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ABSTRACT
In the well-studied Influence Maximization problem, the goal
is to identify a set of k nodes in a social network whose joint
influence on the network is maximized. A large body of re-
cent work has justified research on Influence Maximization
models and algorithms with their potential to create soci-
etal or economic value. However, in order to live up to this
potential, the algorithms must be robust to large amounts
of noise, for they require quantitative estimates of the in-
fluence which individuals exert on each other; ground truth
for such quantities is inaccessible, and even decent estimates
are very difficult to obtain.

We begin to address this concern formally. First, we ex-
hibit simple inputs on which even very small estimation er-
rors may mislead every algorithm into highly suboptimal so-
lutions, motivating a need for algorithms that can determine
whether a given instance is vulnerable to noise. Analyzing
the susceptibility of specific instances to estimation errors
leads to a clean algorithmic question which we term the In-
fluence Difference Maximization problem, and for which we
present an approximation algorithm based on maximizing a
non-monotone submodular function.

Using the proposed techniques, we investigate the suscep-
tibility of synthetic and real-world social network data sets.
Roughly, when perturbations are on the order of 10% of the
observed parameter values, the objective function is fairly
stable, while relative perturbations above 20% may lead to
significant instability. Our results thus suggest caution in
the use of algorithmic Influence Maximization results.

Categories and Subject Descriptors
[Human-centered computing]: Social networks

Keywords
Influence Maximization, Uncertainty, Noise, Submodular Op-
timization, Robust Optimization
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1. INTRODUCTION
The processes and dynamics by which information and be-

haviors spread through social networks have long interested
scientists within many areas. Understanding such processes
has the potential to shed light on human social structure,
and to impact the strategies used to promote behaviors or
products. While the interest in the subject is long-standing,
recent increased availability of social network and informa-
tion diffusion data (through sites such as Facebook, Twit-
ter, and LinkedIn) has raised the prospect of applying social
network analysis at a large scale to positive effect. Con-
sequently, the resulting algorithmic questions have received
widespread interest in the computer science community.

Among the broad algorithmic domains, Influence Maxi-
mization has been repeatedly held up as having the potential
to be of societal and financial value. The high-level hope is
that based on observed data — such as social network infor-
mation and past behavior — an algorithm could infer which
individuals are likely to influence which others. This infor-
mation could in turn be used to effect desired behavior, such
as refraining from smoking, using superior crops, or purchas-
ing a product. In the latter case, the goal of effecting desired
behavior is usually termed viral marketing.

Consequently, both the problem of inferring the influence
between individuals [10, 11, 18] and that of maximizing the
spread of a desired behavior have been studied extensively.
For the Influence Maximization problem, a large number of
models have been proposed, along with many heuristics with
and without approximation guarantees [5, 23, 8, 13, 14, 17].
(See the monograph [7] for a recent overview of work in the
area.)

However, one crucial aspect of the problem has — with
very few execeptions discussed in Section 1.6 — gone large-
ly unstudied. Contrary to many other algorithmic domains,
noise in social network data is not an exception, but the
norm. Indeed, one could argue that the very notion of a
“social link” is not properly defined in the first place, so that
any representation of a social network is only an approxi-
mation of reality. This issue is much more pronounced for
a goal such as Influence Maximization. Here, the required
data include, for every pair (u, v) of individuals, a numerical
value for the strength of influence from u to v and vice ver-
sa. This influence strength will naturally depend on context
(e.g., what exact product or behavior is being spread); fur-
thermore, it cannot be observed directly, and must therefore
be inferred from observed behavior or individuals’ reports;
all of these are inherently very noisy.
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When the inferred influence strength parameters differ
from the actual ground truth, even an optimal algorithm
is bound to return suboptimal solutions, for it will optimize
the wrong objective function: a solution that appears good
with respect to the incorrect parameters may be bad with
respect to the actual ones. If relatively small errors in the in-
ferred parameters could lead to highly suboptimal solutions,
this would cast serious doubts on the practical viability of al-
gorithmic influence maximization. Therefore, in the present
paper, we begin an in-depth study of the effect of noise on
the performance of Influence Maximization algorithms.

1.1 The Independent Cascade Model
We study this question under two widely adopted models

for influence diffusion [13]: the Independent Cascade (IC)
Model and the Linear Threshold (LT) Model. Both of these
models fit in the following framework: The algorithm selects
a seed set A0 of k nodes, which begin active (having adopt-
ed the behavior). Starting with A0, the process proceeds in
discrete time steps: in each time step, according to a prob-
abilistic process, additional nodes may become active based
on the influence from their neighbors. Active nodes never
become inactive, and the process terminates when no new
nodes become active in a time step. The goal is to maxi-
mize the expected number of active nodes when the process
terminates; this expected number is denoted by σ(A0).

To illustrate the questions and approaches, we describe
the IC model in this section. (A formal description of the
LT model and general definitions of all concepts are given in
Section 2.) Under the IC model, the probabilistic process is
particularly simple and intuitive. When a node u becomes
active in step t, it attempts to activate all currently inactive
neighbors in step t+1. For each neighbor v, it succeeds with
a known probability pu,v. If it succeeds, v becomes active;
otherwise, v remains inactive. Once u has made all these at-
tempts, it does not get to make further activation attempts
at later times. It was shown in [13] (see Lemma 3) that the
set of nodes active at the end can be characterized alterna-
tively as follows: for each ordered pair (u, v) independently,
insert the directed edge (u, v) with probability pu,v. Then,
the active nodes are exactly the ones reachable via directed
paths from A0.

1.2 Can Instability Occur?
Suppose that we have inferred all parameters pu,v, but

are concerned that they may be slightly off: in reality, the
influence probabilities are p′u,v ≈ pu,v. Are there instances
in which a seed set A0 that is very influential with respec-
t to the pu,v may be much less influential with respect to
the p′u,v? It is natural to suspect that this might not occur:
when the objective function σ varies sufficiently smoothly
with the input parameters (e.g., for linear objectives), smal-
l changes in the parameters only lead to small changes in
the objective value; therefore, optimizing with respect to a
perturbed input still leads to a near-optimal solution.

