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ABSTRACT
A topic propagating in a social network reaches its tipping
point if the number of users discussing it in the network ex-
ceeds a critical threshold such that a wide cascade on the
topic is likely to occur. In this paper, we consider the task
of selecting initial seed users of a topic with minimum size
so that with a guaranteed probability the number of users
discussing the topic would reach a given threshold. We for-
mulate the task as an optimization problem called seed min-
imization with probabilistic coverage guarantee (SM-PCG).
This problem departs from the previous studies on social in-
fluence maximization or seed minimization because it con-
siders influence coverage with probabilistic guarantees in-
stead of guarantees on expected influence coverage. We show
that the problem is not submodular, and thus is harder than
previously studied problems based on submodular function
optimization. We provide an approximation algorithm and
show that it approximates the optimal solution with both a
multiplicative ratio and an additive error. The multiplica-
tive ratio is tight while the additive error would be small if
influence coverage distributions of certain seed sets are well
concentrated. For one-way bipartite graphs we analytically
prove the concentration condition and obtain an approxi-
mation algorithm with an O(logn) multiplicative ratio and
an O(

√
n) additive error, where n is the total number of

nodes in the social graph. Moreover, we empirically verify
the concentration condition in real-world networks and ex-
perimentally demonstrate the effectiveness of our proposed
algorithm comparing to commonly adopted benchmark al-
gorithms.
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1. INTRODUCTION
With online social networks such as Facebook and Twitter

becoming popular for people to express their thoughts and
ideas, or to chat with each other, online social networks pro-
vide a platform for triggering a hot topic and then influenc-
ing a large population. Different from most traditional me-
dia (such as TV and newspapers), information spread on so-
cial networks mainly base on the trust relationship between
individuals. Consider the following scenario: when some-
one publishes a topic on the online social network, his/her
friends will see this topic on the website. If they think it is
interesting or meaningful, they may write some comments
to follow it or just forward it on the website as a response.
Similarly, the comments or forwarding from these friends will
attract their own friends, leading to more and more people
on the social network paying attention to that topic. When
the number of users discussing about this topic on the online
social network reaches certain critical threshold, this topic
becomes a hot topic, which is likely to be surfaced at the
prominent place on the social networking site (e.g. 10 hot
topics of today), and is likely to be picked up by traditional
media and influential celebrities. In turn this will generate
an even wider cascade causing more people to discuss about
this topic.

Therefore, making a topic reach the critical threshold (also
called the tipping point [10]) is the crucial step to generate
huge influence on the topic, which is desirable by companies
large and small trying to use social networks to promote
their products, through the so called viral marketing cam-
paigns. Besides making the content of the topic attractive
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and viral, another key aspect is to select seed users in the
network that initiate the topic discussion effectively to trig-
ger a large cascade on the topic. Due to the cost incurred for
engaging seed users (e.g. providing free sample products), it
is desirable that the size of seed users is minimized. More-
over, the marketers also need certain probabilistic guarantee
on how likely the viral marketing campaign could reach the
desired critical threshold in order to trigger an even larger
cascade via hot topic listings, traditional media coverages,
and celebrity followings. Hence, the problem at hand is how
to select a seed set of users of minimum size to trigger a
topic cascade such that the cascade size reaches the desired
critical threshold with guaranteed probability.

In this paper, we formulate the above problem as the fol-
lowing optimization problem and call it seed minimization
with probabilistic coverage guarantee (SM-PCG). A social
network is modeled as a directed graph, where nodes rep-
resent individuals and directed edges represent the relation-
ships between pairs of individuals. Each edge is associated
with an influence probability, which means that once a node
is activated, it can activate its out-neighbors through the
outgoing edges with their associated probabilities at the next
step. Our analytical results work for a large class of in-
fluence diffusion models that guarantee submodularity (the
diminishing marginal return property in terms of seed set
size), but for illustration purpose, we adopt the classic in-
dependent cascade (IC) model [14] as the influence diffusion
model. In the IC model, initially all seed nodes are activated
while others are inactive, and at each step, nodes activated
at the previous step have one chance to activate each of its
inactive out-neighbors in the network. The total number of
active nodes after the diffusion process ends is referred as
the influence coverage of the initial seed set. Given such a
social network with influence probabilities on edges, given a
required coverage threshold η and a probability threshold P ,
the SM-PCG problem is to find a seed set S∗ of minimum
size such that the probability that the influence coverage of
S∗ reaches η or beyond is at least P .

The formulation of the SM-PCG problem significantly de-
parts from previous optimization problems based on social
influence diffusion (e.g. [14, 5, 4, 12]) in that it requires the
selected seed set to satisfy a probabilistic coverage guarantee,
while previous research focuses on expected coverage guaran-
tee. For the application of generating a hot topic, we believe
that it is reasonable to ask for a guarantee on the probabil-
ity of influence coverage exceeding a given threshold, since
this provides direct information on the likelihood of success
of the viral marketing campaign, which is very helpful for
marketers to gauge their cost and benefit trade-offs for the
campaign. Merely saying that the expected influence cov-
erage exceeds the required coverage threshold is not enough
in this case. To the best of our knowledge, this is the first
work that focuses on probabilistic influence coverage guar-
antee among existing studies on social network influence op-
timization problems.

In this paper, we first show that the set functions based
on the SM-PCG problem are not submodular, which means
that it is more difficult than most of the existing social in-
fluence optimization problems that rely on submodular set
function optimizations. Next, we investigate two computa-
tion tasks related to SM-PCG problem, one is to fix a seed
set S and a coverage threshold η and compute the probabil-
ity of influence coverage of S exceeding η, and the other is to

fix a seed set S and a probability threshold P , and compute
the maximum coverage threshold η such that the probabil-
ity of influence coverage of S exceeding η is at least P . We
show that the first problem is #P-hard but can be accu-
rately estimated, while the second one is #P-hard to even
approximate the value within any nontrivial ratio. These
results further demonstrate the hardness of the problem.

We then adapt the greedy approximation algorithm tar-
geted for expected influence coverage problem (which is sub-
modular) to the SM-PCG problem. Although the adapted
algorithm still follows the greedy approach, our main con-
tribution is on a detailed analysis, which proves that our
algorithm approximates the optimal solution with both a
multiplicative ratio and an additive error. The multiplica-
tive ratio is due to the greedy approximation algorithm for
expected influence coverage and is tight, while the additive
error is determined by the concentration property (in partic-
ular the standard deviations) of influence coverage distribu-
tions of two specific seed sets. For one-way bipartite graphs
where edges are directed from one side to the other side, we
analytically show that the influence coverage distributions
are well concentrated and we could reach an additive error
of O(

√
n) where n is the total number of nodes in the graph.

