
Fast Influence-based Coarsening for Large Networks

Manish Purohit

†

manishp@cs.umd.edu

B. Aditya Prakash

⇤

badityap@cs.vt.edu

Chanhyun Kang

†

chanhyun@cs.umd.edu

Yao Zhang

⇤

yaozhang@cs.vt.edu

V. S. Subrahmanian

†

vs@cs.umd.edu

⇤
Computer Science Department, Virginia Tech., USA

†
Department of Computer Science, University of Maryland - College Park, USA

ABSTRACT
Given a social network, can we quickly ‘zoom-out’ of the
graph? Is there a smaller equivalent representation of the
graph that preserves its propagation characteristics? Can
we group nodes together based on their influence properties?
These are important problems with applications to influence
analysis, epidemiology and viral marketing applications.

In this paper, we first formulate a novel Graph Coarsening
Problem to find a succinct representation of any graph while
preserving key characteristics for di↵usion processes on that
graph. We then provide a fast and e↵ective near-linear-time
(in nodes and edges) algorithm coarseNet for the same.
Using extensive experiments on multiple real datasets, we
demonstrate the quality and scalability of coarseNet, en-
abling us to reduce the graph by 90% in some cases without
much loss of information. Finally we also show how our
method can help in diverse applications like influence maxi-
mization and detecting patterns of propagation at the level
of automatically created groups on real cascade data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Graph Mining; Propagation; Di↵usion; Coarsening

1. INTRODUCTION
The unprecedented popularity of online social networking

websites, such as Facebook, Google+, Flickr, and YouTube,
has made it possible to analyze real social networks. Word of
mouth marketing and viral marketing strategies have evolved
to take advantage of this network structure by utilizing net-
work e↵ects. Similarly, understanding large-scale epidemio-
logical datasets is important for designing e↵ective propaga-
tion models and containment policies for public health. The

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’14, August 24–27, 2014, New York, NY, USA.

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623701.

sheer size of today’s large social networks makes it challeng-
ing to perform sophisticated network analysis.

Given a propagation graph, possibly learnt from cascade
analysis, is it possible to get a smaller nearly di↵usion-
equivalent representation for it? Getting a smaller equiv-
alent graph will help multiple algorithmic and data min-
ing tasks like influence maximization, immunization, under-
standing cascade data and data compression. In this paper,
we study a novel graph coarsening problem with the aim
of approximating a large social network by a much smaller
graph that approximately preserves the network structure.
Our primary goal is to find a compact representation of a
large graph such that di↵usion and propagation processes on
the large graph can be studied by analyzing the smaller rep-
resentation. Intuitively, most of the edges in a real network
are relatively unimportant; hence we propose characterizing
and “contracting” precisely such edges in a graph to obtain
a coarse representation.

The main contributions of this paper are:

(a) Problem Formulation: We carefully formulate a novel
Graph Coarsening Problem (GCP) to find a succinct
representation of a given social network so that the
di↵usion characteristics of the network are mostly pre-
served.

(b) E�cient Algorithms: We develop coarseNet, an ef-
ficient (near-linear time) and e↵ective algorithm for
GCP, using careful approximations. We show that due
to our novel scoring technique, the coarsened graph
retains most of the di↵usive properties of the original
network.

(c) Extensive Experiments: We show that coarseNet is
able to coarsen graphs up to 90% without much loss
of key information. We also demonstrate the useful-
ness of our approach via a number of interesting ap-
plications. A major application we consider in this
work is that of influence maximization in the Indepen-
dent Cascade model. We propose a framework cspin
that involves coarsening the graph and then solving
influence maximization on the smaller graph to obtain
high quality solutions. As the coarsened graph is much
smaller than the original graph, the influence maxi-
mization algorithm runs orders of magnitude faster on
the coarsened graph. Further using real cascade data
from Flixster, we show how GCP can potentially help
in understanding propagation data and constructing
non-network surrogates for finding nodes with similar
influence.

1296

The rest of the paper is organized as follows: Section 2
gives related work and Section 3 briefly gives the notation
and explains some technical preliminaries. Section 4 pro-
vides a formal definition of the Graph Coarsening Problem
that we introduce, while Section 5 presents our approach and
solution. In Section 6, we show how our coarsening frame-
work can be applied to solve influence maximization on large
networks. Finally, Section 7 gives experimental results while
we conclude in Section 8.

2. RELATED WORK
The idea of coarsening a network for some task is not

new, and has been used extensively in the popular commu-
nity detection techniques (METIS [21] and GRACLUS [9]):
nevertheless, they use di↵erent metrics for coarsening like
cut-based, flow-based or heavy-edge matching-based condi-
tions. In contrast we study di↵usion-based metrics, and do
not aim to find communities.

The related problem of graph sparsification has also been
well studied in the theory community under the notion of
“spanners” [10]. A spanner is a sparse subgraph that main-
tains the pairwise distances between all nodes within a mul-
tiplicative or additive factor. Fung et al. [12] study the
cut-sparsifier problem which asks for a sparse weighted sub-
graph such that the weight of all cuts is maintained within
a small multiplicative factor. Graph sparsification for influ-
ence analysis has emerged as a new tool for analyzing large
networks. Mathioudakis et al. [28] propose an algorithm to
find the sparse backbone of an influence network. The ma-
jor di↵erence is that graph sparsification removes edges (so
the nodes stay the same), while we coarsen and contract

node-pairs to reduce the graph. Another line of very recent
work [30] tries to learn influence models at community-scale,
using groups supplied by graph-partitioning algorithms like
METIS. Our work is related in the sense that we also aim
to ‘group’ nodes, but not based on link-based communities,
instead automatically based on nodes’ di↵usion characteris-
tics. In that sense we believe our work provides a comple-
mentary viewpoint: learn models directly at the node level,
and then try to group them appropriately automatically.