However, the objective σ of Influence Maximization does
not depend on the parameters in a smooth way. To illustrate
the issues at play, consider the following instance of the IC
model. The social network consists of two disjoint bidirect-
ed cliques Kn, and pu,v = p̂ for all u, v in the same clique;
in other words, for each directed edge, the same activation
probability p̂ is observed. The algorithm gets to select ex-
actly k = 1 node. Notice that because all nodes look the

same, any algorithm essentially chooses an arbitrary node,
which may as well be from Clique 1.

Let p̂ = 1/n be the sharp threshold for the emergence of a
giant component in the Erdős-Rényi Random GraphG(n, p).
It is well known [4, 9] that the largest connected component
of G(n, p) has size O(logn) for any p ≤ p̂ − Ω(1/n), and
size Ω(n) for any p ≥ p̂+ Ω(1/n). Thus, if unbeknownst to
the algorithm, all true activation probabilities in Clique 1
are p ≤ p̂−Ω(1/n), while all true activation probabilities in
Clique 2 are p ≥ p̂ + Ω(1/n), the algorithm only activates
O(logn) nodes in expectation, while it could have reached
Ω(n) nodes by choosing Clique 2. Hence, small adversarial
perturbations to the input parameters can lead to highly
suboptimal solutions from any algorithm.1

1.3 Diagnosing Instability
The example of two cliques shows that there exist unsta-

ble instances, in which an optimal solution to the observed
parameters is highly suboptimal when the observed parame-
ters are slightly perturbed compared to the true parameters.
Of course, not every instance of Influence Maximization is
unstable: for instance, when the probability p̂ in the Two-
Clique instance is bounded away from the critical threshold
of G(n, p), the objective function varies much more smooth-
ly with p̂. This motivates the following algorithmic question,
which is the main focus of our paper: Given an instance of
Influence Maximization, can we diagnose efficiently whether
it is stable or unstable?

To make this question precise, we formulate a model of
perturbations. We assume that for each edge (u, v), in addi-
tion to the observed activation probability pu,v, we are given
an interval Iu,v 3 pu,v of values that the actual probability
p′u,v could assume. The true values p′u,v are chosen from the
intervals Iu,v by an adversary; they induce an objective func-
tion σ′ which the algorithm would like to maximize, while
the observed values induce a different objective function σ
which the algorithm actually has access to.

An instance (pu,v, Iu,v)u,v is stable if |σ(S)−σ′(S)| is small
for all objective functions σ′ induced by legal probability
settings, and for all seed sets S of size k. Here, “small” is
defined relative to the objective function value σ(A∗0) of the
optimum set.

When |σ(S)−σ′(S)| is small compared to σ(A∗0) for all sets
S, we will show in Section 3 that a user can have confidence
that his optimization result will provide decent performance
guarantees even if his input was perturbed. The converse is
of course not necessarily true: even in unstable instances, a
solution that was optimal for the observed input may still
be very good for the true input parameters.

1The example reveals a close connection between the sta-
bility of an IC instance and the question whether a unifor-
m activation probability p lies close to the edge percolation
threshold of the underlying graph. Characterizing the perco-
lation threshold of families of graphs has been a notoriously
hard problem. Successful characterizations have only been
obtained for very few specific classes (such as d-dimensional
grids [15] and d-regular expander graphs [2]). Therefore, it is
unlikely that a clean characterization of stable and unstable
instances can be obtained. The connection to percolation
also reveals that the instability was not an artifact of hav-
ing high node degrees. By the result of Alon et al. [2], the
same behavior will be obtained if both components are d-
regular expander graphs, since such graphs also have a sharp
percolation threshold.
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1.4 Influence Difference Maximization
Trying to determine whether there is a function σ′ and

a set S for which |σ(S) − σ′(S)| is large motivates the fol-
lowing optimization problem: Maximize |σ(S)− σ′(S)| over
all feasible functions σ′ and all sets S. For any given set
S, the objective is maximized either by making all proba-
bilities (and thus σ′(S)) as small as possible, or by making
all probabilities (and thus σ′(S)) as large as possible.2 We
denote the resulting two objective functions by σ− and σ+,
respectively. The following definition then captures the op-
timization goal.

Definition 1 (Influence Difference Maximization).
Given two instances with probabilities pu,v ≥ p′u,v for all u, v,
let σ and σ′ be their respective influence functions. Find a
set S of size k maximizing δ(S) := σ(S)− σ′(S).

The Influence Difference Maximization problem subsumes
the Influence Maximization problem, by setting p′u,v ≡ 0
(and thus also σ′ ≡ 0). Notice that δ is generally not mono-
tone, as δ(∅) = δ(V ) = 0, while δ(S) > 0 for some sets S.
Our main theoretical result is that while δ is not generally
monotone, it is submodular.3

Theorem 1. Under the IC (and also LT) model, the in-
fluence difference objective function δ(S) is a non-negative
and submodular function of the set S, whenever the func-
tions σ, σ′ satisfy the conditions of Definition 1.

The proof of Theorem 1 is given in Section 4. It let-
s us leverage known efficient algorithms for non-monotone
submodular function maximization subject to a cardinality
constraint [6, 22]. In particular, we rely on the recent simple
Random Greedy approximation algorithm of Buchbinder et
al. [6], which guarantees an approximation factor of at least
0.266, but gets a guarantee close to 1/e when k � n.

If we use the Random Greedy algorithm and determine
that the maximum influence difference is significantly small-
er than the objective value of Influence Maximization, we
can be confident that the solution determined by the Influ-
ence Maximization algorithm is a constant-factor approxi-
mation. Otherwise, the solution may still be good; however,
the algorithm cannot provide a guarantee, as the deviation
from parameter misestimates may drown out the objective
value.

