (www.informatik.uni-trier.de/~ley/db/, |V | =
684 911, |E| = 2 284 991). The dataset was borrowed
from [24, 15]. Two authors are connected if they co-authored
at least once, and the probability on an edge expresses the
fact that the collaboration has not happened by chance: the
more the collaborations, the larger the probability. Pre-
cisely, [24, 15] define the probability of each edge based on
an exponential function to the number of collaborations.

BioMine (biomine.org, |V | = 1008 200, |E| = 6 742 939). A
snapshot of the database of the BioMine project [26] con-
taining biological interactions. Edges inherently come with

3
We implemented our code in Java and run experiments on a

2.83GHz, 32GB Intel Xeon server.

Table 1: Times (secs) of the proposed methods for com-

puting (k,η)-core decomposition (precision 64 bits). The

column “gain (%)” reports the gain of the E-(k,η)-cores

algorithm over the (k,η)-cores algorithm.

initial main initial main
η η-degrees cycle total η-degrees cycle total gain (%)

Flickr, (k,η)-cores Flickr, E-(k,η)-cores
0.1 15.45 8.88 24.33 14.41 7.98 22.39 7.99%
0.3 13.73 7.89 21.61 12.90 7.22 20.12 6.89%
0.5 12.56 7.33 19.89 11.86 6.71 18.57 6.62%
0.7 11.45 6.64 18.09 10.82 6.14 16.96 6.25%
0.9 9.86 5.72 15.58 9.34 5.32 14.66 5.87%

DBLP, (k,η)-cores DBLP, E-(k,η)-cores
0.1 53.81 36.92 90.73 38.23 26.45 64.68 28.71%
0.3 49.08 33.16 82.24 36.28 25.21 61.48 25.24%
0.5 44.74 31.14 75.88 33.98 24.45 58.43 23.00%
0.7 40.65 28.40 69.05 31.86 23.07 54.92 20.46%
0.9 35.54 24.42 59.96 28.40 21.06 49.46 17.51%

BioMine, (k,η)-cores BioMine, E-(k,η)-cores
0.1 4801 1549 6350 4388 1404 5792 8.78%
0.3 4704 1542 6246 4333 1447 5780 7.46%
0.5 4645 1538 6183 4281 1404 5685 8.05%
0.7 4568 1523 6091 4240 1403 5643 7.35%
0.9 4498 1478 5977 4151 1423 5575 6.72%

probabilities. The probability of any edge provides evidence
that the interaction actually exists.

Efficiency. Table 1 reports on the running times exhibited
by our (k,η)-cores (left) and E-(k,η)-cores (right) algo-
rithms on the selected datasets. Times are split by the main
phases of computing initial η-degrees and running the main
cycle. Both algorithms are very fast on Flickr and DBLP.
They take on average around 20 and 60 seconds, respec-
tively. On BioMine, which is much larger and denser, clearly
the time increases. However, the time required by our al-
gorithms on the latter dataset is in the order of one hour.
This is reasonable for networks of such size and testifies the
applicability of our methods to very large uncertain graphs.

As expected, E-(k,η)-cores runs faster than the basic
(k,η)-cores algorithm, allowing a reduction of the total
time up to around 30% (DBLP, η = 0.1). The gain is more
evident on the larger datasets (i.e., DBLP and BioMine) and
is generally increasing as η decreases. The latter finding is
expected because the smaller η, the larger the η-degree of a
vertex, and, thus, the better the chance for the lower-bound
to be tighter and lead to better pruning. Larger η-degrees
for smaller η is also the reason why times (for both phases
and both algorithms) are increasing with smaller η.

Numerical stability. As discussed in Section 3, proba-
bilities may lead to numerical instability. To prevent this,
one can exploit native solutions provided by modern pro-
gramming languages to enlarge range and/or precision of
the numerical representation. As a side effect, this would
slow down the overall computation as larger precision im-
plies slower arithmetic computations. Thus, the goal is to
minimise the number of critical operations that may lead
to numerical instability, to avoid using a too large preci-
sion with the aim of achieving reasonable accuracy. As re-
ported in Section 3, a major feature of the novel dynamic-
programming method we employ in our algorithms to com-
pute/update η-degrees is to alleviate such numerical issues.
We next provide experimental evidence on this.