Finally, using several real-world social networks including
a network with influence probability parameters obtained
from prior work, we empirically validate our approach by
showing that (a) influence coverage distributions of seed sets
are well concentrated, and (b) our algorithm selects seed sets
with sizes much smaller than commonly adopted benchmark
algorithms.

To summarize, our contributions include: (a) we propose
the study of seed minimization with probabilistic coverage
guarantee (SM-PCG), which is more relevant to hot topic
generation in online social networks and has not been stud-
ied before; (b) we show that neither of the two versions of
set functions related to SM-PCG is submodular, one ver-
sion is #P-hard to compute but allows accurate estimation
while the other version is #P-hard to even approximate
to any nontrivial ratio; (c) we adapt the greedy algorithm
targeted for expected coverage guarantee to SM-PCG, and
analytically show that the adapted algorithm provides an
approximation guarantee with a tight multiplicative ratio
and an additive error depending on the influence coverage
concentrations of certain seed sets; and (d) we empirically
demonstrate the effectiveness of our algorithm using real-
world datasets.

1.1 Related Work
Influence maximization, as the dual problem of seed mini-

mization, is to find a seed set of at most k nodes to maximize
the expected influence coverage of the seed set. Domingos
and Richardson are the first to formulate influence maxi-
mization problem from an algorithmic perspective [7, 17].
Kempe et al. first model this problem as a discrete opti-
mization problem [14], provide the now classic independent
cascade and linear threshold diffusion models, and estab-
lish the optimization framework based on submodular set
function optimization. A number of studies follow this ap-
proach and provide more efficient influence maximization
algorithms (e.g. [5, 4, 6, 13]). In [16], Long et al. first study
independent cascade and linear threshold diffusion models
from a minimization perspective. In [12], Goyal et al. pro-
vide a bicriteria approximation algorithm to minimize the
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size of the seed set with its expected influence coverage
reaching a given threshold. Recently, a continuous time dif-
fusion model is proposed and studied in [18] and [8]. All
these existing studies focus on expected influence coverage,
and rely on the submodularity of expected influence cover-
age function for the optimization task. In contrast, we are
the first to address probabilistic coverage guarantee for the
seed minimization problem, which is not submodular.

Seed minimization with non-submodular influence cover-
age functions under different diffusion models have been
studied. Chen [3] studies the seed minimization problem
under the fixed threshold model, where a node is activated
when its active neighbors exceed its fixed threshold. He
shows that the problem cannot be approximated within any
polylogarithmic factor (under certain complexity theory as-
sumption). Goldberg and Liu [11] study another variant of
fixed threshold model and provide an approximation algo-
rithm based on the linear programming technique. Influence
coverage functions in both models are deterministic and non-
submodular. However, these models are quite different from
the model we study in this paper, and thus their results and
techniques are not applicable to our problem.

The rest of this paper is organized as follows. We define
the diffusion model and the optimization problem SM-PCG
in Section 2, and provide related results and tools in Sec-
tion 3, including the non-submodularity of the set functions
for SM-PCG. In Section 4 we investigate the computation
problems related to SM-PCG. In Section 5 we provide our
algorithm for general graphs and analyze its approximation
guarantee. In Section 6 we provide algorithmic and ana-
lytical results for one-way bipartite graphs. We empirically
validate our concentration assumption on influence coverage
distributions and the effectiveness of our algorithm in Sec-
tion 7, and conclude the paper in Section 8 with a discussion
on potential future directions. Due to the space constraint,
some of the technical proofs and empirical results are omit-
ted, and they are included in our full technical report [20].

2. MODEL AND PROBLEM
In our problem, a social network is modeled as a directed

social graph G = (V,E), where V is the set of n nodes rep-
resenting individuals in a social network, and E is the set of
directed edges representing influence relationships between
pairs of individuals. Each edge (u, v) ∈ E is associated with
an influence probability pu,v. Intuitively, pu,v is the proba-
bility that node u activates node v after u is activated. The
influence diffusion process in the social graph G follows the
independent cascade (IC) model, a randomized process sum-
marized in [14]. Each node has two states, inactive or active.
The influence diffusion proceeds in discrete time steps, and
we say that a node u is activated at time t if t is the first
time step at which u becomes active. At the initial time
step t = 0, a subset of nodes S ⊆ V is selected as active
nodes, defined as the seed set, while other nodes are inac-
tive. For any time t ≥ 1, when a node u is activated at step
t− 1, u is given a single chance to activate each of its inac-
tive out-neighbors v through edge (u, v) independently with
probability pu,v at step t. Once activated, a node stays as
active in the remaining time steps. The influence diffusion
process stops when there is no new activation at a time step.

Given a target set U ⊆ V , let Inf U (S) be the random
variable denoting the number of active nodes in U after the
diffusion process starting from the seed set S ends. When

the context is clear, we usually omit the subscript U and
use Inf (S) to represent this random variable, and we refer
Inf (S) as the influence coverage of seed set S (for target set
U). The optimization problem we are trying to solve is to
find a seed set S of minimum size such that the influence
coverage of S is at least a required threshold with a required
probability guarantee. The formal problem is defined below.

Definition 1 (Seed minimization with probabilistic
coverage guarantee) We define the problem of seed min-
imization with probabilistic coverage guarantee (SM-PCG)
as follows. The input of the problem includes the social graph
G = (V,E), the influence probabilities pu,v’s on edges, the
target set U , a coverage threshold η < |U |,1 a probability
threshold P ∈ (0, 1). The problem is to find the minimum
size seed set S∗ such that S∗ can activate at least η nodes in
U with probability P , that is,

S∗ = argmin
S:Pr(Inf (S)≥η)≥P

|S|.

The following theorem shows the hardness of the SM-PCG
problem.

Theorem 1. The problem SM-PCG is NP-hard, and for
any ε > 0, it cannot be approximated within a ratio of
(1− ε) lnn unless NP has nO(log logn)-time deterministic al-
gorithms.

Proof (Sketch). We show that the NP-complete prob-
lem Set Cover is a special case of SM-PCG, and the lower
bound on approximation ratio is due to the result in [9] on
the Set Cover problem.

With the above hardness result, we set our goal as to find
algorithms that solve the SM-PCG problem with approxi-
mation ratio close to lnn.