1.5 Experiments
Next, we investigate how pervasive instabilities are in real

data. We evaluate frequently used synthetic models (2D
grids, random regular graphs, small-world networks, and
preferential attachment graphs) and real-world data sets
(computer science theory collaborations and retweets about
the Haiti earthquake). We focus on the IC model, and vary
the influence strengths over a broad range of commonly s-
tudied values. We consider different relative perturbation
levels ∆, ranging from 1% to 50%. The adversary can thus

2This observation relies crucially on the fact that each pu,v
can independently take on any value in Iu,v. If the adversary
were constrained by the total absolute deviation or sum of
squares of deviations of parameters, this would no longer be
the case. This issue is discussed in Section 6.
3Recall that a function f is submodular if it has“diminishing
returns:” f(S+x)−f(S) ≥ f(T +x)−f(T ) for any element
x whenever S ⊆ T .

choose the actual activation probability to lie in the interval
[pu,v(1−∆) · pu,v, pu,v + ∆ · pu,v].

Our experiments suggest that perturbations can have sig-
nificantly different effects depending on the network struc-
ture and observed values. As a general rule of thumb, unless
the parameters are carefully chosen to lie right at the perco-
lation threshold (in which case even tiny perturbations can
have huge effects), perturbations with relative errors below
10% tend to not have huge impacts, while perturbations
above 20% could significantly distort the optimum solution.

Since errors above 20% should be considered quite com-
mon for estimated social network parameters, our result-
s suggest that practitioners exercise care in evaluating the
stability of their problem instances, and treat the output of
Influence Maximization algorithms with a healthy dose of
skepticism.

1.6 Adversarial vs. Random Perturbations
One may question why we choose to study adversarial

instead of random perturbations. This choice is for three
reasons:

Theoretical: Worst-case analysis provides stronger guar-
antees, as it is not based on particular assumptions
about the distribution of noise.

Practical: Most random noise models assume independence
of noise across edges. However, we believe that in prac-
tice, both the techniques used for inferring model pa-
rameters as well as the data sources they are based
on may well exhibit systematic bias, i.e., the noise will
not be independent. For instance, a particular subpop-
ulation may systematically underreport the extent to
which they seek others’ advice, or may have fewer visi-
ble indicators (such as posts) revealing their behavior.

Modeling Interest: Perhaps most importantly, most nat-
ural random noise models do not add anything to the
IC and LT models. As an illustration, consider the
random noise models studied in recent work by Goy-
al, Bonchi and Lakshmanan [12] and Adiga et al. [1].
Goyal et al. assume that for each edge (u, v), the val-
ue of pu,v is perturbed with uniformly random noise
from a known interval. Adiga et al. assume that each
edge (u, v) that was observed to be present is actually
absent with some probability ε, while each edge that
was not observed is actually present with probability ε;
in other words, each edge’s presence is independently
flipped with probability ε.

The standard IC model subsumes both models straight-
forwardly. Suppose that a decision is to be made about
whether u activates v. In the model of Goyal et al.,
we can first draw the actual (perturbed) value of p′u,v
from its known distribution; subsequently, u activates
v with probability p′u,v; in total, u activates v with
probability E

[
p′u,v

]
. Thus, we obtain an instance of

the IC model in which all edge probabilities pu,v are
replaced by E

[
p′u,v

]
. In the special case when the noise

has mean 0, this expectation is exactly equal to pu,v,
which explains why Goyal et al. observed the noise to
not affect the outcome at all.

In the model of Adiga et al., we first determine whether
the edge is actually present; when it was observed
present, this happens with probability 1− ε; otherwise
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with probability ε. Subsequently, the activation suc-
ceeds with probability p. ([1] assumed uniform prob-
abilities). Thus, the model is an instance of the IC
model in which the activation probabilities on all ob-
served edges are p(1 − ε), while those on unobserved
edges are pε. This reduction explains the theoretical
results obtained by Adiga et al.

More fundamentally, practically all “natural” random
processes that independently affect edges of the graph
can be“absorbed into”the activation probabilities them-
selves; as a result, random noise does not at all play
the result of actual noise.

2. MODELS AND PRELIMINARIES
The social network is modeled by a directed graph G =

(V,E) on n nodes. All parameters for non-existing edges
are assumed to be 0. We first describe models of influence
diffusion, and then models of parameter perturbation.

2.1 Influence Diffusion Models
Most of the models for Influence Maximization have been

based on the Independent Cascade Model (see Section 1.1)
and Linear Threshold Model studied in [13] and their gener-
alizations. Like the Independent Cascade Model, the Linear
Threshold Model also proceeds in discrete rounds. Each
edge (u, v) is equipped with a weight cu,v ∈ [0, 1], satisfying∑
u→v cu,v ≤ 1 for all nodes v. (By u → v, we denote that

there is a directed edge (u, v).) Each node v initially draws a
threshold ψv independently and uniformly at random from
[0, 1]. A set A0 of nodes is activated at time 0, and we use At
to denote the set of nodes active at time t. In each discrete
round t, each node v checks if

∑
u∈At−1,u→v cu,v ≥ ψv. If so,

v becomes active at time t, and remains active subsequently.
Any instance of the Influence Maximization problem is

characterized by its parameters. For the LT model, the pa-
rameters are the n2 edge weights cu,v for all edges (u, v).
Similarly, for the IC model, the parameters are the edge
activation probabilities pu,v for all edges (u, v). To unify
notation, we write θ = (θu,v)(u,v)∈E for the vector of all

parameter values, where θu,v could be either cu,v or pu,v.4

Both the IC and LT model define random processes that
continue until the diffusion process quiesces, i.e., no new
activations occur. Let τ ≤ n be the (random) time at
which this happens. We denote the stochastic process by
PMod
θ (A0) = (At)

τ
t=0, with Mod ∈ {IC,LT} denoting the

model. The final set of active nodes is Aτ . We can now
formally define the Influence Maximization problem:

Definition 2 (Influence Maximization). The Influ-
ence Maximization problem consists of maximizing the ob-
jective σ(A0) := E[|Aτ |] (i.e., the expected number of ac-
tive nodes in the end5), subject to a cardinality constraint
|A0| ≤ k.

4Some models besides IC and LT have more or fewer or d-
ifferent parameters. We will briefly see one such example in
Section 4.2, but prefer to avoid unnecessarily general nota-
tion for now.
5Our results carry over unchanged if we assign each n-
ode a non-negative value rv, and the goal is to maximize∑
v∈Aτ rv. We focus on the case of uniform values for nota-

tional convenience only.

