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ABSTRACT
Cardiac disease is the leading cause of death around the
world; with ischemic heart disease alone claiming 7 million
lives in 2011. This burden can be attributed, in part, to the
absence of biomarkers that can reliably identify high risk pa-
tients and match them to treatments that are appropriate
for them. In recent clinical studies, we have demonstrated
the ability of computation to extract information with sub-
stantial prognostic utility that is typically disregarded in
time-series data collected from cardiac patients. Of partic-
ular interest are subtle variations in long-term electrocar-
diographic (ECG) data that are usually overlooked as noise
but provide a useful assessment of myocardial instability. In
multiple clinical cohorts, we have developed the pathophys-
iological basis for studying probabilistic variations in long-
term ECG and demonstrated the ability of this information
to effectively risk stratify patients at risk of dying following
heart attacks. In this paper, we extend this work and focus
on the question of how to reduce its computational complex-
ity for scalable use in large datasets or energy constrained
embedded devices. Our basic approach to uncovering patho-
logical structure within the ECG focuses on characterizing
beat-to-beat time-warped shape deformations of the ECG
using a modified dynamic time-warping (DTW) and Lomb-
Scargle periodogram-based algorithm. As part of our efforts
to scale this work up, we explore a novel approach to address
the quadratic runtime of DTW. We achieve this by develop-
ing the idea of adaptive downsampling to reduce the size of
the inputs presented to DTW, and describe changes to the
dynamic programming problem underlying DTW to exploit
adaptively downsampled ECG signals. When evaluated on
data from 765 patients in the DISPERSE2-TIMI33 trial, our
results show that high morphologic variability is associated
with an 8- to 9-fold increased risk of death within 90 days of
a heart attack. Moreover, the use of adaptive downsampling
with a modified DTW formulation achieves a 7- to almost
20-fold reduction in runtime relative to DTW, without a
significant change in biomarker discrimination.
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1. INTRODUCTION
Heart disease is the leading cause of death around the world.
The burden of ischemic heart disease alone in 2011 was 7
million lives [23]. In the United States, heart disease claims
830,000 lives each year (34% of all deaths, or one death ev-
ery 38 seconds) [14]. Nearly 151,000 of these deaths take
place in patients under the age of 65, and a third occur
before the age of 75 [14]. Much of the difficulty in reduc-
ing this burden follows from an inability to match cardiac
patients to treatments that are most appropriate for their
individual risk. As one example of this, devices such as
implantable cardioverter defibrillators (ICDs) can be life-
saving for patients who experience fatal arrhythmias (over
300,000 sudden cardiac deaths in the U.S. each year among
patients with diagnosed coronary disease) [16]. In most of
these cases, the effects of the arrhythmia can be reversed if
the victim is treated with an electrical shock within the first
few minutes. However, existing decision-making methods
fail to prescribe ICDs to the majority of patients who die
[4]. Conversely, most of the patients who do presently re-
ceive an ICD do not receive any benefit from their device [4],
resulting in an unnecessary risk to patients and unnecessary
costs to the healthcare system.

Physicians use a variety of biomarkers to estimate patient
risk and to match patients to treatments. In the setting
of heart disease, these biomarkers are typically limited to
information available through blood-based measurements of
biochemical substrates (e.g., troponin I, C-reactive protein,
and brain natriuretic peptide), or through imaging (e.g., left
ventricular ejection fraction obtained through echocardiog-
raphy) [12, 10]. In both these cases, the focus is on studying
information that is present in instantaneous (i.e., ‘snapshot’)
data, and where this information can be directly measured
with limited or no computational aid. Despite these efforts,
however, finding biomarkers that can accurately assess pa-
tient risk remains a challenge. For instance, while depressed
left ventricular ejection fraction is commonly used to iden-
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tify high risk patients following heart attacks, the absolute
number of deaths is far greater among patients with rela-
tively preserved left ventricular function [8].