3. USEFUL RESULTS AND TOOLS
In this section, we provide some useful results and tools

in preparation for our algorithm design.
Almost all previous work on social influence maximization

or seed minimization is based on submodular function op-
timization techniques. Consider a set function f(·) which
maps subsets of a finite ground set into real number set R.
We say that f(·) is submodular if for any subsets S ⊆ T and
any element u 6∈ T , f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ).
Moreover, we say that f(·) is monotone if for any subsets
S ⊆ T , f(S) ≤ f(T ).

Consider a monotone and submodular function f(·) on
subsets of nodes in the social graph G = (V,E). Suppose
that each node v ∈ V has a cost c(v), given by a cost func-
tion c : V → R+. The cost of a subset S is defined as
c(S) =

∑
v∈S c(v). In [12], Goyal et al. investigate the

problem of finding a subset S ⊆ V with minimum cost such
that f(S) is at least some given threshold η. As in many
optimization tasks for submodular functions, the following
greedy algorithm is applied to solve the problem: start-
ing from the emptyset S0 = ∅, in the i-th iteration with

1We believe that η < |U | is reasonable for the application
scenarios we described since typically it requires only a frac-
tion of the entire target node set to make a topic hot. For
the case of η = |U |, we also worked out a separate solution
for one-way bipartite graphs, but due to page limit, we omit
it in this paper.
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i = 1, 2, . . ., find a node vi that provides the largest marginal
gain on f per-unit cost, that is find

vi = argmax
v∈V \Si−1

f(Si−1 ∪ {v})− f(Si−1)

c(v)
,

and add vi to Si−1 to obtain Si; continue this process until
iteration j in which f(Sj) ≥ θ, where θ is a threshold that
could be η or some other value chosen by the algorithm as
the stopping criteria, and output Sj as the selected subset
S. However, generally computing f(·) exactly is #P-hard,
but for most influence spread models, it can be estimated by
Monte Carlo simulation as accurately as possible. We say
an estimation f̂(·) is a γ-multiplicative error estimation of

f(·), if for any subset S, |f̂(S)−f(S)| ≤ γf(S). Goyal et al.
show a bicriteria approximation result for the above greedy
algorithm when γ = 0 [12]. For the case of uniform node
cost and η < f(V ), we slightly improve the above result by
removing the bicriteria restriction and generalizing to the
case of γ ≥ 0.

Theorem 2. Let G = (V,E) be a social graph, and let
f(·) be a nonnegative, monotone and submodular set func-
tion on the subsets |V |. Given a threshold 0 < η < f(V ),let
S∗ ⊆ V be a subset of minimum size such that f(S∗) ≥
η, and S be the greedy solution using a γ-multiplicative
error estimation function f̂(·) with the stopping criteria

f̂(S) ≥ (1 + γ)η. For any 0 ≤ ε0 ≤ 1, for any 0 ≤ γ ≤
ε0(f(V )−η)

8|V |(f(V )+η|V |) , we have f(S) ≥ η, and |S| ≤ α|S∗| + 1

where α = max{
⌈
ln (1+ε0)η|V |

f(V )−η

⌉
, 0}.

Note that when η = Θ(f(V )), we have γ ≤
ε0(f(V )−η)

8|V |(f(V )+η|V |) = Θ( ε0
|V |2 ).

Kempe et al. show that set function E[Inf (S)] for expected
influence coverage is monotone and submodular under the
IC model [14]. Therefore, if our problem is to find a seed set
of minimum size such that the expected influence coverage is
at least a threshold value η, Theorem 2 already provides the
approximation guarantee of the greedy algorithm. We call
this problem the seed minimization with expected coverage
guarantee (SM-ECG), to differentiate with the problem con-
cerned in this paper — seed minimization with probabilistic
coverage guarantee (SM-PCG).

For the SM-PCG problem, we want the influence coverage
to be at least η with a guaranteed probability P . This seem-
ingly minor change from SM-ECG actually alters the nature
of the problem. The SM-PCG corresponds to two variants of
set functions, but neither of them is submodular. In the first
variant, we fix influence threshold η, and define fη : 2|V | →
R+ where fη(S) = Pr(Inf (S) ≥ η). In the second vari-

ant, we fix probability P , and define gP : 2|V | → R+ where
gP (S) = maxη′:Pr(Inf (S)≥η′)≥P η

′. Neither fη(·) nor gP (·) is
submodular, as shown by the two examples below. For fη,
see Figure 1(a), G is a bipartite graph where all edges are
associated with probability 1, and U contains all the nodes
in the lower part. We fix η = 5. Let S = {a} and T = {a, b},
then fη(S ∪ {u}) − fη(S) = 0, since neither S nor S ∪ {u}
could reach 5 nodes in U . Similarly, fη(T ) = 0. However,
fη(T∪{u}) = 1, since 5 nodes are reached by T∪{u}. There-
fore, fη(T∪{u})−fη(T ) > fη(S∪{u})−fη(S), and thus fη(·)
is not submodular. For gP , see Figure 1(b), G is a bipartite
graph where all edges are associated with probability 0.5,
and U = {u}. We set P = 0.8. Let S = {a} and T = {a, b},

(a) fη (b) gP

Figure 1: Function fη and gP are nonsubmoduar.

Algorithm 1 Function MC-CompProb[R]: R is a tuning
parameter controlling the accuracy of the estimate

Input: G = (V,E), {pu,v}(u,v)∈E , U, S, η
Output: estimate of P = Pr(Inf (S) ≥ η)
1: t = 0
2: for i = 1 to R do
3: simulate IC diffusion with seed set S
4: Ni = number of final active nodes in U
5: if Ni ≥ η then
6: t = t+ 1
7: end if
8: end for
9: return t/R

then gP (S ∪{c})− gP (S) = 0 and gP (T ∪{c})− gP (T ) = 1.
Since gP (S ∪{c})− gP (S) < gP (T ∪{c})− gP (T ), gP is not
submodular.

Since neither fη(·) nor gP (·) is submodular, we cannot
apply Theorem 2 on fη(·) or gP (·) to solve the SM-PCG
problem. In this paper, we address this non-submodular
optimization problem by relating it to the SM-ECG prob-
lem through a concentration assumption on random variable
Inf (S) for certain seed sets S.