The rest of the related work can be categorized into Epi-
demic Thresholds, Influence Maximization, Other Optimiza-
tion problems, and General Information Di↵usion.
Epidemic Thresholds. The classical texts on epidemic
models and analysis are May and Anderson [1] and Heth-
cote [20]. Much research in virus propagation focuses on the
so-called epidemic threshold, i.e. determining the conditions
under which an epidemic will not break out. Widely-studied
epidemiological models include homogeneous models [2, 29,
1] which assume that every individual has equal contact with
others in the population. While earlier works [23, 31] fo-
cus on some specific types of graph structure (e.g., random
graphs, power-law graphs, etc), Chakrabarti et al. [6] and
Ganesh et al. [13] found that, for the flu-like SIS model,
the epidemic threshold for any arbitrary graph depends on
the leading eigenvalue of the adjacency matrix of the graph.
Prakash et al. [32] further extended the result to a broad
class of epidemic models.
Influence Maximization: The influence maximization prob-
lem was introduced by Domingos and Richardson [34]. Kempe
et al. [22] formulated it as a combinatorial optimization
problem under the Independent Cascade Model, proved it
is NP-Hard and gave a simple 1� 1/e approximation based

on the submodularity of expected spread of a set of starting
seeds. Numerous follow-up papers have looked at speeding-
up the algorithm (e.g., [27, 16, 8, 24, 7]).
Other Optimization Problems. Another related prob-
lem is immunization, i.e, the problem of finding the best
vertices for removal to stop an epidemic, with e↵ective im-
munization strategies for static and dynamic graphs [19, 38,
4]. Other such problems where we wish to select a subset
of ‘important’ vertices on graphs, include ‘outbreak detec-
tion’ [27] and finding most-likely starting points (‘culprits’)
of epidemics [26, 33].
General Information Di↵usion. There is a lot of re-
search interest in studying dynamic processes on large graphs,
(a) blogs and propagations [18, 25, 22], (b) information cas-
cades [3, 14, 17] and (c) marketing and product penetra-
tion [35]. These dynamic processes are all closely related
to virus propagation. General algorithms for information
di↵usion based optimization include [36].

3. PRELIMINARIES
Table 1 gives some of the notation.

Table 1: Symbols

Symbol Definition and Description

A,B, . . . matrices (bold upper case)

~a,~b, . . . column vectors
a
j

or a(j) jth element of vector a
n number of vertices in the graphs
m number of edges in the graphs
↵ the reduction factor
�G first eigenvalue (in absolute value) of ad-

jacency matrix of graph G
~uG,~vG Right and left first eigenvectors (for �G)

of adjacency matrix G
IC Model The Independent Cascade Model
GCP Graph Coarsening Problem (see Defini-

tion 4.3)
coarseNet Our algorithm for GCP

IC Model. A social network is a directed, weighted graph
G = (V,E,w). Usually each vertex v 2 V represents an indi-
vidual of the network and edges represent influence relation-
ships between these individuals. The Independent Cascade
(IC) model is a popular di↵usion model used to model the
way influence propagates along the edges of a social network.
In this setting, a vertex v 2 V is called active if it has been
influenced and inactive otherwise. Once an inactive vertex
becomes active, it always stays active, i.e. we focus only
on progressive models. Given a seed set S ⇢ V of initially
active vertices, the Independent Cascade model proceeds in
discrete time steps as follows. At time step t, let S

t

denote
the set of vertices activated at time t. Every vertex u 2 S

t

is given a single chance to activate each currently inactive
neighbor v with probability of success w(u, v) independently
of all other interactions. If u succeeds, then v becomes ac-
tive at time t+ 1. This di↵usion process continues until no
more activations are possible. The influence spread of seed
set S, denoted by �(S), is the expected number of activated
vertices at the end of the process.

1297

4. PROBLEM FORMULATION
Motivated by the fact that in any real network, most edges

and vertices are not important (due to the heavily skewed
degree distributions), we propose a graph coarsening prob-
lem which involves pruning away precisely such edges (and
vertices). We aim to coarsen the graph to obtain a much
smaller representation which retains the di↵usive proper-
ties. We coarsen a graph by successively merging adjacent
node pairs. We attempt to quickly find “good” edges which
have little e↵ect on the network’s di↵usive properties. At
first glance, this seems impossible as the di↵usive proper-
ties of a graph are highly dependent on the connectivity of
the vertices and edge weights. Further, determining which
node pairs to merge and analyzing the e↵ect of merging two
nodes on di↵usion are non-trivial. Informally, we study the
following problem in this paper:

Definition 4.1 (Informal Problem).
Input: Weighted graph G = (V,E,w) and a target fraction

0 < ↵ < 1
Goal: Coarsen G by repeatedly merging adjacent node pairs

to obtain a weighted graph H = (V 0, E0, w0) such that

• |V 0| = (1� ↵)|V |
• Graph H approximates graph G with respect to its dif-

fusive properties

Role of Eigenvalues. In order to address the informal
problem described above, we need a tractable way to charac-
terize the di↵usive properties of a network. Recent work [32]
shows that for almost any propagation model (including the
IC model), important di↵usion characteristics (in particular
the so-called epidemic threshold) of a graph (after removing
self loops) are captured by the spectrum of the graph, specif-
ically, by the first eigenvalue of the adjacency matrix. Thus
it is natural to believe that if the first eigenvalue of the coars-
ened graph H (its adjacency matrix) is close to that of the
original graph G, then H indeed approximates G well. Al-
though the work of [32] deals with undirected graphs, their
findings are also applicable to strongly connected directed
graphs.
Merging node pairs. To explicitly formulate the problem
in Definition 4.1, we also need to define what happens when a
node pair is merged (i.e. an edge is contracted) in a weighted
graph. More precisely, after merging neighboring vertices a
and b to form a new node c, we need to determine the new

edge weights of all incoming and outgoing edges of c. In
order to maintain the di↵usive properties of the network,
we need to reweight the new edges appropriately.

x e

d b

a

c

d

ex

0.5 0.5 0.5 0.5

0.50.5 0.5?

Figure 1: Why reweight?

To see why this is crucial, consider Figure 1. Assume that
the IC model is being run. Suppose we need to pick the
two best seeds (i.e. two nodes with the maximum influence
spread as defined in the previous Section) from the top 5-
vertex chain. Further assume that the graph is undirected
and each edge has the same weight � = 0.5. Clearly, vertices

b and e are the best. If we merge vertices {a, b}, we get the
bottom 4-vertex chain. To still match the original solution,
we correspondingly want {c, e} to be the best seed-set in the
new chain—but if edge {d, c} remains the same weight, any
of the pair of vertices {e, c} or {x, d} are the best seed sets
in the 4-vertex chain. This motivates the need to reweight
suitably so that new coarsened graph still retains the original
characteristics.

The main insight is that if we select c as a seed, we are
in-e↵ect intending to choose only one of vertices a and b to
be seeded (influenced); which suggests that the likelihood of
d being influenced from c is either 0.5 or 0.25 (corresponding
to when a or b is chosen respectively). Hence the weight of
edge (c, d) should be modified to reflect this fact.