The key insight behind most prior work on algorithmic In-
fluence Maximization is that the objective function σ(S) is
a monotone and submodular function of S. This was proved
for the IC and LT models in [13], and subsequently for a gen-
eralization called Generalized Threshold Model (proposed in
[13]) by Mossel and Roch [17].

2.2 Models for Perturbations
To model adversarial input perturbations, we assume that

for each of the edges (u, v), we are given an interval Iu,v =
[`u,v, ru,v] ⊆ [0, 1] with θu,v ∈ Iu,v. For the LT model, to
ensure that the resulting activations functions are always
submodular, we require that

∑
u→v ru,v ≤ 1 for all nodes

v. We write Θ = ×(u,v)∈EIu,v for the set of all allowable
parameter settings. The adversary must guarantee that the
ground truth parameter values satisfy θ′ ∈ Θ; subject to
this requirement, the adversary can choose the actual pa-
rameter values arbitrarily.

Together, the parameter values θ determine an instance
of the Influence Maximization problem. We will usually be
explicit about indicating the dependence of the objective
function on the parameter setting. We write σθ for the
objective function obtained with parameter values θ, and
only omit the parameters when they are clear from the con-
text. For a given setting of parameters, we will denote by
A∗θ ∈ argmaxS σθ(S) a solution maximizing the expected
influence under parameter values θ.

2.3 Influence Difference Maximization
In order to capture to what extent adversarial changes in

the parameters can lead to misestimates of any set’s influ-
ence, we are interested in the quantity

max
S

max
θ′∈Θ

|σθ(S)− σθ′(S)|, (1)

where θ denotes the observed parameter values. For two
parameter settings θ,θ′ with θ ≥ θ′ coordinate-wise, it is
not difficult to show using a simple coupling argument (see
Lemma 6) that σθ(S) ≥ σθ′(S) for all S. Therefore, for any
fixed set S, the maximum is attained either by making θ′ as
large as possible or as small as possible. Hence, solving the
following problem is sufficient to maximize (1).

Definition 3. Given an influence model and two param-
eter settings θ,θ′ with θ ≥ θ′ coordinate-wise, define

δθ,θ′(S) = σθ(S)− σθ′(S). (2)

Given the set size k, the Influence Difference Maximization
(IDM) problem is defined as follows:

Maximize δθ,θ′(S)
subject to |S| = k.

(3)

3. MAIN THEOREM AND APPLICATIONS
Maximizing δθ,θ′(S) (approximately) lets us evaluate how

susceptible an instance is to noise. Hence, we would like
to exhibit useful properties of the function δθ,θ′ making it
amenable to optimization. This is accomplished by Theo-
rem 1, which we restate here using the notation from Sec-
tion 2.

Theorem 1. Under the IC and LT models, the function
δθ,θ′(S) is a non-negative submodular function of S when-
ever θ ≥ θ′ pointwise.
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As we show in Section 3.2, Theorem 1 implies that we
can leverage known results on the maximization of submod-
ular functions (see [6, 22] and references therein) in order
to approximately maximize δθ,θ′(S), and thus gain an un-
derstanding of how large the changes in objective function
values are. The proof of Theorem 1 is presented in Section 4.

3.1 Approximation for Perturbed Objectives
We have several times alluded to the idea that if the maxi-

mum influence difference is “small,” the seed set found by an
Influence Maximization algorithm for the observed parame-
ters will have useful guarantees even for the unobserved ac-
tual parameters. We now make the notion of “small” precise
and derive a guarantee on the performance vis-à-vis unob-
served actual parameters. We consider four different param-
eter settings and their associated objective functions:

• θ is the observed/inferred vector of parameters, and
σ = σθ is the resulting objective function. Let A∗ be
a seed set maximizing σ(S) subject to |S| = k, and
A the seed set returned by the greedy algorithm for
Influence Maximization. Thus, A satisfies

σ(A) ≥ (1− 1/e) · σ(A∗). (4)

• θ̂ is the vector of ground truth parameters chosen by
the adversary, and σ̂ = σθ̂ the associated objective

function. Â denotes the seed set maximizing σ̂(S).

• θ+ is the vector making each parameter as large as
possible, and σ+ = σθ+ the associated objective func-
tion.

• θ− is the vector making each parameter as small as
possible, and σ− = σθ− the associated objective func-
tion.

Since the observed objective value σ(A) is the only “scale”
that an algorithm has available for measuring the impact
of perturbations, we relate all deviations to this quantity.
Specifically, assume that running the greedy Influence Dif-
ference Maximization algorithm has revealed the following6

for all sets S with |S| = k:

δθ+,θ(S) ≤ α+ · σ(A). (5)

In addition to the Influence Difference Maximization es-
timate, assume that explicitly evaluating the difference for
the set A has revealed that

δθ,θ−(A) = α− · σ(A). (6)

Our goal is now to lower-bound σ̂(A) in terms of σ̂(Â).
We begin by lower-bounding σ(A∗):

σ(A∗) =
(
σ(A∗)− σ(Â)

)
+
(
σ(Â)− σ̂(Â)

)
+ σ̂(Â)

≥
(
σ(Â)− σ+(Â)

)
+ σ̂(Â)

(5)

≥ −α+ · σ(A) + σ̂(Â).

6Notice that to reveal such a bound, the algorithm’s ob-
served maximum function value δθ+,θ(S) must be smaller

than σ(A) by a constant factor (roughly e), to compensate
for the approximation factor of the Influence Difference Max-
imization algorithm.

For the first inequality, we used that the first term is non-
negative by the optimality of A∗ for σ, and that σ+(S) ≥
σ̂(S) for all sets S. We can now combine Inequality (4) with
the previous derivation and solve for σ(A):

σ(A) ≥ 1− 1/e

1 + α+ · (1− 1/e)
· σ̂(Â).