First, we report results by varying the precision used for
representing numbers (we consider 32, 64, 128, and 256 bits
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Table 2: Accuracy of (k,η)-core index for η = 0 w.r.t. de-

terministic core index (ground truth) for different values

of precision (bits).
dataset pr=32 pr=64 pr=128 pr=256

avg absolute error
Flickr 6.17 5.12 3.4 2.26
DBLP 0.27 0.1 0.03 0.01

BioMine 2.18 1.25 0.41 0.14

% vertices with non-zero error
Flickr 31.69% 18.91% 11.92% 6.00%
DBLP 17.48% 2.27% 0.51% 0.18%

BioMine 1.51% 1.11% 0.47% 0.09%

as precision levels).4 We note that, for η = 0, the (k,η)-core
decomposition of an uncertain graph G should ideally corre-
spond to the core decomposition of the deterministic graph
derived from G by ignoring probabilities. Thus, we measure
accuracy by comparing, for each vertex, the 0-core number
outputted by our algorithms with the core number returned
by the standard k-core algorithm (Algorithm 1) on such a
deterministic graph.

Tables 2 and 3 show accuracy results (in terms of per-
vertex average absolute error and percentage of vertices with
core number other than the exact one) and running times,
respectively. We report times separately for (k,η)-cores
and E-(k,η)-cores, while accuracy is the same for both.
As expected, larger precision leads to better accuracy and
worse efficiency. Particularly, the results show a linear trend:
doubling the precision, time doubles while errors get halved.

We also compare the results of our algorithms when
equipped with the proposed dynamic-programming method
to the results of our algorithms equipped with the method
that computes/updates η-degrees using the formula in Equa-
tion (5). We denote our proposed combination“(k,η)-cores
+ dynamic-programming method” simply as (k,η)-cores,
while we refer to the “baseline” combination “(k,η)-cores
+ Equation (5)-based method” as Eq5. These results are
summarised in Table 4 (precision 64 bits). Our method out-
performs Eq5 in terms of both average absolute error and
percentage of vertices with non-zero error. Particularly, the
average absolute error of the Eq5 method is reduced by 9%
(Flickr), 41% (DBLP), and 40% (BioMine).

6. INFLUENCE MAXIMIZATION
The influence-maximization problem [16], has received a

great deal of attention over the last decade. It requires to
find a set of vertices S, with |S| = s, that maximizes the
expected spread, i.e., the expected number of vertices that
would be infected by a viral propagation started in S, under
a certain probabilistic propagation model.

The independent cascade model [16] is a widely-used prop-
agation model; under this model, the problem of finding
a set S of s vertices that maximizes the expected spread
σ(S) is NP-hard. However, the submodularity of σ(S) al-
lows the Greedy algorithm that iteratively adds to S the
vertex bringing the largest marginal gain to the objective
function to achieve a (1− 1

e
) approximation guarantee. Un-

fortunately, finding the maximum-marginal-gain vertex re-
quires to solve a #P-complete reliability problem. Hence,
existing approaches usually apply sampling methods (e.g.,
Monte Carlo) to estimate the best seed vertex at each it-
eration of the algorithm. This drastically affects the effi-

4
In our implementation, we use the BigDecimal Java API, which

allows for representing numbers arbitrarily large and/or small, and

with arbitrary user-defined precision (up to “unlimited” precision).

Table 3: Times (secs) of the two proposed methods for

computing (k,η)-core decomposition, for η = 0.1, for dif-

ferent values of precision (bits).

prec. initial main initial main
(bits) η-degrees cycle total η-degrees cycle total gain (%)

Flickr, (k,η)-cores Flickr, E-(k,η)-cores
32 6.96 3.83 10.79 6.63 3.73 10.36 3.94%
64 15.23 8.89 24.12 14.08 7.94 22.02 8.72%

128 25.55 14.48 40.03 23.69 12.92 36.62 8.53%
256 34.35 22.13 56.48 31.95 19.68 51.63 8.59%

DBLP, (k,η)-cores DBLP, E-(k,η)-cores
32 26.71 20.22 46.93 19.46 15.51 34.97 25.48%
64 56.73 39.19 95.92 40.98 27.17 68.14 28.96%