4. INFLUENCE COVERAGE COMPUTA-
TION

Before working on the SM-PCG problem directly, we first
address the related computation issue when a seed set S
is given. As we mentioned in last section, there are two
variants in influence coverage computation. The first vari-
ant is that, given a seed set S and a coverage threshold η,
we need to compute the probability fη(S) that S can acti-
vate at least η nodes in U . Note that we have E[Inf (S)] =∑n−1
i=1 (fi(S)− fi+1(S)) · i+ fn(S) · n. Thus the exact com-

putation of fη(S) must be #P-hard in the IC model since
computing expected influence coverage E[Inf (S)] of seed set
S has shown to be #P-hard in the IC model [4]. However, we
can use Monte Carlo simulation to compute an accurate es-
timate of the probability. Algorithm 1 shows the procedure
MC-CompProb[R] for this task, which simulate the diffusion
from seed set S for R runs and use the fraction of runs in
which the number of active nodes in U reaches η as the
estimate of the probability.

The following lemma shows the relationship between the
number of simulations R and the accuracy of the estimate.

Lemma 1. Let P̂ be the estimate of true value P =
Pr(Inf (S) ≥ η) output by MC-CompProb[R] in Algorithm 1.

To guarantee an error of at most ε, i.e. |P̂ − P | ≤ ε
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2, with probability at least 1 − 1/nδ, it is sufficient to set
R ≥ ln(2nδ)/(2ε2).

Proof (Sketch). This is a direct application of Hoeffd-
ing’s Inequality since Monte Carlo simulation runs are mu-
tually independent.

The second variant is that, given a seed set S and a spec-
ified probability P , we need to compute the maximum in-
fluence coverage η of S with at least probability P , that is,
η = maxη′:Pr(Inf (S)≥η′)≥P η

′. Unlike the first variant, we
show below that this problem is #P-hard to approximate
to any non-trivial ratio. We say that an algorithm approx-
imates a true value v for a computing problem with ratio
α > 1 if the output of algorithm v̂ satisfies v/α ≤ v̂ ≤ αv.
Note that if the range of value v is from 1 to n, then using
v̂ = n1/2 gives a trivial approximation ratio of α = n1/2.

Theorem 3. For any fixed probability P ∈ (0, 1), the
problem of computing η = maxη′:Pr(Inf (S)≥η′)≥P η

′ given
a directed social graph G = (V,E), influence probabilities
{pu,v | (u, v) ∈ E}, target set U = V , and a seed set S is

#P-hard to approximate within a ratio of |V |1/2−ε for any
ε > 0.

Note that we treat P as a fixed parameter of the problem
rather than as part of the input to the computation problem,
which makes the result stronger.

Proof (Sketch). We prove the theorem by first reduc-
ing the #P-complete counting problem of s-t connectivity in
a directed graph [19] to its decision version, and then reduc-
ing the decision version to our computation problem.

5. APPROXIMATION ALGORITHM
In this section, we overcome the nonsubmodularity na-

ture of the SM-PCG problem discussed in Section 3 by con-
necting it with the submodular problem SM-ECG. We first
provide the general algorithm, and then show that the al-
gorithm returns a seed set that approximates the optimal
solution with both a multiplicative ratio and an additive er-
ror. The multiplicative ratio is due to the connection with
the SM-ECG problem. For the additive error term, we show
that it would be nontrivial when certain concentration as-
sumption on influence coverages holds.

Algorithm 2 illustrates algorithm MinSeed-PCG for solving
the SM-PCG problem. The algorithm builds up a sequence
of subsets S0, S1, S2, . . ., where for each i ≥ 1, Si contains
one more element u than Si−1 such that u provides the
largest marginal increase in expected influence coverage to
seed set Si−1. The way of constructing seed sets Si’s is in line
with the greedy approach as discussed in Section 3. In our
algorithm, Ê[Inf (·)] is a γ-multiplicative error estimation of
exact expected influence E[Inf (·)]. Every time a new set Si
is constructed, we compute the probability that the influence
coverage of Si is at least η (line 5). The CompProb in line 5 is
a generic function computing Pr(Inf (Si) ≥ η), which could
be MC-CompProb[R] in Algorithm 1 for general graphs, or
Bi-CompProb in Algorithm 3 for one-way bipartite graphs,
or some other functions for this purpose. If the probability
computed is at least P + ε, where ε ∈ [0, (1−P )/2) is a pa-
rameter of the algorithm, we stop and return Si as the seed

2This lemma holds when ε > P . However, we usually set ε
smaller than P to make the estimate more reasonable.

Algorithm 2 MinSeed-PCG[ε]: ε ∈ [0, (1−P )/2) is a control
parameter

Input: G = (V,E), {pu,v}(u,v)∈E , U, η, P
Output: seed set S, which is an approximation to S∗ =

argminS′:Pr(Inf (S′)≥η)≥P {|S′|}
1: S0 = ∅
2: for i = 1 to n do
3: select u = argmaxv{Ê[Inf (Si−1 ∪ {v})] −

Ê[Inf (Si−1)]}
4: Si = Si−1 ∪ {u}
5: prob = CompProb(G, {pu,v}(u,v)∈E , U, Si, η)
6: if prob ≥ P + ε then
7: return Si
8: end if
9: end for

set found by the algorithm. Parameter ε is related to the
accuracy of the function CompProb. If CompProb accurately
computes Pr(Inf (S) ≥ η) (e.g. Bi-CompProb for one-way bi-
partite graphs), we set ε to 0. If CompProb only provides an
estimate (e.g. MC-CompProb[R] for general graphs), we set
ε to be an appropriate value related to the error term of the
estimate given by the function. We will discuss parameter ε
with more technical details later.

Let S∗ be the optimal seed set for the SM-PCG problem,
that is, S∗ = argminS:Pr(Inf (S)≥η)≥P |S|. Let n = |V | and
m = |U |. Let S = {S1, S2, . . . , Sn = V } be the sequence
of greedy seed sets computed by algorithm MinSeed-PCG[ε]
(considering the entire sequence even when MinSeed-PCG[ε]
actually stops). Let Sa be the output of MinSeed-PCG[ε]
and a is its index in sequence S, and thus Sa−1 is the set in
S just before Sa.

We define c = max{η − E[Inf (S∗)], 0} and c′ =
max{E[Inf (Sa−1)] − η, 0}. Intuitively, we know that
Pr(Inf (S∗) ≥ η) ≥ P , and c indicates how much
E[Inf (S∗)] could be smaller than η. If Inf (S∗) concen-
trates well, c should be small. Similarly, we also know that
Pr(Inf (Sa−1) ≥ η) < P + ε, since Sa is the first set sat-
isfying Pr(Inf (Sa) ≥ η) ≥ P + ε. Thus, c′ indicates how
much E[Inf (Sa−1)] could be larger than η, and if Inf (Sa−1)
concentrates well, c′ should be small.