We propose the following solution: Suppose e = (a, b) is
contracted and a and b are merged together to form “super-
vertex” c (say). We reweight the edges adjacent to a and b
while coarsening so that the edges now represent the aver-
age of the transmission probabilities via a or b. So in our
example of Figure 1, edge {c, d} would have weight 0.375
(average of 0.5 and 0.25). Further, we can verify that in this
case {e, c} will be the best seed-set, as desired.

z

a

b

x

y

z

cx

y

ai
z

ao
z

bi
z

bo
z

�1

�2

ao
x

ai
x

bo
y

bi
y

a

i

z

(1+�1)+b

i

z

(1+�2)
4

a

o

z

(1+�2)+b

o

z

(1+�1)
4

1+�1
2 ai

x

1+�2
2 ao

x

1+�2
2 bi

y

1+�1
2 bo

y

Figure 2: Reweighting of edges after merging node pairs

Extending the same principle, Figure 2 shows the general
situation for any candidate node pair (a, b) and how a merge
and re-weight (= contract) operation will look like. More
formally, our contract operation is as follows:

Definition 4.2 (Merging node pairs). Let Nbi(v) (re-
spectively Nbo(v)) denote the set of in-neighbors (resp. out-

neighbors) of a vertex v. Let vi
u

= w(u, v) and vo
u

= w(v, u)
denote the weight of the corresponding edges. If the node

pair(a, b) is now contracted to a new vertex c, and w(a, b) =
�1 and w(b, a) = �2, then the new edges are weighted as -

ci
t

=

8
>>>>>>><

>>>>>>>:

(1 + �1)a
i

t

2
8t 2 Nbi(a)\Nbi(b)

(1 + �2)b
i

t

2
8t 2 Nbi(b)\Nbi(a)

(1 + �1)(a
i

t

) + (1 + �2)(b
i

t

)
4

8t 2 Nbi(a) \Nbi(b)

1298

co
t

=

8
>>>>>><

>>>>>>:

(1 + �2)a
o

t

2
8t 2 Nbo(a)\Nbo(b)

(1 + �1)b
o

t

2
8t 2 Nbo(b)\Nbo(a)

(1 + �2)(a
o

t

) + (1 + �1)(b
o

t

)
4

8t 2 Nbo(a) \Nbo(b)

Graph Coarsening Problem. We are now ready to state
our problem formally. Motivated by the connections be-
tween the di↵usive and spectral properties of a graph, we
define the following Graph Coarsening Problem to find the
set of node pairs which when merged (according to Defi-
nition 4.2) lead to the least change in the first eigenvalue.
Further, since a vertex cannot influence itself, we assume
without loss of generality that the graph G has no self loops.

Definition 4.3 (Graph Coarsening Problem).
Input: Directed, strongly connected, weighted graph G =
(V,E,w) without self loops and a target fraction 0 < ↵ < 1
Output: E⇤ = argmin

E

0⇢E,|E0|=↵|V | |�G

� �
G

0 |, where G0

is obtained from G by merging all node pairs in E0
.

A related problem is Edge Immunization [37] that asks for
a set of edges whose removal leads to the greatest drop in the
first eigenvalue. In contrast, GCP seeks to find a set of edges
whose contraction (Definition 4.2) leads to the least change

in the first eigenvalue. The Edge Immunization problem is
known to be NP-hard [37].

5. OUR SOLUTION
As obvious algorithms to GCP are clearly exponential, we

propose a greedy heuristic that repeatedly merges a node
pair which minimizes the change in the first eigenvalue. Let
G�(a,b) denote the graph G after merging nodes a and b (and
incorporating the re-weighting strategy), and �

G

denote the
first eigenvalue of the adjacency matrix of G. We define the
score of a node pair(a, b) as follows -

Definition 5.1 (Score). Given a weighted graph G =
(V,E,w) and an adjacent node pair(a, b), score(a, b) is de-

fined by:

score(a, b) = |�
G�(a,b)

� �
G

| = ��(a,b)

Intuitively, if score(a, b) ⇡ 0, it implies that edges (a, b)
and (b, a) do not play a significant role in the di↵usion
through the graph and can thus be contracted. Figure 3
shows an example of our approach.
Näıve Algorithm: The above intuition suggests the fol-
lowing näıve algorithm for selecting node pairs for merging.
At each stage, calculate the change in the eigenvalue due
to merging each adjacent node pair, choose the node pair
leading to the least change, merge the chosen nodes, and
repeat until the graph is small enough. An implementation
for this, even using the Lanczos algorithm for eigenvalue
computation for sparse graphs, will be too expensive, tak-
ing O(m2) time. Can we compute (maybe approximately)
the scores of each node pair faster?
Main Idea: We use a matrix perturbation argument to de-
rive an expression for the change in eigenvalue due to merg-
ing two adjacent nodes. Using further information about
the specific perturbations occurring due to merging two ad-
jacent nodes, we show that the change in the eigenvalue can

be approximated well in constant time. Thus, we obtain a
linear (O(m)) time scheme to estimate the score of every
pair of adjacent nodes.

5.1 Score Estimation
Let a and b denote the two neighboring vertices that we

are trying to score. We assume that the first eigenvalue of
the graph �

G

and the corresponding right and left eigen-
vectors ~u,~v are precomputed. Further since the graph G is
strongly connected, by the Perron-Frobenius theorem, the
first eigenvalue �

G

and the eigenvectors ~u and ~v are all real
and have positive components. When it is clear from the
context, we drop subscripts G and (a, b). In the proofs that
follow � = �

G

and �� = ��(a,b) as there is no ambiguity.
Let A denote the adjacency matrix of the graph. Further
as ~u denotes the eigenvector of A, let u

a

= u(a) denote the
component of ~u corresponding to vertex a. Merging nodes
changes the dimensions of the adjacency matrix A which we
handle by viewing merging nodes a, b as adding b0s neighbors
to a and isolating node b.

Approximation 5.1 provides an equation for the change in
the eigenvalue by a matrix perturbation argument. Proposi-
tion 5.2 and Proposition 5.3 show how our reweighting strat-
egy helps us to approximate the score(a, b) in constant time.

Approximation 5.1. The change in eigenvalue �� can

be approximated by �� =
~vT�A~u+ ~vT�A�~u

(~vT ~u+ ~vT�~u)
where �A

denotes an infinitesimally small change in the adjacency

matrix A and �~u denotes the corresponding change in the

eigenvector ~u.

Justification. By the definition of an eigenvalue and eigen-
vector of a matrix, we have

A~u = �~u (1)

~vTA = ~vT� (2)

Perturbing all values of (1) infinitesimally, we get

(A+�A)(~u+�~u) ⇡ (�+��)(~u+�~u)

A�~u+�A~u+�A�~u ⇡ ��~u+��~u+���~u

Premultiplying by ~vT and using (1) and (2),

��(~vT ~u+ ~vT�~u) ⇡ ~vT�A~u+ ~vT�A�~u

�� ⇡ ~vT�A~u+ ~vT�A�~u
(~vT ~u+ ~vT�~u)

(3)

Using expression (3) along with prior knowledge about the
perturbations to the adjacency matrixA and the eigenvector
~u, we obtain an expression for computing the score of the
node pair.