Our recent research aims to address this situation through
novel biomarkers that are computationally derived from phys-
iological time-series, and that are designed to offer comple-
mentary information to existing blood- or imaging-based
markers. Of particular interest is information potentially
available in long-term electrocardiographic (ECG) signals.
The ECG provides a continuous assessment of the electrical
activity of the heart, and is routinely collected from pa-
tients during hospitalization to determine heart rate and
detect arrhythmias. ECG has the advantage of being easy
to acquire; the electrical activity of the heart can be mea-
sured on the surface of the body in an inexpensive and non-
invasive manner over long periods. In an in-patient setting,
the ECG is typically captured by bedside monitors. In an
out-patient setting, a Holter monitor (a portable ECG de-
vice worn by patients) can record data continuously over
multiple days. Since the ECG is routinely collected from
patients in a wide variety of clinical settings, computational
biomarkers deriving from long-term ECG time-series can be
incorporated broadly into clinical practice without the need
for any new hardware or without creating any additional
burden on patients or caregivers.

In this paper, we focus on the question of how we can
leverage long-term recordings of ECG activity (over days) to
discover information that is unrecognized in previous stud-
ies centered on small snippets of data (over seconds). Our
recent experiments, reported in the clinical literature [21],
have approached this question by exploring the hypothesis
that much of what is commonly perceived as noise in ECG
signals may contain subtle but useful information about the
health of the heart. The theory underlying this work is that
increased variability in the morphology of ECG time-series
is likely associated with a lack of consistency and repeata-
bility in the electrical function of the heart. In other words,
persistent fluctuations in the shape of the ECG waveform
may suggest electrical instability in the heart muscle pre-
disposing patients to fatal arrhythmias. The challenge in
detecting this variability, however, is in being able to distin-
guish between shape deformations associated with patholog-
ical phenomena reflecting the health of the underlying heart
muscle, and changes associated with artifacts that represent
true noise. Making this distinction is difficult in short ECG
recordings, but with the availability of long-term ECG time-
series, pathological variations can be distinguished from true
noise as structure that is persistent over long periods of time.

In preliminary clinical studies, we have developed the com-
putationally generated ECG biomarker of pathological mor-
phologic variability (which we subsequently refer to only as
morphologic variability or MV) in long-term ECG to predict
death following heart attacks. As a first step, our approach
to measuring MV makes use of a modified dynamic time-
warping (DTW)-based algorithm to quantify time-warped
shape deformations in ECG time-series over long periods of
time. As a second step, we draw upon a Lomb-Scargle pe-
riodogram approach to analyze the resulting non-uniformly
sampled time-series representation of aggregate noise in the
ECG for pathological structure. While the use of this method-
ology has shown promise in clinical cohorts [21] and provides
information that is complementary to existing markers based
on patient history and physical exam findings, echocardio-

graphy, and blood-based laboratory reports, our prior work
has demonstrated the clinical utility of MV and not focused
on the question of how to scale this basic approach to large
databases of long-term ECG time-series or use in embed-
ded devices (e.g., pacemakers and ICDs). To achieve this,
we investigate here a novel approach that reduces the com-
putational runtime of DTW through an adaptive downsam-
pling of time-series inputs. The use of adaptive downsam-
pling significantly reduces the ECG data presented to DTW
while preserving rapidly changing waves (e.g., the QRS com-
plex) smoothed out by existing downsampling approaches.
However, due to adaptively downsampling rapidly changing
parts of the ECG time-series less than more slowly chang-
ing parts of the signals, this approach also requires changes
to the dynamic programming problem underlying DTW. In
this paper, we present solutions for both the goal of adap-
tively downsampling ECG time-series, and for modifying the
DTW dynamic programming formulation to leverage adap-
tively downsampled inputs.