The following theorem shows that the output Sa of
MinSeed-PCG[ε] approximates the optimal solution S∗ with
c and c′ included in the additive error term.

Theorem 4. For any 0 ≤ ε0 ≤ 1 and any 0 ≤ γ ≤
ε0(m−(η+c′))2

8mn(m+ηn)
. If Ê[Inf (·)] is a γ-multiplicative error esti-

mation of E[Inf (·)] for any subset of nodes, the size of the
output by algorithm MinSeed-PCG[ε] approximates the size
of the optimal solution in the following form:

|Sa| ≤
⌈

ln
(1 + ε0)ηn

m− η

⌉
· |S∗|+ (c+ c′)n

m− (η + c′)
+ 3 + ε0. (1)

First, note that we assume m > η, so the multiplicative
term above is well defined. Moreover, η + c′ must be less
than m, because otherwise E[Inf (Sa−1)] = m = |U |, which
implies Pr(Inf (Sa−1) = m) = 1, contradicting the fact that
Pr(Inf (Sa−1) ≥ η) < P + ε < 1. Second, for the multiplica-
tive ratio of dln ηn

m−η e, when η is a constant fraction of m, i.e.
η = βm where β is a constant independent of m and n, it is
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lnn + O(1), which is tight, since Theorem 1 already states
that the ratio cannot be better than lnn. The additive error
term involves c and c′, and we will discuss it in more detail
after providing the proof to the theorem below. Third, when

η+c′ is a constant fraction of m, γ ≤ ε0(m−(η+c′))2

8mn(m+ηn)
= Θ( ε0

n2 ).

Fourth, by Chernoff bound, to achieve a γ-multiplicative er-
ror estimation of expected influence with probability 1−1/n
for all subsets computed in our algorithm, it is sufficient to
sample Θ(γ−2n logn) number of graphs for each set.

Proof. We only prove the case of γ = ε0 = 0 in this
paper. Let i be the minimum index such that Si ∈ S and
E[Inf (Si)] ≥ η − c, and S∗i be the minimum-sized seed set
such that E[Inf (S∗i )] ≥ η − c. Since E[Inf (S∗)] ≥ η − c, we

know that |S∗i | ≤ |S∗|. By Theorem 2, since
⌈
ln (η−c)n

m−(η−c)

⌉
>

0, we have that

|Si| ≤
⌈

ln
(η − c)n

m− (η − c)

⌉
· |S∗i |+ 1 ≤

⌈
ln

ηn

m− η

⌉
· |S∗|+ 1.

Let j be the minimum index such that Sj ∈ S and
E[Inf (Sj)] ≥ η + c′. Since E[Inf (Sa−1)] ≤ η + c′, we know
that |Sj | ≥ |Sa−1|. To bound the difference between |Sa−1|
and |Si|, it is sufficient to compute the difference between
|Sj | and |Si|.

By the definition of j, we have that E[Inf (Sj−1)] < η+c′,
thus E[Inf (Sj−1)] − E[Inf (Si)] < c + c′. Moreover, by the
submodularity of E[Inf (·)], we know that for each i < t < j,

E[Inf (St)]− E[Inf (St−1)] ≥ m− E[Inf (St−1)]

n

>
m− (η + c′)

n
.

Thus, we have that

|Sj−1 \ Si| ≤
E[Inf (Sj−1)]− E[Inf (Si)]

mini<t<j{E[Inf (St)]− E[Inf (St−1)]}

< (c+ c′) · (m− (η + c′)

n
)−1

=
(c+ c′)n

m− (η + c′)
.

It means that

|Sj \ Si| <
(c+ c′)n

m− (η + c′)
+ 1.

Since |Sa| ≤ |Sj |+ 1 = |Si|+ |Sj \ Si|+ 1, we have

|Sa| ≤
⌈

ln
ηn

m− η

⌉
· |S∗|+ (c+ c′)n

m− (η + c′)
+ 3.

The theorem holds.

We now discuss the additive term in Inequality (1). To
make it nontrivial, we need the additive term to be o(n)
as n grows. This means first that the target set size m
should be increasing with n, which is reasonable. Then we
should have c + c′ = o(m) in order to make the additive
term o(n). In the following theorem, we bound c and c′

by the variances of the influence coverage of S∗ and Sa−1

respectively using Chebyshev’s inequality, and thus linking
the above requirement on c and c′ to the requirement on the
variances of influence coverages.

Theorem 5. For algorithm MinSeed-PCG[ε] with any pa-
rameter ε, we have

c ≤
√

Var(Inf (S∗))

P
. (2)

If we use MC-CompProb[R] for function CompProb and set
R ≥ ln(2n2)/(2ε2), then algorithm MinSeed-PCG[ε] finds
a seed set Sa such that, with probability at least 1 − 1/n,
Pr(Inf (Sa) ≥ η) ≥ P and

c′ ≤
√

Var(Inf (Sa−1))

1− P − 2ε
. (3)

Theorem 5 shows that the variances of influence coverages
of seed sets, or more exactly the standard deviations of in-
fluence coverages, determine the scale of the additive error
term of the algorithm MinSeed-PCG[ε]. If influence cover-
ages concentrate well with small standard deviations, the
algorithm would have a good additive error term. Consider
the common case where target set size m = Θ(n), and η is
a constant fraction of m, and P is a normal probability re-
quirement not too close to 0 or 1 (e.g. 0.1 or 0.5), if we could
have Var(Inf (S∗)) = O(m) and Var(Inf (Sa−1)) = O(m),
then c + c′ = O(

√
m), and the additive error term is

O(n/
√
m) = O(

√
n). Together with Theorem 4, we would

know that

|Sa| ≤ (lnn+O(1))|S∗|+O(
√
n).

In the next section, we analytically show that for one-way
bipartite graphs indeed c+c′ = O(

√
m). We also empirically

verify that in real-world graphs the standard deviations of
influence coverages are indeed small, close to

√
m. There-

fore, our algorithm are likely to perform well in practice.
We remark that our theorems in this section can be ap-

plied to a class of models with the following characteristics:

1. the influence coverage function of a seed set (i.e.,
Inf (·)) is nonnegative, monotone and submodular,
thus greedy algorithm gives anO(logn)-approximation
ratio for SM-ECG (Theorem 2) and provides a tight
multiplicative ratio.