Proposition 5.2 (Score Estimate). Under Approx-

imation 5.1, the score of a node pair score(a, b) can be ap-

proximated as

��(a,b) =
�� (u

a

v
a

+ u
b

v
b

) + v
a

~uT ~co + �2ua

v
b

+ �1ub

v
a

~vT ~u� (u
a

v
a

+ u
b

v
b

)
(ignoring second order terms).

Proof. Approximation 5.1 provided an expression for
�� in terms of the change in the adjacency matrix and the
eigenvector. Now �A, i.e., change in the adjacency matrix

1299

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

(a) Original Network

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

0.0247

0.2548
0.2635

0.2042

0.0722

0.0612

0.1044 0.0570 0.0542

0.0518

0.0485

0.2186

0.1773

0.0794

0.0869

0.1738

0.0966

0.1098

0.1046 0.1061

Good to contract

Bad to contract

(b) Assigning scores to each edge

1

2

3

7

10

6,11

4,5,8,9,12,15

13

14

(c) Coarsened Network

Figure 3: Our approach on an example network. All edges have weight 0.5 in the original graph. We do not show the new
edge weights in the coarsened graph for clarity.

can be considered as occurring in three stages namely (i)
Deletion of a, (ii) Deletion of b, (iii) Insertion of c. Assume
that c is inserted in place of a. Thus we obtain,

�A =�
⇣
~ai ~e

a

T + ~e
a

~ao

T

⌘
�

⇣
~bi ~e

b

T + ~e
b

~bo
T

⌘

+
⇣
~ci ~e

a

T + ~e
a

~co
T

⌘
(4)

where ~e
v

denotes a vector with a 1 in the vth row and 0
elsewhere. Further, as we modify only two rows and columns
of the matrix, this change �A is very small.

Also, deletion of vertices a and b cause ath and bth compo-
nents of ~u and ~v to be zero. �~u, i.e, change in the eigenvector
~u can thus be considered as setting u

a

and u
b

to zero, fol-
lowed by small changes to other components and to u

a

due
to addition of c. Thus we obtain,

�~u = �u
a

~e
a

� u
b

~e
b

+ ~� (5)

Although �~u cannot be considered as small, we assume
that the changes ~� after setting u

a

and u
b

components to
zero are very small.

Substituting for �A, we get

~vT�A~u = ~vT (�(~ai ~e
a

T + ~e
a

~ao

T

)� (~bi ~e
b

T + ~e
b

~bo
T

+ (~ci ~e
a

T + ~e
a

~co
T

))~u

Since ~vT ~e
a

= v
a

and similarly,

~vT�A~u = �u
a

~vT ~ai � v
a

~ao

T

~u� u
b

~vT ~bi � v
b

~bo
T

~u

+ u
a

~vT ~ci + v
a

~co
T

~u

But ~vT ~ai = �v
a

and ~ao

T

~u = �u
a

and similarly,

~vT�A~u = �2� (u
a

v
a

+ u
b

v
b

) + u
a

~vT ~ci + v
a

~co
T

~u (6)

Now using (4) and (5) consider,

~vT�A�~u = ~vT�A(�u
a

~e
a

� u
b

~e
b

+ ~�)

Since �A and ~� are both very small, we ignore the second
order term ~vT�A~�.

) ~vT�A�~u = ~vT�A(�u
a

~e
a

� u
b

~e
b

)

= ~vT (�(~ai ~e
a

T + ~e
a

~ao

T

)� (~bi ~e
b

T + ~e
b

~bo
T

+ (~ci ~e
a

T + ~e
a

~co
T

))(�u
a

~e
a

� u
b

~e
b

)

Since self loops do not a↵ect di↵usion in any way, we can
assume without loss of generality that G has no self loops.

Further, simplifying using definitions of eigenvalue we get,

~vT�A�~u = �(u
a

v
a

+ u
b

v
b

) + �2ua

v
b

+ �1ub

v
a

� u
a

~vT ~ci (7)

Ignoring small terms, we also have,

~vT�~u = ~vT (�u
a

~e
a

� u
b

~e
b

+ ~�) = �(u
a

v
a

+ u
b

v
b

) (8)

Substituting (6),(7) and (8) in Approximation 5.1, we get

�� =
�� (u

a

v
a

+ u
b

v
b

) + v
a

~uT ~co + �2ua

v
b

+ �1ub

v
a

~vT ~u� (u
a

v
a

+ u
b

v
b

)

Note that every term in this expression is a simple product
of scalars, except for the ~uT ~co term. We now show that even
~uT ~co can in fact be expressed in terms of scalars and can thus
be computed in constant time.

Proposition 5.3. Using the re-weighting scheme as de-

fined in Definition 4.2, if c denotes the new vertex created by

merging nodes {a, b} and

~co denotes the out-adjacency vector

of c, ~uT ~co =
(1 + �2)

2
(�u

a

� �1ub

) +
(1 + �1)

2
(�u

b

� �2ua

)

where �1 is the weight of edge (a, b) and �2 is the weight of

the edge (b, a).

Proof. LetX = Nbo(a)\Nbo(b), Y = Nbo(b)\Nbo(a), Z =
Nbo(a)\Nbo(b). Since, c is adjacent only to neighbors of a
and b, we have

~uT ~co =
X

t2X

u
t

co
t

+
X

t2Y

u
t

co
t

+
X

t2Z

u
t

co
t

+ u
c

W

where W is the weight of a self loop added at c. Note that a
self loop does not a↵ect di↵usion in any way (as a node can
not influence itself). We use a self loop only in the analysis
so as to compute the scores e�ciently.