Finally, we use this inequality to bound σ̂(A) as follows:

σ̂(A) = (σ̂(A)− σ(A)) + σ(A) (7)

≥
(
σ−(A)− σ(A)

)
+ σ(A)

(6)
= (1− α−) · σ(A)

≥ (1− α−) · (1− 1/e)

1 + α+ · (1− 1/e)
· σ̂(Â), (8)

where the first inequality used that σ̂(S) ≥ σ−(S) for all
sets S.

Thus, whenever α−, α+ are small enough, we can guaran-
tee that the calculated seed set A is within a constant factor
of the best seed set for the unknown ground truth influence
parameters.

3.2 Maximizing Submodular Functions
While the maximization of monotone submodular func-

tions is essentially a solved problem (the widely known and
used 1− 1/e approximation algorithm due to Nemhauser et
al. [19] is best possible unless P=NP), approximation algo-
rithms for the maximization of non-monotone submodular
functions subject to a cardinality constraint have only more
recently received significant attention. (See [6, 22] and ref-
erences therein.)

In our work, we use the Random Greedy algorithm of [6],
given as Algorithm 1 below. It is a natural generalization
of the simple greedy algorithm widely used for maximizing
monotone submodular functions.7 Instead of picking the
best single element to add in each iteration, it first finds the
set of the k individually best single elements (i.e., the ele-
ments which when added to the current set give the largest,
second-largest, third-largest, . . ., kth-largest gain). Then,
it picks one of these k elements uniformly at random and
continues.

The approximation guarantee for Random Greedy is cap-
tured by Theorem 2 below. The current best approxima-
tion guarantee — a factor 0.356 (slightly less than 1/e) — is
achieved by running Random Greedy and another algorithm
called “Continuous Double Greedy” and keeping the better
of the two solutions. While taking the better of the two
algorithms gives a better approximation guarantee, in our
experiments, we prefer to just use the Random Greedy algo-
rithm due to its simplicity and efficiency. Notice that when
k � n, the approximation guarantee of Random Greedy is
very close to 1/e; since k � n for all of our experiments, we
treat the approximation guarantee as 1/e in our discussion
for simplicity.

Theorem 2 (Buchbinder et al. [6]). Let g be a non-
negative submodular (not necessarily monotone) function.
Consider the problem of maximizing g(S) subject to the con-
straint that |S| = k; let S∗k be the optimum set of size k.
7Buchbinder et al. [6] show that for non-monotone submod-
ular functions, the traditional greedy algorithm can perform
arbitrarily poorly.
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1. The set Sk returned by the Random Greedy Algorithm
guarantees E [g(Sk)] ≥ max(0.266, 1

e
· (1− k

en
)) · g(S∗k),

where the expectation is taken over the random choices
of the algorithm.

2. By taking the better of the outputs of the Random Greedy
Algorithm and the “Continuous Double Greedy Algo-

rithm,” the resulting set Ŝ guarantees that E
[
g(Ŝ)

]
≥

0.356 · g(S∗k).

Algorithm 1 Random Greedy Algorithm

1: Initialize: S0 ← ∅
2: for i = 1, . . . , k do
3: Let Mi ⊆ V \Si−1 be the subset of size k maximizing∑

u∈Mi g(Si−1 ∪ {u})− g(Si−1).
4: Draw ui uniformly at random from Mi.
5: Let Si ← Si−1 ∪ {ui}.
6: end for
7: Return Sk

The running time of the Random Greedy Algorithm is
O(kC|V |), where C is the time required to estimate g(S ∪
{u})−g(S). In our case, the objective function is #P-hard to
evaluate exactly [23, 8], but arbitrarily close approximations
can be obtained by Monte Carlo simulation. Since each
simulation takes time O(|V |), if we run M iterations of the
Monte Carlo simulation in each iteration, the overall running
time of the algorithm is O(kM |V |2). In order to accelerate
the algorithm in practice, we use the CELF optimization
proposed by Leskovec et al. [16]. It exploits submodularity
to avoid computation of g(Si−1 ∪ {u}) − g(Si−1) whenever
the value of g(Si−2∪{u})−g(Si−2) is sufficiently small that
u cannot be the optimal element to add in iteration i.

4. PROOF OF THEOREM 1
We exploit and extend the Triggering Set technique from

[13]. The idea of the Triggering Set technique is to char-
acterize the outcome Aτ of the dynamic and stochastic ac-
tivation process PMod

θ (A0) by a more static process called
a Triggering Model: Generate a random graph G according
to a particular distribution, and let RG(A0) be the set of
nodes reachable from A0 in G. ([13] calls the edges in G
live and the edges missing from G blocked.) The Triggering
Set technique then consists in showing that for each of the
models {IC,LT}, one can identify a Triggering Model (i.e.,
a distribution over random graphs G) such that the random
set RG(A0) has precisely the same distribution (under the
random graph G) as the random set Aτ under the random
process PMod

θ (A0). More specifically, [13] proves the follow-
ing two lemmas:

Lemma 3 (Claim 2.3 from [13]). Given an instance of
the IC model with edge probabilities θ = (pu,v), let GICθ be
the random graph model in which each directed edge (u, v)
is present (or live) independently with probability pu,v, and
blocked otherwise. Then, for all sets A0, S,

ProbG∼GIC
θ

[RG(A0) = S] = ProbP IC
θ

(A0)
[Aτ = S].

Lemma 4 (Claim 2.6 from [13]). Given an instance of
the LT model with edge weights θ = (cu,v), let GLTθ be the

random graph model in which each node v picks the incom-
ing edge (u, v) with probability cu,v; the presence of the edges
is mutually exclusive, so that each node v has at most one
incoming live edge, and with probability 1−

∑
u cu,v has no

incoming live edge. Then, for all sets A0, S,

ProbG∼GLT
θ

[RG(A0) = S] = ProbP LT
θ

(A0)
[Aτ = S].