2. the influence coverage when choosing the whole set
of nodes as seeds is the size of the targeted set (i.e.,
Inf (V ) = |U |), which guarantees that the additive er-
ror is reasonable.

The above class includes many diffusion models, such as
linear threshold model, general threshold model and contin-
uous time diffusion model.

6. RESULTS ON BIPARTITE GRAPHS
In this section, we solve the SM-PCG problem on a one-

way bipartite graph G = (V1, V2, E), where all edges in E
are from V1 to V2. For the sake of convenience, we just
assume that U = V2 in this section. It is easy to remove this
assumption and make U to be any subset of V1 ∪ V2.

One-way bipartite graphs provide two significant advan-
tages over general graphs. First, it allows a dynamic pro-
gramming method to compute the exact influence coverage
distribution given any seed set S. Second, it allows a theo-
retical analysis on the concentration of influence coverages
of seed sets. We illustrate both aspects below.

We first show how to implement exact computation of
function CompProb. We assign indices for nodes in V2:
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v1, v2, . . . , vm. Let A(S, i, j) denote the probability that seed
set S can activate exactly j nodes in the first i nodes of
V2: v1, . . . , vi, where j ≤ i. Let p(S, v) be the probability
that v can be activated by S. When i = 1, it is trivial to
get A(S, 1, j). When i > 1, we can use A(S, i − 1, j − 1)
and A(S, i − 1, j) to compute A(S, i, j). If j = 0, it means
v1, . . . , vi−1 and vi are all inactive. If 0 < j < i, there are
two cases: j nodes are activated in the first i−1 nodes while
vi is not activated; j−1 nodes are activated in the first i−1
nodes and vi is activated. If j = i, both v1, . . . , vi−1 and vi
are activated. Thus, we have the following recursion,

A(S, 1, j) =

{
p(S, v1), j = 1

1− p(S, v1), j = 0

and

A(S, i, j) =
A(S, i− 1, j) · (1− p(S, vi)), j = 0

A(S, i− 1, j) · (1− p(S, vi))
+A(S, i− 1, j − 1) · p(S, vi), 0 < j < i

A(S, i− 1, j − 1) · p(S, vi), j = i

For IC model, p(S, vi) = 1−
∏
u∈S(1− pu,vi); for LT model,

p(S, vi) =
∑
u∈S pu,vi . Using the above dynamic program-

ming formulation, we can implement function CompProb as
function Bi-CompProb given in Algorithm 3.

Algorithm 3 Function Bi-CompProb for bipartite graphs

Input: G = (V1, V2, E), {pu,v}(u,v)∈E , S, η
Output: P = Pr(Inf (S) ≥ η)
1: for i from 1 to n, and j from 1 to i do
2: compute A(S, i, j) via dynamic programming
3: end for
4: return

∑m
j=η A(S,m, j)

One-way bipartite graphs have an important property
that the activation events of nodes in V2 are mutually in-
dependent. This allows us to bound c and c′ defined in
Section 5 using Hoeffding’s Inequality, and get the following
result.

Theorem 6. For one-way bipartite graphs, algorithm
MinSeed-PCG[0] using function Bi-CompProb returns seed
set Sa such that Pr(Inf (Sa) ≥ η) ≥ P , and when we con-
sider the probability threshold P as a constant independent
of n and m, we have

|Sa| ≤ (lnn+O(1)) · |S∗|+O(
n√
m

). (4)

We note that one-way bipartite graphs are a restricted
class of graphs, where the influence cascading is a 1-hop
cascading process and cannot be generated to a cascade with
greater depth. However, we believe their analytical results
can shed lights on more realistic networks when most of node
activations in the network are independent.

7. EXPERIMENTS
We conduct experiments on real social networks for the

following purposes: (1) test the concentration of influence
coverage distributions of seed sets; (2) validate the perfor-
mance of our algorithm against baseline algorithms.

7.1 Experiment setup
Datasets. We conduct experiments on three real social

networks. The first one is wiki-Vote [15], a network relation-
ship graph from Wikipedia community with totally 7,115
nodes and 103,689 edges. In wiki-Vote graph, each node
represents a user, and an edge (u, v) represents user u votes
for user v, which means that v has an influence on u. Thus,
in our experiment, we reverse all edges to express the influ-
ence between pairs of nodes. We use weighted cascade (WC)
model [14] to assign the influence probabilities on edges. For
each edge (u, v), we assign its probability to be 1/din(v),
where din(v) is the in-degree of node v.

The second network is NetHEPT, which is a standard
dataset used in [5, 4, 6, 13, 12]. NetHEPT is an academic
collaboration network from arXiv (http://www.arXiv.org),
with totally 15,233 nodes and 58,891 edges. In NetHEPT
graph, each node represents an author, and each edge repre-
sents coauthor relationship between two authors. NetHEPT
is an undirected graph, and in our experiment we add two
directed edges between two nodes if there exists at least
one edge between these two nodes in NetHEPT. Similar to
wiki-Vote, we use WC model to assign edge influence prob-
abilities. We assign the probability on directed edge (u, v)
to be d(u, v)/d(v), where d(u, v) is the number of papers
collaborated by u and v, and d(v) is the number of papers
published by v.

The last one is Flixster, an American movie rating social
site. Each node is a user, and edges describe the friendship
between users. In this network, we use a Topic-aware Inde-
pendent Cascade Model from [1] to learn the real influence
probabilities on edges for different topics. We simply use
two different topics, say topic 1 and topic 2, and get the edge
probabilities that one user influences his/her friend on the
specific topic. In both topics, we remove edges with prob-
ability 0 and isolated nodes. For topic 1, there are 28,317
nodes and 206,012 edges. The mean of edge probabilities
is 0.103, and the standard deviation is 0.160. For topic 2,
there are 25,474 nodes and 135,618 edges. The mean of edge
probabilities is 0.133, and the standard deviation is 0.205.

Experiment methods. In the experiment, for the sake
of convenience, we set U = V .