We evaluate our ideas on data from 765 patients pre-
senting with acute coronary syndrome in the DISPERSE2-
TIMI33 trial. Our results show that high MV is associated
with an 8- to 9-fold increased risk of death within 90 days
of a heart attack. Moreover, the use of adaptive downsam-
pling with a modified DTW formulation achieves an almost
4-fold reduction in runtime relative to DTW, without a sig-
nificant change in biomarker discrimination. In contrast,
existing downsampling approaches obtain a similar reduc-
tion in runtime but with noticeably worse performance for
risk prediction.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background on ECG time-series and the
pathophysiological basis for our efforts to mine noise in ECG
time-series for information relevant to cardiac risk predic-
tion. Section 3 describes the methodology for measuring MV
using a modified DTW- and Lomb-Scargle periodogram-
based approach. Section 4 proposes the concept of adaptive
downsampling, and details how adaptive downsampling can
be incorporated within the measurement of MV to scale it
up to large amount of long-term time-series data. Section
5 presents the datasets and evaluation methodology for our
study. Section 6 discusses the results of our experiments.
Section 7 offers a summary and conclusions.

2. BACKGROUND
We begin with a brief background on ECG time-series and
on the pathophysiological basis for mining noise in ECG
time-series for information useful in predicting future cardiac
risk.

2.1 Electrocardiogram
The ECG is a continuous recording of the electrical activity
of the heart muscle or myocardium[13]. At rest, each car-
diac muscle cell maintains a voltage difference across its cell
membrane. During depolarization (i.e., the ‘firing’ of the
heart muscle), this voltage increases. Consequently, when
depolarization is propagating through a cell, there exists a
potential difference on the membrane between the part of
the cell that has been depolarized and the part of the cell at
resting potential. After the cell is completely depolarized,
its membrane is uniformly charged again, but at a more
positive voltage than initially. The reverse situation takes
place during repolarization, which returns the cell to base-
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(a) Single ECG beat (b) Continuous ECG tracing

Figure 1: (a) Schematic representation of the normal ECG for a single heart beat, and (b) example recording
of ECG waveform.

line. These changes in potential, summed over many cells,
can be measured by electrodes placed on the surface of the
body, leading to the ECG time-series.

The ECG is a quasi-periodic signal (i.e., corresponding to
the quasi-periodic nature of cardiac activity). Three major
segments can be identified in a normal ECG. The P wave is
associated with depolarization of cardiac cells in the upper
two chambers of the heart (i.e., the atria). The QRS com-
plex (comprising the Q, R and S waves) is associated with
depolarization of cardiac cells in the lower two chambers
of the heart (i.e., the ventricles). The T wave is associated
with repolarization of the cardiac cells in the ventricles. The
QRS complex is larger than the P wave because the ven-
tricles are much larger than the atria. The QRS complex
also coincides with the repolarization of the atria, which is
therefore usually not seen on the ECG. The T wave has a
larger width and smaller amplitude than the QRS complex
because repolarization takes longer than depolarization[13].
Figure 1(a) presents a schematic representation of the nor-
mal ECG, while Figure 1(b) shows an example tracing of a
continuous ECG time-series over a few seconds.

2.2 Pathophysiology
In a healthy myocardium, the pathways of depolarization
through excitable cells are usually similar for consecutive
heart beats. However, in the presence of abnormalities, the
conducting system has multiple irregular islands of severely
depressed and unexcitable myocardium [7] (Figure 2). These
lead to discontinuous electrical characteristics of the heart
muscle, and create a situation analogous to the presence of
race conditions within the heart. The presence of several
possible adjacent pathways (e.g., the pathways shown in red
and blue in Figure 2) that can potentially invade the non-
functioning area leads to variations in the spatial direction of
the invading vector [2]. Measured electrical activity in this
setting is best described in a highly variable form, stemming
from subtle unstable conduction bifurcations. Furthermore,
the propagation of a beat may be dependent on the route of
propagation of the previous beat. The overall effect of such
minor conduction inhomogeneities is not well understood,
but it is believed that they correlate with myocardial elec-
trical instability and have potentially predictive value for
ventricular arrhythmias [2] or other adverse events.