These lemmas imply that instead of studying a dynamic
process, we can randomly generate graphs, and then study
reachability on those graphs. When we consider two param-
eter settings θ ≥ θ′ (pointwise), it seems intuitive that we
should be able to generate two corresponding graphs G,G′

(on the same vertex set V ) according to the respective dis-
tributions, such that E(G) ⊇ E(G′) always holds. More
formally, below, we will show the following coupling lemma:

Lemma 5 (Coupling of Random Graphs). For any
instances θ,θ′ of the IC Model (or LT Model) with θ ≥ θ′,
there is a distribution D over pairs (G,G′) of graphs on the
same vertex set V , with the following properties:

1. E(G) ⊇ E(G′) always holds.

2.
∑
G′ ProbD[(G,G′)] = ProbG∼GMod

θ
[G]. That is, the

first graph in isolation follows the random graph dis-
tribution GMod

θ (where Mod could be IC or LT).

3.
∑
G ProbD[(G,G′)] = ProbG′∼GMod

θ′
[G′]. That is, the

second graph in isolation follows the random graph dis-
tribution GMod

θ′ (where again Mod could be IC or LT).

Finally, we analyze “reachability difference” between two
arbitrary graphs with E(G) ⊇ E(G′).

Lemma 6 (Comparison of Reachability). Let G,G′

be two fixed graphs with E(G) ⊇ E(G′). Then, RG(S) ⊇
RG′(S).

Furthermore, let ρ(S) := |RG(S) \RG′(S)| be the number
of nodes reachable from S in G, but not in G′. ρ(S) is a
submodular function of S.

To complete the proof, we can decompose the influence d-
ifference objective into a distribution over individual graphs
as follows:

δθ,θ′(A0) = EG∼GMod
θ

[|RG(A0)|]− EG′∼GMod
θ′

[|RG′(A0)|]

= E(G,G′)∼D [|RG(A0)| − |RG′(A0)|]
= E(G,G′)∼D [|RG(A0) \RG′(A0)|]

=
∑
G,G′

Prob(G,G′)∼D[(G,G′)] · |RG(A0) \RG′(A0)|

=
∑
G,G′

Prob(G,G′)∼D[(G,G′)] · ρ(A0).

The second equality used that D defines a valid coupling
over pairs of graphs; the third equality used that E(G) ⊇
E(G′), and the fourth equality used the definition of the
expectation.

Notice that the final form is a non-negative linear combi-
nation of submodular and non-negative functions, which is
known to be submodular. This completes the proof.
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4.1 Proof of Lemmas

Proof of Lemma 6. Fix two graphs G,G′ on the same
vertex set V , with E(G) ⊇ E(G′). RG(S) ⊇ RG′(S) is obvi-
ous, so we focus on the second part of the lemma. To show
that ρ(S) is submodular, we will show a slightly stronger
statement. Let ∆R(S) := RG(S) \ RG′(S) be the actual
set of nodes reachable from S in G, but not in G′. We
will show that for all sets S ⊆ T and nodes v, we have
∆R(T + v) \ ∆R(T ) ⊆ ∆R(S + v) \ ∆R(S). This directly
implies submodularity of ρ(S) = |∆R(S)|.

By definition, a node u is in ∆R(S) if and only if there
exists a path from S to u in G, but not in G′. Thus, a node
u is in ∆R(T + v) \∆R(T ) if and only if there is (1) a path
from T + v to u in G, (2) no path from T + v to u in G′,
and (3) no path from T to u in G.

By the first and third condition, there must be a path
from v to u in G (since the addition of the source node v is
the only difference between those conditions). Hence, there
is a path from S + v to u in G. Second, because there is
no path from T + v to u in G′, and S ⊆ T , there cannot
be a path from S + v to u in G′. Third, because there
is no path from T to u in G, and S ⊆ T , there cannot
be a path from S to u in G. Hence, by definition, u is in
∆R(S+v)\∆R(S). In other words, u ∈ ∆R(T +v)\∆R(T )
implies that u ∈ ∆R(S + v) \∆R(S), completing the proof.

Proof of Lemma 5. We begin by proving the lemma for
the IC model, for which the coupling is simpler. We need
to decide, for each edge (u, v) independently, whether to
include (u, v) in G and G′. To do so, we generate, indepen-
dently for each (u, v), a number xu,v uniformly from [0, 1].
The edge (u, v) is included in G iff xu,v ≤ pu,v; similarly,
(u, v) is included in G′ iff xu,v ≤ p′u,v. Thus, the inclusion
probabilities are correct. Furthermore, because pu,v ≥ p′u,v
by assumption, whenever (u, v) is included in G′, it is also
included in G. Thus, the proposed generative process is a
valid coupling for the IC model.

Next, we exhibit a valid coupling for the LT model. We
need to decide, for each node v independently, which single
incoming edge (u, v) (if any) to include in G and G′. We
use the following generative process. For each node v, we
consider the interval [0, 1]. For every edge (u, v) into v, we
place an interval Ju of length cu,v into the [0, 1] interval,
such that the intervals Ju, Ju′ for u 6= u′ are disjoint. This
is possible because

∑
u cu,v ≤ 1. Then, for each node u, we

pick a subinterval J ′u ⊆ Ju of length c′u,v.
Finally, a random number xv is drawn uniformly at ran-

dom from [0, 1]. If xv lies in Ju, then (u, v) is inserted into
G, and if it lies in J ′u, then (u, v) is inserted into G′. If xv
does not lie in any of the Ju, then v has no incoming edge in
G; similarly for G′. Notice that the incoming edge in both
graphs is chosen with the correct distribution, proving that
we have a valid coupling. Furthermore, because J ′u ⊆ Ju,
whenever the edge (u, v) is included in G′, it is also included
in G, so that E(G) ⊇ E(G′), as desired.

4.2 A more general view
The Triggering Set technique we used in the proof of The-

orem 1 can be applied to prove a more general version of the
theorem. It shows that δθ,θ′(A0) is submodular whenever
the following two hold:

1. The diffusion model is equivalent to a Triggering Mod-
el.

2. Whenever θ ≥ θ′ holds pointwise, the random graphs
(G,G′) with parameters θ,θ′ can be coupled such that
E(G) ⊇ E(G′) always holds.