As per our reweighting scheme (See Definition 4.2)

~uT ~co =
X

t2X

(1 + �2)
2

u
t

ao

t

+
X

t2Y

(1 + �1)
2

u
t

bo
t

+
X

t2Z

(
(1 + �2)

4
ao

t

+
(1 + �1)

4
bo
t

)u
t

+ u
c

W (9)

1300

But, by definition of eigenvalues, we know that

�u
a

=
X

t2V

u
t

ao

t

=
X

t2X

u
t

ao

t

+
X

t2Z

u
t

ao

t

+ u
b

�1

X

t2X

u
t

ao

t

= �u
a

�
X

t2Z

u
t

ao

t

� �1ub

= �u
a

� ao(Z)� �1ub

(10)

where ao(Z) =
P

t2Z

u
t

ao

t

Similarly, we get
X

t2Y

u
t

bo
t

= �u
b

� bo(Z)� �2ua

(11)

Substituting Equations (10), (11), in (9),

~uT ~co =
(1 + �2)

2
(�u

a

� ao(Z)� �1ub

)

+
(1 + �1)

2
(�u

b

� bo(Z)� �2ua

)

+
(1 + �2)

4
ao(Z) +

(1 + �1)
4

bo(Z) + u
c

W

We now choose W = (� (1 + �2)
4

ao(Z)� (1 + �1)
4

bo(Z))/u
c

,

so that we get

~uT ~co =
(1 + �2)

2
(�u

a

� �1ub

) +
(1 + �1)

2
(�u

b

� �2ua

)

Corollary 5.1. Given the first eigenvalue � and corre-

sponding eigenvectors ~u,~v, the score of a node pair score(a, b)
can be approximated in constant time.

Proof. Substituting for ~ut ~co in Proposition 5.2 using
Proposition 5.3, we obtain an expression for score(a, b) that
is composed entirely of scalar terms. Thus we can estimate
the edge score in constant time.

5.2 Complete Algorithm
Using the approximation described in the previous section,

we assign a score to every pair of adjacent nodes of the
graph. We then sort these node pairs in ascending order of
the absolute value of their scores. Intuitively, we would like
to merge a node pair if it has minimal score. Given an upper
bound of ↵, the graph is then coarsened by contracting ↵n
node pairs one by one in this order ignoring any pairs that
have already been merged. We give the pseudo-code of our
algorithm coarseNet in Algorithm 1.

Lemma 5.1 (Running Time). The worst case time com-

plexity of our algorithm is O(m ln(m)+↵nn
✓

) where n
✓

de-

notes the maximum degree of any vertex at any time in the

coarsening process.

Proof. Computing the first eigenvalue and eigenvector
of the adjacency matrix of the graph takes O(m) time (for
example, using Lanczos iteration assuming that the spec-
tral gap is large). As shown in Section 5.1, each node
pair can be assigned a score in constant time. In order to
score all m adjacent pairs of nodes of the graph, we re-
quire linear i.e. (O(m)) time. The scored node pairs are
sorted in O(m ln(m)) time. Merging two nodes (a, b) re-
quires O(deg(a) + deg(b)) = O(n

✓

) time. Since we each

Algorithm 1 Coarsening Algorithm - coarseNet (G,↵)

Input: A directed, weighted graph G=(V ,E,w),
a reduction factor ↵

Output: Coarsened graph G↵

coarse

=(V 0,E0,w0)
1: i = 0
2: n = |V |
3: G0 = G
4: for each adjacent pair of nodes a, b 2 V do
5: Compute score(a, b) using Section 5.1
6: ⇡ ordering of node pairs in increasing order of score
7: while i ↵n do
8: (a, b) = ⇡(i)
9: G0 Contract

G

0(a, b)
10: i++

11: return G↵

coarse

= G0

merge at most ↵n pairs of nodes, the merging itself has time
complexity O(↵nn

✓

).
Therefore, our worst-case time complexity is O(m ln(m)+

↵nn
✓

).

6. SAMPLE APPLICATION:
INFLUENCE MAXIMIZATION

The eigenvalue based coarsening method described above
aims to obtain a small network that approximates the di↵u-
sive properties of the original large network. As an example
application, we now show how to apply our graph coarsen-
ing framework to the well studied influence maximization
problem. Recall that given a di↵usion model (IC model in
our case) and a social network, the influence maximization
problem is to find a small seed set of k nodes such that the
expected number of influenced nodes is maximized.

Since we have designed our coarsening strategy such that
nodes and edges important for di↵usion remain untouched,
we expect that solving influence maximization on the coars-
ened graph is a good proxy for solving it on the much larger
original network. The major challenge in this process is to
determine how to map the solutions obtained from the coars-
ened graph back onto the vertices of the original network.
But due to the carefully designed coarsening strategy which
tries to keep important, candidate vertices unmerged, we
observe that a simple random pull back scheme works well
in practice.

More formally, we propose the following multi-stage ap-
proach to solve influence maximization:

1. Coarsen the social network graph G by using Algo-
rithm 1 to obtain a much smaller graph G

coarse

. Let
µ : V ! V

coarse

denote a mapping from vertices of the
original graph to those of the coarsened graph.

2. Solve the influence maximization problem on G
coarse

to get k vertices s1, . . . , sk in the coarsened graph that
optimize the desired objective function. We can use
any o↵-the-shelf algorithm for influence maximization
in this step. Since G

coarse

is much smaller than G,
traditional algorithms for influence maximization can
provide high quality solutions in little time.

3. Pull back the solutions on to the vertices of the orig-
inal graph. Given a seed s

i

in G
coarse

, we need to
select a vertex v 2 µ�1(s

i

) from G as a seed. Mul-
tiple strategies can be considered here such as v =

1301

argmax
u2µ

�1(s
i

)(�(u)) where �(u) is the expected in-
fluence by seeding u. However, thanks to our careful
coarsening framework, we show that a simple strategy
of selecting a seed uniformly at random from µ�1(s

i

)
for every seed s

i

performs very well in practice.

Algorithm 2 describes our strategy to solve influence max-
imization problems. Note that a similar strategy can be ap-
plied to study other problems based on di↵usion in networks.

Algorithm 2 cspin: Influence Maximization Framework

Input: A weighted graph G=(V ,E,w), the number of seeds
k, a reduction factor ↵

Output: A seed set S of k seeds
1: G↵

coarse

, µ coarseNet (G,↵) (See Algorithm 1)
2: s01, s

0
2, . . . , s

0
k

 InfluenceMaximization(G↵

coarse

, k)
3: for i = 1, . . . , k do
4: s

i

 random sample from µ�1(s0
i

)
5: return S = {s1, s2, . . . , sk}

7. EXPERIMENTAL EVALUATION
We performed several experiments to show the e↵ective-

ness of coarseNet algorithm and also the GCP framework
for cascade analysis.