128 86.65 59.81 146.5 62.84 40.40 103.2 29.51%
256 128.7 89.14 217.8 91.15 59.30 150.5 30.93%

BioMine, (k,η)-cores BioMine, E-(k,η)-cores
32 2 376 704 3 080 2 021 659 2 681 12.97%
64 5 452 1 693 7 145 4 738 1 390 6 128 14.24%

128 9 815 3 146 12 961 8 153 2 607 10 760 16.98%
256 13 296 5 055 18 351 11 274 4 515 15 789 13.96%

Table 4: Accuracy of the proposed method in terms of

error w.r.t. a ground truth (precision 64 bits).
avg absolute error vertices w. non-zero error

dataset (k,η)-cores Eq5 (k,η)-cores Eq5
Flickr 5.12 5.62 18.91% 19.91%
DBLP 0.1 0.17 2.27% 4.42%

BioMine 1.25 2.07 1.11% 1.36%

ciency of the algorithm, thus limiting its applicability only
to moderately-sized networks (the time complexity of the al-
gorithm is O(sTnm), where T is the number of Monte Carlo
samples, with T ∈ [1 000, 10 000], usually). Optimizations of
the basic algorithm have been defined which exploit the sub-
modularity of σ to avoid unneeded computations [12], but
the improvement achieved is typically not enough to handle
large graphs (in the experiment that we show below, on a
moderately sized graph a state-of-the-art algorithm such as
Celf++ [12] could not finish after several weeks).

Within this view, a useful application of our (k, η)-core de-
composition is to provide a way to speed-up the execution
of the Greedy algorithm. The idea is simple: just reduce
the input graph G by keeping only the inner-most η-shells
and run the (optimized version of the) Greedy algorithm
on such a reduced graph. The rationale here is that, as ex-
perimentally observed in [17], the core decomposition of the
deterministic version of G, is a direct indicator of the ex-
pected spread of a vertex: the higher the core index is, the
more likely the vertex is an influential spreader. The finding
in [17] however exploits cores derived from a deterministic
version of the input graph, thus completely ignoring its prob-
abilistic nature. We conjecture that exploiting a notion of
core decomposition defined ad-hoc for uncertain graphs can
only positively affect the behaviour observed in [17]. We
next empirically show the correctness of our conjecture.

Experiments. We use a small directed graph from Twitter
(|V | = 21 882, |E| = 372 005), and a set of propagations of
URLs in the social graph, which we use as past evidence to
learn the influence probabilities (we employ the traditional
method described in [11] for this). Each edge (u, v) expresses
the fact that v is a follower of u and the corresponding prob-
ability provides evidence that an action performed by u will
be performed by v as well.

The objective here is to show that running the standard
Greedy influence-maximization algorithm on a reduced ver-
sion of the graph given by the inner-most (k, η)-shells allows
to achieve high-quality results while keeping the running
time small. We test our method replacing the notion of de-
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Table 5: Expected spread achieved by the proposed

(k,η)-cores-based method vs. some baselines with vary-

ing the output set size |S|.

|S| = 10 |S| = 20 |S| = 30
(k,η)-cores 9 570 9 606 9 610
out-degree 9 014 9 016 9 130

η-degree 9 019 9 089 9 125
exp-degree 9 012 9 093 9 123

k-cores 9 134 9 192 9 223

gree with out-degree (given that the graph is directed) and
setting η = 0.5. We obtain 8 cores and keep the three inner-
most (k, η)-shells. This gives a reduced graph with 2 064
vertices and 86 142 edges. We run the optimized version of
the Greedy algorithm defined in [12], i.e., the Celf++ al-
gorithm, on such a reduced graph and take the seed vertices
S outputted as our result.

For accuracy evaluation, we compute the expected spread
achieved by S on the whole graph (using Monte Carlo sam-
pling with 10 000 samples). As criteria for comparison, we
use the top-K vertices ranked according to the following
baseline ranking functions: (i) maximum out-degree (ignor-
ing probabilities, as suggested in the seminal work on influ-
ence maximization [16]), (ii) maximum η-degree, (iii) maxi-
mum expected degree (computed by summing the probabil-
ities on the edges outgoing from a vertex), and (iv) vertices
computed by running Celf++ on the graph reduced ac-
cording to deterministic core decomposition (ignoring prob-
abilities). Note that we could not use the results of the
direct execution of Celf++ on the whole graph due to its
excessive running time (it could not finish in several weeks).