For example, [13] defined the “Only Listen Once” model:
in it, a node v is activated with some probability pv by the
first neighbor trying to convince it; if the attempt is unsuc-
cessful, all subsequent activation attempts deterministically
fail. [13] showed that this model is equivalent to a Triggering
Model in which a node has live incoming edges from all of its
neighbors with probability pv, and from none of its neigh-
bors with probability 1− pv. When pv ≥ p′v for all v, these
decisions can be coupled like the presence of single edges in
the IC model. Thus, Influence Difference Maximization is
also submodular for the “Only Listen Once” model.

More generally, the conditions under which a coupling is
possible are characterized by Strassen’s Monotone Coupling
Theorem [21]:

Theorem 7 (Strassen [21]). Let (X ,�) be a finite par-
tially ordered set, and let µ, ν be probability distributions on
X . If µ stochastically dominates ν8, then there exist (cou-
pled) random variables M ∼ µ,N ∼ ν such that M � N
always holds.

Strassen’s Theorem can be applied with X being the set
of all subsets of edges, ordered by the ⊆ order. We obtain
the following corollary:

Corollary 8. Consider any Influence Maximization mod-
el equivalent to a Triggering model, and instances with pa-
rameters θ,θ′. The Influence Difference Maximization ob-
jective function δθ,θ′(S) is submodular whenever GMod

θ s-

tochastically dominates GMod
θ′ .

5. EXPERIMENTS
While we saw in Section 1.2 that examples highly suscep-

tible (with errors of magnitude Ω(n)) to small perturbations
exist, the goal of this section is to evaluate experimentally
how widespread this behavior is for realistic social networks.

5.1 Experimental Setting
We carry out experiments under the IC model, for six

classes of graphs — four synthetic and two real-world. In
each case, the model/data give us a simple graph or multi-
graph. Multigraphs are converted to simple graphs by col-
lapsing parallel edges to a single edge with weight ce e-
qual to the number of parallel edges; for simple graphs, all
weights are ce = 1. The observed probabilities for edges are
pe = ce · p; across experiments, we vary the base probability
p to take on the values {0.01, 0.02, 0.05, 0.1}. The resulting
parameter vector is denoted by θ.

The uncertainty interval for e is Ie = [(1 − ∆)pe, (1 +
∆)pe]; here, ∆ is an uncertainty parameter for the estima-
tion, which takes on the values {1%, 5%, 10%, 20%, 50%} in
our experiments. The parameter vectors θ+ and θ− de-
scribe the settings in which all parameters are as large (as
small, respectively) as possible.

8We say that µ stochastically dominates ν if for every set
A ⊆ X which is upward-closed (i.e., x ∈ A and y � x implies
y ∈ A), µ(A) ≥ ν(A).
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5.2 Network Data
We run experiments on four synthetic networks and two

real social networks. Synthetic networks provide a controlled
environment in which to compare observed behavior to ex-
pectations, while real social networks may give us indica-
tions about the prevalence of vulnerability to perturbations
in real networks that have been studied in the past.

Synthetic Networks. We generate synthetic networks
according to four widely used network models. In all cas-
es, we generate undirected networks with 400 nodes. The
network models are: (1) the 2-dimensional grid, (2) random
regular graphs, (3) the Watts-Strogatz Small-World (SW)
Model [24] on a ring with each node connecting to the 5
closest nodes on each side initially, and a rewiring probabil-
ity of 0.1. (4) The Barabási-Albert Preferential Attachment
(PA) Model [3] with 5 outgoing edges per node. For all
synthetic networks, we select k = 20 seed nodes.

Real Networks. We consider two real networks to eval-
uate the susceptibility of practical networks: one (STOC-
FOCS) is a co-authorship network of theoretical CS papers;
the other (Haiti) is a Retweet network.

The co-authorship network, STOCFOCS, is a multigraph
extracted from published papers in the conferences STOC
and FOCS from 1964–2001. Each node in the network is a
researcher with at least one publication in one of the con-
ferences. For each multi-author paper, we add a complete
undirected graph among the authors. As mentioned above,
parallel edges are then compressed into a single edge with
corresponding weight. The resulting graph has 1768 nodes
and 10024 edges. Due to its larger size, we select 50 seed
nodes.

The Haiti network is extracted from tweets of 274 users
on the topic Haiti Earthquake in Twitter. For each tweet
of user u that was retweeted by v, we add a directed edge
(u, v). We obtain a directed multigraph; after contracting
parallel edges, the directed graph has 383 weighted edges.
For this network, due to its smaller size, we select 20 seeds.

In all experiments, we work with uniform edge weight-
s p, since — apart from edge multiplicities — we have no
evidence on the strength of connections. It is a promising
direction for future in-depth experiments to use influence
strengths inferred from real-world cascade datasets by net-
work inference methods such as [10, 11, 18].

5.3 Results
In all our experiments, the results for the Grid and Small-

World network are sufficiently similar that we omit the re-
sults for grids here. As a first sanity check, we empirically
computed maxS:|S|=1 δθ+,θ−(S) for the complete graph on
200 nodes with Ie = [1/200 · (1 − ∆), 1/200 · (1 + ∆)] and
k = 1. According to the analysis in Section 1.2, we would
expect extremely high instability. The results, shown in Ta-
ble 1, confirm this expectation.

∆ σθ+ σθ−

50% 66.529 1.955
20% 23.961 4.253
10% 15.071 6.204

Table 1: Instability for the clique K200.

Next, Figure 1 shows the (approximately) computed val-
ues maxS:|S|=k δθ+,θ−(S), and — for calibration purposes

— maxA0:|A0|=k σθ(A0) for all networks and parameter set-
tings. Notice that the figure shows the computed values;
in reality, maxS δθ+,θ−(S) could be up to about a factor e
larger than the displayed values due to the loss of an ap-
proximation factor.

While individual networks vary somewhat in their suscep-
tibility, the overall trend is that larger estimates of baseline
probabilities p make the instance more susceptible to noise,
as do (obviously) larger uncertainty parameters ∆. In par-
ticular, for ∆ ≥ 20%, the noise (after scaling) dominates
the Influence Maximization objective function value, mean-
ing that optimization results should be used with care. On
the other hand, when ∆ ≤ 10%, even the scaled-up mises-
timation is noticeably less than the Influence Maximization
objective, so that reasonable approximation guarantees are
obtained even for perturbed data.