Table 2: Datasets: Basic Statistics

Dataset #Vertices #Edges Mean Degree

Flickr small 500,038 5,002,845 20.01
Flickr medium 1,000,001 14,506,356 29.01
Flickr large 2,022,530 21,050,542 20.82
DBLP 511,163 1,871,070 7.32
Amazon 334,863 1,851,744 11.06
Brightkite 58,228 214,078 7.35
Portland 1,588,212 31,204,286 39.29
Flixster 55,918 559,863 20.02

Datasets. All experiments were conducted on an Intel Xeon
machine (2.40 GHz) with 24GB of main memory1. We used
a diverse selection of datasets from di↵erent domains to test
our algorithm and framework (see Table 2). These datasets
were chosen for their size as well as the applicability to the
di↵usion problem. coarseNet was tested on data from
Flickr, DBLP, Amazon, Brightkite and Portland epidemiol-
ogy data. In the Flickr data, vertices are users, and links rep-
resent friendships [5]. In the DBLP data, vertices represent
authors and edges represent co-authorship links. Brightkite
is a friendship network from a former location-based so-
cial networking service provider Brightkite. In the Amazon
dataset, vertices are products and an edge represents that
the two products are often purchased together. The Port-
land dataset is a social contact graph of vertices representing
people and edges representing interactions—it represents a
synthetic population of the city of Portland, Oregon, and
has been used in nation-wide smallpox studies [11]. Finally,
we also used a real cascade dataset Flixster2, where cascades
of movie ratings happen over a social network.
1Code at:
http://www.cs.vt.edu/~badityap/CODE/coarsenet.tgz
2http://www.cs.ubc.ca/~jamalim/datasets/

7.1 Performance for the GCP problem
We want to measure the performance of coarseNet algo-

rithm on the GCP problem. In short, we can coarsen up to
70% of node-pairs using coarseNet, and still retain almost
the same eigenvalue.

7.1.1 Effectiveness

As a baseline we used random, a random node-pair coars-
ening algorithm (randomly choose a node-pair and contract),
used in some community detection techniques. Figure 4
shows the values of � as the reduction factor ↵ increases
when we ran coarseNet and random on three datasets
(we set a weight of 0.02 for this experiment). We observed
that in all datasets, as the reduction factor ↵ increases, the
values of � barely change for coarseNet, showing that the
di↵usive properties are maintained even with almost 70%
contraction; while random destroyed the eigenvalue very
quickly with increasing ↵. This shows that (a) large graphs
can in fact be coarsened to large percentages while maintain-
ing di↵usion; and (b) coarseNet e↵ectively solves the GCP
problem. As we show later, we apply the GCP problem and
coarseNet on a detailed sample application of influence
maximization.

7.1.2 Scalability

Figure 5 shows the running times of coarseNet w.r.t.
↵ and n. To analyze the runtime of coarseNet with re-
spect to graph size (n), we extracted 6 connected compo-
nents (with 500K to 1M vertices in steps of 100K) of the
Flickr large dataset. As expected from Lemma 5.1, we ob-
serve that in all datasets, as the reduction factor ↵ increases,
the running time increases linearly (figures also show the
linear-fit, with R2 values), and scale near-linearly as the size
of the graph increases. This demonstrates that coarseNet
is scalable for large datasets.

7.2 Application 1: Influence Maximization
Here we demonstrate in detail a concrete application of

our GCP problem and coarseNet algorithm to di↵usion-
related problems. We use the well-known Influence Maxi-
mization problem. The idea as discussed before is to use the
Coarsen-Solve-Project CSPIN framework (see Section 6). In
short we find that we obtain 300⇥ speed-up on large net-
works, while maintaining the quality of solutions.
Propagation probabilities: Since accurate propagation
probabilities for these networks are not available, we gener-
ate propagation probabilities according to two models fol-
lowing the literature.

• Uniform: Each edge is assigned a low propagation
probability of 0.02. In most real social networks, the
propagation probabilities are known to be low. For
example, [5] find that the propagation probability in
the Flickr network is about 1-2%.

• Trivalency: We also test on the trivalency model
studied in [7]. For every edge we choose a probabil-
ity uniformly at random from the set {0.1, 0.01, 0.001}
which correspond to the edge having high, medium and
low influence respectively.

Algorithms and setup: We can use any o↵-the-shelf al-
gorithm to solve Inf. Max. problem on the smaller coars-
ened network. Here, we choose to use the fast and popular
pmia [7] algorithm. We then compared the influence spreads

1302

0% 30% 40% 50% 60% 70%0

0.1

0.2

0.3

0.4

0.5

Reduction Factor

Fi
rs

t E
ig

en
va

lu
e

0% 30% 40% 50% 60% 70%0

0.5

1

1.5

2

2.5

Reduction Factor

Fi
rs

t E
ig

en
va

lu
e

0% 30% 40% 50% 60% 70%0

0.5

1

1.5

2

2.5

Reduction Factor

Fi
rs

t E
ig

en
va

lu
e

COARSENET RANDOM

(a) Amazon (b) DBLP (c) Brightkite

Figure 4: E↵ectiveness of coarseNet for GCP. � vs ↵ for coarseNet and random. coarseNet maintains � values.
.

0.3 0.4 0.5 0.6 0.70

200

400

600

800

1000

Reduction Factor

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

Y = 1400X −190
R2=0.9898

0.3 0.4 0.5 0.6 0.70

100

200

300

400

500

600

700

800

900

Reduction Factor

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

Y = 1800X − 500
R2=0.9505

0.3 0.4 0.5 0.6 0.70

50

100

150

200

250

300

Reduction Factor

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

Y = 580X − 140
R2=0.9950

5 6 7 8 9 10

x 10
5

600

800

1000

1200

1400

1600

1800

Graph Size (Number of Vertices)

R
u

n
n

in
g

 T
im

e
(i

n
 s

e
c

o
n

d
s

)

Y = 0.0015X + 120

R2=0.9530

(a) Amazon (b) DBLP (c) Brightkite (d) Flickr (Varying sizes)

Figure 5: Scalability of coarseNet for GCP. (a,b,c) Linear w.r.t. ↵. (d) Near-linear w.r.t. size of graph.

and running-times of the cspin framework with the plain
pmia algorithm to demonstrate gains from using GCP.

7.2.1 Effectiveness

Quality of solution (Influence spread). In all experi-
ments, the influence spread generated by our cspin approach
is within 10% of the influence spread generated by pmia. In
some cases, we even perform slightly better than pmia. Fig-
ure 6(a) shows the expected spread obtained by selecting
k = 1000 seeds on five datasets. For these experiments, the
percentage of edges to merged is set at 90% and we use the
uniform propagation model.
Quality w.r.t ↵. We find that we can merge up to 95%
of the edges while still retaining influence spread. As more
edges are merged, the coarsened graph is smaller; so the
superseeds in G↵

coarse

can be found faster and thus we ex-
pect our running time to decrease. We ran tests on the
Flickr medium dataset for 1000 seeds and varied ↵ from 80%
to 95%. Figure 6(b) shows the ratio of the expected influ-
ence spread obtained by cspin to that obtained by pmia is
almost 1 with varying ↵.
Quality of solution: E↵ect of unbiased random pull-
back. coarseNet groups nodes which have similar di↵u-

Table 3: Insensitivity of cspin to random pullback choices :
Expected influence spread does not vary much.