The results reported in Table 5 (we vary |S| from 10 to
30) show how our (k,η)-cores-based method evidently out-
performs all the baselines, allowing to increase the spread up
to 590 (out-degree), 551 (η-degree), 558 (exp-degree),
and 436 (k-cores). As far as efficiency, we report runtimes
in the order of 4–5 hours (with |S| = 30), which are times
clearly affordable—contrast to the unaffordable runtime of
the direct execution of Celf++ on the whole graph.

7. TASK-DRIVEN TEAM FORMATION
In task-driven team formation we are given a collabora-

tion graph G = (V,E, τ ), where vertices are individuals and
edges are assigned a probabilistic topic model τ , represent-
ing (a distribution on) the topics exhibited by past collab-
orations. The topic model can be produced by standard
methods, such as the popular Latent Dirichlet Allocation
(LDA) [6]. The input of LDA (or any other similar method)
is (i) a number Z of topics, and (ii) for each edge (u, v) ∈ E,
a document d(u, v) representing all the past collaborations
between u and v. The document d(u, v) is a bag of terms
coming from a finite vocabulary Σ. The output is the topic
model τ , that is:

• for each edge (u, v) ∈ E and each topic z ∈ [1..Z],
the probability pzu,v = (z|u, v) that the collaborations

between u and v are on the topic z, with
∑Z

z=1 p
z
u,v = 1.

• for each term t ∈ Σ, a distribution over topics, i.e.,
for each topic z ∈ [1, Z], the probability γz

t = P (t|z)
that the term t has been generated by the topic z, with∑

t∈Σ γz
t = 1.

A task-driven team-formation query is a pair 〈T,Q〉,
where T ⊂ Σ is a set of terms describing a task, and Q ⊂ V

is a set of vertices (possibly even a single vertex). The goal

is to find an answer vertex set A, with Q ⊆ A, which is a
good team to perform the task described by the terms in T .
Being a good team means having a good affinity among the
team members with respect to the given task. We report
more formal details on this in the following.

The query task T , together with the topic model τ , induce
a single probability value pT (u, v) for each edge (u, v) ∈ E,
such that pT (u, v) represents the likelihood that T has been
generated by a collaboration between u and v:

p
T (u, v) = p(u, v|T ) =

∏

t∈T

Z∑

z=1

γ
z
t p

z
u,v. (8)

Hence, given a task T , the input collaboration graph G

yields an uncertain graph GT = (V,E, pT ). This way, given
GT and a set of query vertices Q ⊆ V , the task of finding
a good team for the query at hand directly translates into
finding a subgraph of GT that represents a good community
for Q. Formally, the goal is to find a connected subgraph
H = (VH, EH) of GT that (i) contains all query vertices
(Q ⊆ VH), and (ii) maximizes a notion of density. Particu-
larly, as far as the density measure, the minimum degree has
been widely recognized as a principled choice for this kind
of problem.5 We therefore rely on this notion of density and
ask for the subgraph H to maximize the minimum η-degree
of a vertex in H. The resulting problem statement is:

Problem 2 (Task-Driven Team Formation).
Given a collaboration graph G = (V,E, τ ) and a query
〈T,Q〉, let GT be the uncertain graph derived from G and T
as described in Equation (8). Given a threshold η ∈ [0, 1],
we want to find a connected subgraph H = (VH, EH) of GT

induced by a set of vertices VH such that

VH = argmax
Q⊆S⊆V

min
u∈S

η-deg(u).

Exploiting (k,η)-cores for team formation. We now
show that Problem 2 can be optimally solved by resorting to
our notion of (k,η)-core decomposition. This result is stated
in the next theorem (we omit the proof for space reasons).