Our first task is to test the concentration of influence cov-
erage distributions of seed sets. To do so, we test the vari-
ances (or their square roots, i.e. standard deviations). Ac-
cording to Theorem 5, small standard deviations imply small
c and c′ and thus small additive errors of the MinSeed-PCG[ε]
algorithm output. By Inequality (3), to verify that c′ is
small, we just need to test the standard deviations of all
seed sets generated by the algorithm. For quantity c, we
need to test the standard deviation of the influence cov-
erage of the optimal seed set, according to Inequality (2).
However, finding the optimal seed set is NP-hard, therefore
we cannot fully verify the bound on c. To compensate, we
test randomly selected seed sets as follows. For each fixed
seed set size k, we independently select 10 seed sets of size
k at random, and compute the maximum standard devia-
tions of the influence coverage distributions of these selected
seed sets. Although randomly selected seed sets may be far
from the optimal seed set, what we hope is that by test-
ing standard deviations on both randomly selected sets and
greedily selected sets by algorithm MinSeed-PCG[ε], we have
a general understanding of standard deviations of influence
coverages of seed sets, which may provide us with hints for
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other seed sets, such as the optimal seed set. To estimate
the standard deviations of influence coverage of a seed set S,
we use 10,000 times Monte Carlo simulation and compute
the standard deviation.

Our second task is to test the performance of seed se-
lection algorithm MinSeed-PCG[ε]. We compare the perfor-
mance with three baseline algorithms: (a) Random, which
generates the seed set sequence in random order; (b) High-
degree, which generates the seed set sequence according to
the decreasing order of the out-degree of nodes; and (c)
PageRank, which is a popular method for website ranking [2].
We use pv,u/

∑
(w,u)∈E pw,u as the transition probability for

edge (u, v). Higher pv,u means that v is more influential
to u, indicating that u ranks v higher. We use 0.15 as the
restart probability and use the power method to compute
PageRank values. When two consecutive iterations are dif-
ferent for at most 10−4 in L1 norm, we stop. As for our
MinSeed-PCG[ε] algorithm, to speed up the algorithm, we
use the state-of-the-art PMIA algorithm of [4] to greedily
generate the seed set sequence. For all the above algorithms,
we use the same MC-CompProb[R] algorithm to compare
whether a seed set S in the sequence satisfies the condition
Pr(Inf (S) ≥ η) ≥ P + ε. Since the seed set sequence gen-
erations in all the above algorithms are fast comparing to
the Monte Carlo simulation based MC-CompProb[R] algo-
rithm, our implementation actually generates the sequence
first and then uses binary search to find the seed set in the
sequence satisfying Pr(Inf (S) ≥ η) ≥ P + ε.

We set parameters R = 10, 000 and ε = 0.01. One
may see that these settings do not satisfy the condition
R ≥ ln(2n2)/(2ε2) in Theorem 5 for our datasets: in our
datasets, n is around 104, and thus ln(2n2)/(2ε2) is around
9.6 × 104. However, we can justify our choice as follows.
First, the condition R ≥ ln(2n2)/(2ε2) is a conservative the-
oretical condition for obtaining high probability of 1 − 1/n
for our approximation guarantee. In practice, a smaller R of
10, 000 is good enough for illustrating our results. Second,
all algorithms use the same MC-CompProb[R] algorithm, so
the comparison is fair among them, and is focused on the
difference in their generations of seed set sequences, not on
the accuracy of the estimate of function CompProb. Third,
the seed selections actually depends only on the combined
parameter P ′ = P +ε, and not on P and ε separately. Thus
setting ε = 0.01 is only for intuitive understanding and set-
ting it to some other value would not change the results as
long as P ′ remains the same.

7.2 Experiment results
Concentration of influence coverages. Figure 2

shows the standard deviations of influence coverages of ran-
domly selected seed sets and greedily selected seed sets
(by algorithm MinSeed-PCG[ε]) on wiki-Vote, NetHEPT and
Flixster. We can see that in all graphs, standard devia-
tions for greedily selected seed sets quickly drop, while for
randomly selected seed sets sometimes it has a small in-
crease when the seed set size is small, and then quickly
drop too. The maximum value is about 130 for wiki-Vote
(|V | = 7, 115), 105 for NetHEPT (|V | = 15, 233), 760 for
Flixster with topic 1 (|V | = 28, 317), and 270 for Flixster
with topic 2 (|V | = 25, 474). Thus by observation the stan-

dard deviation is at the order of
√
|V |. As discussed after

Theorem 5, this means that the additive error of our algo-
rithm would be O(

√
|V |), a small and satisfactory value.

(a) wiki-Vote graph (b) NetHEPT graph

(c) Flixster graph
with topic 1

(d) Flixster graph
with topic 2

Figure 2: Standard deviations of influence coverages
of seed sets.

(a) wiki-Vote graph (b) NetHEPT graph

(c) Flixster graph
with topic 1

(d) Flixster graph
with topic 2

Figure 3: Size of selected seed sets vs. coverage
threshold η under a fixed probability threshold P =
0.1.

The standard deviations for wiki-Vote are larger than those
for NetHEPT at small seed set size even though the num-
ber of nodes of wiki-Vote is smaller. We believe this is be-
cause wiki-Vote has more edges (103,689) than NetHEPT
(58,891), and thus when the seed set size is small more edges
could cause larger variances in influence coverage. This can
also explain why in Flixster topic 1 (with 206,012 edges)
has larger standard deviations than topic 2 (with 135,618
edges).

Performance of MinSeed-PCG[ε] compared with
baselines. We conduct two sets of tests for this purpose.
First, we fix the probability threshold P to 0.1 and 0.5, and
vary the coverage threshold η to compare the size of seed sets
selected by various algorithms. Figure 3 and Figure 4 show
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(a) wiki-Vote graph (b) NetHEPT graph

(c) Flixster graph
with topic 1

(d) Flixster graph
with topic 2

Figure 4: Size of selected seed sets vs. coverage
threshold η under a fixed probability threshold P =
0.5.

the test results on three datasets. All test results consis-
tently show that our algorithm performances the best, and
sometimes with a significant improvement over the Random,
High-degree and PageRank heuristics. In particular, for wiki-
Vote and P = 0.1 (Figure 3(a)), on average our algorithm
MinSeed-PCG[ε] selects seed sets with size 88.2% less than
those selected by Random, 20.2% less than High-degree, and
30.9% less than PageRank. For NetHEPT and P = 0.1 (Fig-
ure 3(b)), on average our algorithm selects seed sets with
size 56.7% less than Random, 46.0% less than High-degree,
and 24.4% less than PageRank. The High-degree heuristic
performs close to MinSeed-PCG[ε] in wiki-Vote, but performs
badly in NetHEPT, even worse than Random when η is large.
This shows that High-degree is not a good and stable heuris-
tic for this task. For Flixster with topic 1 and P = 0.1 (Fig-
ure 5(c)), on average MinSeed-PCG[ε] selects seed sets with
size 94.4% less than Random, 54.0% less than High-degree,
and 29.2% less than PageRank. For Fixster with topic 2 and
P = 0.1 (Figure 5(d)), on average MinSeed-PCG[ε] selects
seed sets with size 91.1% less than Random, 73.0% less than
High-degree, and 24.4% less than PageRank. Figures 4 show
the results for P = 0.5. The curves are almost the same as
the corresponding ones for P = 0.1. This can be explained
by the sharp phase transition to be observed in the next set
of tests, which is due to concentration of influence cover-
age, such that typically only a few tens of more seeds would
satisfy probability threshold P from 0.1 to 0.5.