#Trials Maximum
Spread

Minimum
Spread

Coe�cient of
variation (�

µ

)

100 58996.6 58984.8 5.061⇥ 10�5

sion e↵ects, hence choosing any one of the nodes randomly
inside a group will lead to similar spreads (hence we do the
random pullback in cspin). Note we do not claim that
these groups belong to link-based communities—only that
their di↵usive e↵ects are similar. To demonstrate this, we

performed 100 trials of the random pullback phase for the
Flickr small graph. For these trials, 1000 superseeds were
found by coarsening 90% of the edges. In each trial, we use
these same superseeds to find the 1000 seeds independently
and uniformly at random. Table 3 shows that the coe�cient
of variation of the expected spread is only 5.061⇥ 10�5.

7.2.2 Scalability

Scalability w.r.t number of seeds (k). As the budget
k increases, we see dramatic performance benefits of cspin
over pmia. We run experiments on Flickr small, and Port-
land by setting ↵ = 90%, and k varied from 0.01% to 1% of
|V |. Figure 7(a,b) shows the total running times (including
the coarsening). Due to lack of space we show only the re-
sults for the trivalency model (the uniform case was similar).
In all datasets, as k increases, the running time of cspin in-
creases very slowly. Note that we get orders of magnitude

speed-ups: e.g. on Flickr pmia takes more than 10 days to
find 200+ seeds, while cspin runs in 2 minutes.
Scalability w.r.t ↵. We can see that the running time also
drops with increased coarsening as seen in Figure 6(c).
Scalability w.r.t n. We ran cspin on the components of
increasing size of Flickr large with k = 1000 and ↵ = 90%.
Figure 7(c) plots the running times: cspin obtains a speed
up of around 250⇥ over pmia consistently.

7.3 Application 2: Diffusion Characterization
We now briefly describe how the GCP problem can help in

understanding cascade datasets in an exploratory setting.
Methodology: We used a Flixster dataset, where users
can share ratings of movies with friends. There is a log-file
which stores ratings actions by each user: and a cascade
is supposed to happen when a person rates the same movie
soon after one of her friends. We use the methodology of [15]
to learn influence probabilities of a IC-model over the edges
of the friendship network from the traces. We then coarsen

1303

!

!"#

!"$

!"%

!"&

'

'"#

&! &()!)(

!
"
#
$
%
&
'(
%
)
*
+
',
-
!
.
/
0
1
.
2
/
3
4

!"#$"%&'"()"*'+"#)"(

!"#$%&'()*+

!

!"

!""

!"""

!""""

!"""""

#" #$ %" %$

!
"
#
#
$
#
%
&'
$
(
)
*
$
#
&+
)
,
-
#
.
+
/

!"#$"%&'"()"*'+"#)"(

&'()*

(+),

(a) Spread ratio (b) Spread ratio vs ↵ on Flickr medium (c) Running times vs ↵ on Flickr medium

Figure 6: E↵ectiveness of cspin. Ratio of influence spread between cspin and pmia for (a) di↵erent datasets; (b) varying ↵.
(c) Running time vs ↵.

!

!"

!""

!"""

!""""

!"""""

!""""""

" !"" #"" $"" %"" &"" '""

!
"
#
#
$
#
%
&'
$
(
)
*
$
#
&+
)
,
-
#
.
+
/

!"#$%&'()'*%%+*

()*+,

*-+.

!"#$%&'(

#")$*+,(

%+%$$,-.$/+,+(0

(a) Flickr small (trivalency model)

!

!"

!""

!"""

!""""

!"""""

" #""" $""" %""" &""" !""""

!
"
#
#
$
#
%
&'
$
(
)
*
$
#
&+
)
,
-
#
.
+
/

!"#$%&'()'*%%+*

'()*+

),*-

!"#$%&

'()"*+,-&

(b) Portland (trivalency model)

!

!"

!""

!"""

!""""

!"""""

#""""" $""""" %""""" &""""" '""""" !""""""

!
"
#
#
$
#
%
&'
$
(
)
*
$
#
&+
)
,
-
#
.
+
/

!"#$%&'()*&+,-./*"&01&2*"3(4*56

()*+,

*-+.

!"#$%&'()*

+#$%,-.*

(c) Flickr (Varying sizes)

Figure 7: Scalability of cspin. (a,b) vs k; (c) vs size of graph. cspin gets increasing orders-of-magnitude speed-up over pmia.

the resulting directed graph using coarseNet to ↵ = 50%,
and study the formed groups (supernodes). Note that this is
in contrast to the approaches where the group information
is supplied by a graph-partitioning algorithm (like METIS),
and then a group-based IC model is learnt. The base net-
work had 55, 918 nodes and 559, 863 edges. The trace-log
contained about 7 million actions over 48, 000 movies. We
get 1891 groups after removing groups with only one node,
with mean group size 16.6 with the largest group having
22061 nodes (roughly 40% of nodes).
Distribution of movies over groups: Figure 8 shows the
histogram of the # of groups reached by the movie propaga-
tions (following [30], we assume that a movie reaches a group
if at least 10% of its nodes rated that movie). We show only
the first 100 points of the distribution. We observe that a
very large fraction of movies propagate in a small number of
groups. Interestingly we observe a multi-modal distribution,
suggesting movies have multiple scales of spread.

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

90

Number of Groups

Nu
mb

er
 of

 M
ov

ies

Figure 8: Distribution of # groups entered by movie traces.

Groups through the lens of surrogates: An important
point to note is that our groups may not be link-based com-
munities: we just ensure that nodes in a group have the
same di↵usive properties. We validated this observation in

the previous section (Table 3). Hence a natural question is
if groups found in Flixster have any other natural structure
(e.g. demographics)—if they do, we can get a non-network
external surrogate for similar di↵usive characteristics. For-
tunately, the Flixster does contain a couple of auxiliary fea-
tures for its users (like ID, Last Login, Age). We calcu-
lated the Mean Absolute Error (MAE) for ‘Age’ inside each
group, and compared it with the MAE across groups. We
found that the average MAE inside the group is very small
(within 2 years) compared to a MAE of almost 8 outside,
which implies that ages are concentrated within groups and
can act as surrogates for di↵usive characteristics.