Theorem 6. Given an uncertain graph GT and a thresh-
old η ∈ [0, 1], let C = {C0, C1, . . . , Ck∗} be the (k,η)-core
decomposition of GT (with C0 ⊇ C1 ⊇ · · · ⊇ Ck∗), and,
given a set of query vertices Q ⊆ V , let C∗

Q be the smallest-
sized core in C such that every q ∈ Q belongs to the same
connected component of C∗

Q.
Then, the solution to Problem 2 is given by the connected

component of C∗
Q that contains Q.

Theorem 6 provides us with a principled way of solving Prob-
lem 2. The solution can be summarized as follows:

1. Given a collaboration graph G = (V,E, τ ) and a task-
driven team-formation query 〈T,Q〉, derive the uncer-
tain graph GT = (V,E, pT ) (Equation (8)).6

2. Compute the (k,η)-core decomposition C of GT ;

5
As argued in [27], maximizing the minimum degree provides a bet-

ter evidence of the goodness of a community than, e.g., the maxi-
mization of the average degree, which is instead more suitable for
dense-subgraph discovery.
6
As Equation (8) can produce very small probabilities, in our imple-

mentation we prune GT by removing edges with probability smaller
than a threshold ǫ (ǫ = 10−16 in our experiments).
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Table 6: Three examples of task-driven team-formation queries and corresponding results.

T = {gene, express}, T = {xml, tree}, T = {auction,model},
Q = {H.V.Jagadish} Q = {H.V.Jagadish, S.Muthukrishnan} Q = {S.Muthukrishnan}

Brian D. Athey, Giovanni Scardoni,
Kathleen A. Stringer, Venkateshwar G. Keshamouni, S. Muthukrishnan, Uri Nadav, Noam Nisan, Jon Feldman,
Jing Gao, Terry E. Weymouth, Vasudeva Mahavisno, Panagiotis G. Ipeirotis, Vahab S. Mirrokni, Gagan Aggarwal,

Charles F. Burant, Christopher W. Beecher, Lauri Pietarinen Tanmoy Chakraborty, Aranyak Mehta
Maureen A. Sartor, Alla Karnovsky, Rork Kuick, H. V. Jagadish, Evdokia Nikolova, S. Muthukrishnan,

Zach Wright, James D. Cavalcoli, Gilbert S. Omenn, Divesh Srivastava, Martin Pal, Clifford Stein, Eyal Even-Dar
H. V. Jagadish, Carlo Laudanna, Tim Hull, Nick Koudas Florin Constantin, Yishay Mansour

Barbara R. Mirel, V. Glenn Tarcea

3. Visit the cores in C starting from the smallest-sized
one (i.e., the inner-most core), until finding C∗

Q;

4. Return the connected component of C∗
Q containing Q

as the solution to Problem 2.

Experiments. We consider task-driven team formation in
the context of collaborations among computer-science re-
searchers. We build a collaboration network from the DBLP

database (www.informatik.uni-trier.de/~ley/db/): ver-
tices are authors and an edge connects two authors if they
co-authored at least once. The resulting graph has |V | =
1 089 442 and |E| = 4144 697. For each edge, we take the
bag of words of the titles of all papers coauthored by the two
authors (words are stemmed and stop-words are removed),
and apply LDA to infer the topic model τ (we set Z = 100).

In Table 6 we report the results of three task-driven team-
formation queries. The first two queries share the query ver-
tex H. V. Jagadish, but the first task is about gene expres-
sion while the second one is about xml : as expected the two
proposed teams are very different. The third query shares
with the second one the vertex S. Muthukrishnan; but, un-
like the previous one that is about xml (a database topic),
the third query is about auction models (an algorithm-
theory topic): the different teams proposed correctly reflect
the difference in the tasks. It is worth noticing that the
extraction of these teams, following the process described
above and exploiting our efficient (k,η)-core decomposition,
takes approximately 2-3 seconds on a commodity laptop.

8. CONCLUSIONS
In this paper we extend the graph tool of core decom-

position to the context of uncertain graphs. We define the
(k, η)-core concept, and we devise efficient algorithms for
computing a (k, η)-core decomposition. As a future work,
we plan to investigate the relationship between (k, η)-cores
and other definitions of (probabilistic) dense subgraphs, so
as to exploit the former as a speeding-up preprocessing.
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