Next, we compute what approximation guarantees could
be given for the instances using Formula (8). Specifically, us-
ing θ as the observed edge probabilities, we run the standard
greedy algorithm for Influence Maximization to determine a
set A0. Based on this set and the lower bounds θ−, the
value α− is directly computed. To compute α+, we run the
Random Greedy Influence Difference Maximization algorith-
m on δθ+,θ(S) and scale up the maximum value it finds by
a factor e. We use the best solution of 10 independent run-
s of the Influence Difference Maximization algorithm. The
objective function value is approximated using M = 2000
iterations of the Monte Carlo simulation. As discussed in
Section 3.2, since k � n in all our experiments, the approx-
imation guarantee is very close to 1/e, so that this scaling
ensures that α+ does not underestimate the effect of pertur-
bations. Using all of these values, we can now estimate the
approximation guarantee using Formula (8). The results are
shown in Figure 2.

In interpreting Figure 2, notice that even with perfec-
t data, one cannot exceed an approximation guarantee of
1− 1/e ≈ 0.63. As indicated already by Figure 1, when the
baseline probability is large and the error exceeds 20%, the
approximation guarantee begins to deteriorate significantly.
According to Formula (8), Influence Maximization can toler-
ate α+ > 1, which corresponds to significant perturbations
that make parameter values larger. On the other hand, for
deviations that make parameter values smaller (which would
indicate that the solution A0 may only appear good based on
an overestimate of some parameters), a value of α− close to
1 would have devastating effects. (α− > 1 is impossible by
definition.) Fortunately, α− is computed only for one spe-
cific set A0, and thus not subject to the 1/e approximation
factor for Influence Difference Maximization.

Next, we evaluate the dependence of the noise tolerance
on the degrees of the graph, by experimenting with ran-
dom d-regular graphs whose degrees vary from 5 to 25. It
is known that such graphs are expanders with high prob-
ability, and hence have percolation thresholds of 1/d [2].
Accordingly, we set the base probability to (1 + α)/d with
α ∈ {−40%,−20%, 0, 20%, 40%}. We use the same setting
for uncertainty intervals as in the previous experiments. Fig-
ure 3 shows the ratio between Influence Difference Maxi-

mization and Influence Maximization, i.e.,
maxS δθ+,θ− (S)

maxS σθ(S)
,

with α = 0. (The results for α 6= 0 are similar and omitted
due to space constraints.) It indicates that for random regu-
lar graphs, the degree does not appear to significantly affect
stability, and that again, noise around 20% begins to pose
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(a) Small World (b) PA (c) STOCFOCS (d) Haiti

Figure 1: Comparison between Influence Difference Maximization and Influence Maximization results for
four different networks.

(a) Small World (b) PA (c) STOCFOCS (d) Haiti

Figure 2: Approximation Guarantees according to the bound in (8), for four different networks.

Figure 3: Ratio between Influence Difference Maxi-
mization and Influence Maximization under random
regular graphs with different degree.

a significant challenge. Moreover, we observe that the ap-
proximation guarantee reaches its minimum when the edge
activation probability is exactly at the percolation threshold
1/d. This result is in line with percolation theory and also
the analysis of Adiga et al. [1].

As a general takeaway message, decent approximation
guarantees are obtained when the noise is below 10%, and in
some cases even for noise around 20%. However, for larger
amounts of noise — which may well occur in practice — a
lot of caution is advised in using the results of algorithmic
Influence Maximization.

6. DISCUSSION
We began a study of the stability of Influence Maximiza-

tion when the input data are adversarially noisy. We showed
that estimating the susceptibility of an instance to pertur-
bations can be cast as an Influence Difference Maximization
problem with a non-monotone submodular objective func-
tion. This let us leverage known algorithms for maximizing
such functions to evaluate the susceptibility of real and syn-
thetic data sets. In the examples we studied, typically, rela-
tive perturbations of less than 10% still lead to satisfactory
solutions for Influence Maximization, while relative pertur-
bations above 20% lead to significant risk of wrong outputs.
Given the noise inherent in all estimates of social network
data, this suggests applying extreme caution before relying
heavily on results of algorithmic Influence Maximization.

Our work raises a number of interesting questions for
follow-up work. First, while we prove submodularity of In-
fluence Difference Maximization for the IC and LT models, it
is an interesting question whether Influence Difference Max-
imization is submodular under more general models, such as
the General Threshold Model [13, 17], and how general of
an adversarial perturbation model can be tolerated. A path
towards an extension to Triggering Models is suggested by
Corollary 8. However, while a full characterization of mod-
els equivalent to Triggering Models was achieved by Salek
et al. [20], it is not clear how to leverage such a characteri-
zation to determine what pairs of parameter vectors lead to
stochastic domination.

Second, our adversarial model specified a valid range of
parameters for each parameter of the model, and allowed
the adversary to perturb the parameters arbitrarily within
that range. Instead, we may posit an upper bound on the

1264



total (or total squared) perturbation the adversary can ap-
ply; such a bound creates dependencies between the pertur-
bations at different nodes, making it much harder to even
determine which legal parameter setting would maximize
|δθ,θ̂(S)| for a given set S.

While we begin an investigation of how pervasive suscep-
tibility to perturbations is in Influence Maximization data
sets, our investigation is necessarily limited. Most impor-
tantly, ground truth data are by definition impossible to
obtain, and even good and reliable inferred data sets of ac-
tual influence probabilities are currently not available. The
values we assigned for our experimental evaluation cover a
wide range of parameter values studied in past work, but the
community does not appear to have answered the question
whether these ranges actually correspond to reality.

At an even more fundamental level, the models themselves
have received surprisingly little thorough experimental val-
idation, despite having served as models of choice for hun-
dreds of papers over the last decade. In addition to verifying
the susceptibility of models to parameter perturbations, it
is thus a pressing task to verify how susceptible the opti-
mization problems are to incorrect models. The verification
or falsification of sociological models for collective behav-
ior likely falls outside the expertise of the computer science
community, but nonetheless needs to be undertaken before
any significant impact of work on Influence Maximization
can be truthfully claimed.
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