8. CONCLUSIONS
We propose influence-based coarsening as a fundamental

operation in the analysis of di↵usive processes in large net-
works. Based on the connections between influence spread
and spectral properties of the graph, we propose a novel
Graph Coarsening Problem and provide an e↵ective and ef-
ficient heuristic called coarseNet. By carefully reweight-
ing the edges after each coarsening step, coarseNet at-
tempts to find a succinct representation of the original net-
work which preserves important di↵usive properties.

We then describe the cspin framework to solve influence
maximization problems on large networks using our coarsen-
ing strategy. Experimental results show that cspin indeed
outperforms traditional approaches by providing high qual-
ity solutions in a fraction of the time.

Finally we show that our coarseNet framework can also
be used for examining cascade datasets in an exploratory set-
ting. We observe that in our case study the nodes merged
together form meaningful communities in the sense of hav-

1304

ing similar di↵usive properties which can serve as surrogates
using external demographic information.

Future work can consist of resolving the complexity of
GCP and investigating more applications of our framework
to tasks where spectral properties may need to be preserved.

Acknowledgements. The authors would like to thank Chris-
tos Faloutsos for discussions. This material is based upon
work supported by the US Army Research O�ce under Grant
No. W911NF0910206, by the NSF under Grant No. IIS-
1353346, by the NSA (under a ‘Science of Security’ lablet)
and by the VT College of Engineering.

9. REFERENCES
[1] R. M. Anderson and R. M. May. Infectious Diseases of

Humans. Oxford University Press, 1991.
[2] N. Bailey. The Mathematical Theory of Infectious Diseases

and its Applications. Gri�n, London, 1975.
[3] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of

fads, fashion, custom, and cultural change in informational
cascades. Journal of Political Economy, 100(5):992–1026,
October 1992.

[4] L. Briesemeister, P. Lincoln, and P. Porras. Epidemic
profiles and defense of scale-free networks. WORM 2003,
Oct. 27 2003.

[5] M. Cha, A. Mislove, and K. P. Gummadi. A
Measurement-driven Analysis of Information Propagation
in the Flickr Social Network. In In Proceedings of the 18th
International World Wide Web Conference (WWW’09),
Madrid, Spain, April 2009.

[6] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and
C. Faloutsos. Epidemic thresholds in real networks. ACM
TISSEC, 10(4), 2008.

[7] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale
social networks. KDD, 2010.

[8] W. Chen, Y. Wang, and S. Yang. E�cient influence
maximization in social networks. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 199–208. ACM, 2009.

[9] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts
without eigenvectors a multilevel approach. IEEE Trans.
Pattern Anal. Mach. Intell., 29(11):1944–1957, 2007.

[10] M. Elkin and D. Peleg. Approximating k-spanner problems
for k> 2. Theoretical Computer Science, 337(1):249–277,
2005.

[11] S. Eubank, H. Guclu, V. S. Anil Kumar, M. V. Marathe,
A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling
disease outbreaks in realistic urban social networks. Nature,
429(6988):180–184, May 2004.

[12] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi.
A general framework for graph sparsification. In
Proceedings of the 43rd annual ACM symposium on Theory
of computing, pages 71–80. ACM, 2011.

[13] A. Ganesh, L. Massoulié, and D. Towsley. The e↵ect of
network topology on the spread of epidemics. In IEEE
INFOCOM, Los Alamitos, CA, 2005. IEEE Computer
Society Press.

[14] J. Goldenberg, B. Libai, and E. Muller. Talk of the
network: A complex systems look at the underlying process
of word-of-mouth. Marketing Letters, 2001.

[15] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning
influence probabilities in social networks. WSDM ’10, 2010.

[16] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Simpath: An
e�cient algorithm for influence maximization under the
linear threshold model. ICDM, 2011.

[17] M. Granovetter. Threshold models of collective behavior.
Am. Journal of Sociology, 83(6):1420–1443, 1978.

[18] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information di↵usion through blogspace. In WWW ’04,
2004.

[19] Y. Hayashi, M. Minoura, and J. Matsukubo. Recoverable
prevalence in growing scale-free networks and the e↵ective
immunization. arXiv:cond-mat/0305549 v2, Aug. 6 2003.

[20] H. W. Hethcote. The mathematics of infectious diseases.
SIAM Review, 42, 2000.

[21] G. Karypis and V. Kumar. METIS: Unstructured graph
partitioning and sparse matrix ordering system. The
University of Minnesota, 2, 1995.

[22] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. In KDD ’03:
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
137–146, New York, NY, USA, 2003. ACM.

[23] J. O. Kephart and S. R. White. Measuring and modeling
computer virus prevalence. IEEE Computer Society
Symposium on Research in Security and Privacy, 1993.

[24] M. Kimura and K. Saito. Tractable models for information
di↵usion in social networks. Knowledge Discovery in
Databases: PKDD 2006, pages 259–271, 2006.

[25] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the
bursty evolution of blogspace. In WWW ’03: Proceedings
of the 12th international conference on World Wide Web,
pages 568–576, New York, NY, USA, 2003. ACM Press.

[26] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila.
Finding e↵ectors in social networks. In Proceedings of the
16th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), Washington, DC,
pages 1059–1068, 2010.

[27] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. S. Glance. Cost-e↵ective outbreak
detection in networks. In KDD, pages 420–429, 2007.

[28] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and
A. Ukkonen. Sparsification of influence networks. In
Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
529–537. ACM, 2011.

[29] A. G. McKendrick. Applications of mathematics to medical
problems. In Proceedings of Edin. Math. Society,
volume 44, pages 98–130, 1925.

[30] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen. Csi:
Community-level social influence analysis. In Machine
Learning and Knowledge Discovery in Databases, volume
8189 of Lecture Notes in Computer Science. 2013.

[31] R. Pastor-Santorras and A. Vespignani. Epidemic spreading
in scale-free networks. Physical Review Letters 86, 14, 2001.

[32] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler,
and C. Faloutsos. Threshold conditions for arbitrary
cascade models on arbitrary networks. In ICDM, 2011.

[33] B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting
culprits in epidemics: How many and which ones? In
ICDM, 2012.

[34] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 61–70. ACM, 2002.

[35] E. M. Rogers. Di↵usion of Innovations, 5th Edition. Free
Press, August 2003.

[36] P. Shakarian, M. Broecheler, V. Subrahmanian, and
C. Molinaro. Using generalized annotated programs to solve
social network optimization problems. ACM Transactions
on Computational Logic, 2012.

[37] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and
C. Faloutsos. Gelling, and melting, large graphs by edge
manipulation. In ACM CIKM, 2012.

[38] H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad,
C. Faloutsos, and D. H. Chau. On the vulnerability of large
graphs. In ICDM, 2010.

1305