Our second set of tests is to fix a coverage threshold η, and
observe the change of coverage probability Pr(Inf (S) ≥ η)
as the seed set S grows as computed by various algorithms.
Figure 5 shows the test results. Wiki-Vote, NetHEPT and
Flixster with topic 2 (Figure 5(a), (b), (d)) have sharp phase
transition: there is a short range of seed set size where the
probability increases very fast from 0.01 to very close to 1
(only several nodes are needed to reach a 0.1 increment in
probability). While Filxster with topic 1 (Figure 5(c)) has
a relatively smooth phase transition. This phase transition

(a) wiki-Vote graph, η = 3000, 4500

(b) NetHEPT graph, η = 6000, 10500

(c) Flixster graph with topic 1, η = 2000, 4000

(d) Flixster graph with topic 2, η = 2000, 4000

Figure 5: Size of selected seed sets vs. probability
threshold P under a fixed coverage threshold η.

phenomenon is clearly due to the concentration of influence
coverages of seed sets, as already verified in Figure 2.

In all our tests, MinSeed-PCG[ε] performances the best:
its phase transition comes first before the other algorithms,
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which means it uses less number of seeds to achieve the
same probability threshold P . Random performs much worse
than MinSeed-PCG[ε], while PageRank and High-degree per-
form close to MinSeed-PCG[ε] when η is small, but notice-
ably worse than MinSeed-PCG[ε] when η gets larger. For
wiki-Vote, on average MinSeed-PCG[ε] selects a seed set
with size 34.1% less than PageRank, 27.7% less than High-
degree, and 86.4% less than Random when η = 3, 000. When
η = 4, 500, MinSeed-PCG[ε] selects a seed set with size on
average 38.8% less than PageRank, 30.8% less than High-
degree, and 76.3% less than Random. For NetHEPT, when
η = 6, 000, on average MinSeed-PCG[ε] selects a seed set with
size 22.8% less than PageRank, 51.8% less than High-degree,
and 59.2% less than Random. When η = 10, 500, on aver-
age MinSeed-PCG[ε] selects a seed set with size 36.1% less
than PageRank, 52.9% less than High-degree, and 49.6% less
than Random. For Flixster with topic 1, when η = 2, 000,
on average the output number of seeds by MinSeed-PCG[ε] is
44.1% less than PageRank, 78.9% less than High-degree, and
98.3% less than Random. When η = 4, 000, the correspond-
ing results are 53.2%, 70.7% and 93.9%. For topic 2, when
η = 2, 000, the output number of seeds by MinSeed-PCG[ε]
is 59.0% less than PageRank, 78.6% less than High-degree,
and 95.8% less than Random. When η = 4, 000, the corre-
sponding results are 54.9%, 76.2% and 89.0%.

For all these graphs, we do not test the case when η is
very close to the number of nodes. Since in this case a large
seed set close to the full node set is needed, and greedy-
based seed selection loses its advantage comparing to simple
random or high-degree heuristics when a large number of
seeds are needed. Moreover, we believe that requiring η to
be close to the full network size is not a realistic scenario in
practice.

As a summary, our experimental results validate that in-
fluence coverages of seed sets are concentrated well in real-
world networks, and thus support the claim that our algo-
rithm provides good approximation guarantee. Moreover,
our algorithm performs much better than simple baseline
algorithms, achieving significant savings on seed set size.

8. FUTURE WORK
This study may inspire a number of future directions. One

is to study the concentration property of other classes of
graphs, especially graphs close to real-world networks such
as power-law graphs, to see if we can analytically prove that
a large class of graphs have good concentration property
on influence coverage distributions. Another direction is to
speed up the estimation of Pr(Inf (S) ≥ η), which is done by
Monte Carlo simulation in this work and is slow. One may
also study influence maximization problem where reaching
the tipping point is the first step, which is followed by further
diffusion steps. Our algorithm and results may be an integral
component of such influence maximization tasks.

9. REFERENCES
[1] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware

social influence propagation models. In Data Mining
(ICDM), 2012 IEEE 12th International Conference
on, pages 81–90. IEEE, 2012.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks
and ISDN systems, 30(1):107–117, 1998.

[3] N. Chen. On the approximability of influence in social
networks. SIAM Journal on Discrete Mathematics,
23(3):1400–1415, 2009.

[4] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in
large-scale social networks. In KDD’10, pages
1029–1038. ACM, 2010.

[5] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD’09, pages
199–208, 2009.

[6] W. Chen, Y. Yuan, and L. Zhang. Scalable Influence
Maximization in Social Networks under the Linear
Threshold Model. In ICDM’10, pages 88–97, 2010.

[7] P. Domingos and M. Richardson. Mining the network
value of customers. In KDD’01, pages 57–66. ACM,
2001.

[8] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha.
Scalable influence estimation in continuous-time
diffusion networks. In Advances in Neural Information
Processing Systems, pages 3147–3155, 2013.

[9] U. Feige. A threshold of lnn for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[10] M. Gladwell. The Tipping Point:How Little Things
Can Make a Big Difference. Back Bay Books, 2002.

[11] S. Goldberg and Z. Liu. The Diffusion of Networking
Technologies. In SODA’13, pages 1577–1594, 2013.

[12] A. Goyal, F. Bonchi, L. V. Lakshmanan, and
S. Venkatasubramanian. On minimizing budget and
time in influence propagation over social networks.
Social Network Analysis and Mining, pages 1–14, 2012.

[13] A. Goyal, W. Lu, and L. V. S. Lakshmanan.
SIMPATH: An Efficient Algorithm for Influence
Maximization under the Linear Threshold Model. In
ICDM’11, pages 211–220, 2011.

[14] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
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