(a) Healthy myocardium

(b) Unhealthy myocardium

Figure 2: Illustration of process underlying noise-
like pathological variability in ECG time-series. In
healthy myocardium, electrical impulses are con-
ducted smoothly through the heart muscle. In un-
healthy myocardium (e.g., due to the presence of is-
chemia), unstable conduction bifurcations result in
the path of impulse propagation, and consequently
the ECG morphology, changing from beat to beat.

3. MORPHOLOGIC VARIABILITY (MV)
In this section, we describe our basic approach to measure
MV in ECG time-series. In developing this methodology, we
note that key challenges to measuring pathological variabil-
ity that is often overlooked as noise in ECG signals include
dealing with the presence of true noise and time-skew in
these data, and addressing the need to discover potentially
low amplitude disease signatures in the presence of high am-
plitude baseline activity. Section 4 describes how this basic
approach can be scaled to very large volumes of ECG time-
series through the use of adaptive downsampling.

For every pair of consecutively occurring beats in an ECG
time-series, we quantify how the shapes of the beats dif-
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Figure 3: Comparison of time-warped shape de-
formations in ECG beats using DTW. In contrast
to comparing activity that is time-aligned but not
physiologically aligned (left), we use DTW in our
study to relate similar parts of the ECG waveforms
across beats in the presence of time skew.

fer using a variant of DTW (Figure 3). Given time-series
Q = q1, . . . , qn and C = c1, . . . , cm, DTW first constructs
an n-by-m distance matrix where each entry (i, j) repre-
sents the distance d(qi, cj). The l2 norm is typically used
to measure d(qi, cj). DTW then finds the minimum cost
path W = w1, . . . , wk, . . . , wK through this distance matrix
where wk = (ik, jk) relates the ik-th sample of Q to the jk-th
sample of C. The minimum cost path has the cost:

K∑
k=1

d(qik , cjk )

and is subject to several constraints, including boundary
conditions, continuity, and monotonicity[3]. This optimal
path can be found efficiently using dynamic programming
with the following recurrence:

γ(i, j) = d(qi, cj) + min

 γ(i− 1, j − 1)
γ(i− 1, j)
γ(i, j − 1)

where γ(i, j) is the cumulative distance of the path from the
start to cells (i, j). From simple observation, DTW (Q,C) =
γ(n,m) and the time and space complexity of this method
is O(nm).

We restrict the local range of the alignment path in the
vicinity of a point to prevent biologically implausible align-
ments of large parts of one beat with small parts of an-
other. For example, for an entry (i, j) in the distance ma-
trix, we only allow valid paths passing through (i−1, j−1),
(i−1, j−2), (i−2, j−1), (i−1, j−3) and (i−3, j−1). This is
an adaptation of the Type III and Type IV local continuity
constraints proposed by Myers et al. [17] and ensures that
there are no long horizontal or vertical edges along the op-
timal path through the distance matrix, corresponding to a
large number of different samples in one beat being aligned
with a single sample in the other. This leads to the following
recurrence relation (also shown graphically in Figure 4):

γ(i, j) = d(qi, cj)+

min


γ(i− 1, j − 1)
d(qi−1, cj) + γ(i− 2, j − 1)
d(qi−1, cj) + d(qi−2, cj) + γ(i− 3, j − 1)
d(qi, cj−1) + γ(i− 1, j − 2)
d(qi, cj−1) + d(qi, cj−2 + γ(i− 1, j − 3)

(a) Original DTW (b) Constrained DTW

Figure 4: Illustration of possible path alignments.

The process described here transforms the original ECG
time-series into a sequence of time-warped morphology dif-
ferences between consecutive beats. To characterize patho-
logical structure within this sequence, we study its spec-
tral characteristics. Since the activity of the heart is quasi-
periodic (i.e., since the heart does not beat at an exact
rate), the time gap between the samples of the sequence con-
structed through DTW is not uniform. We address this issue
by estimating the power spectral density of the morphology
differences time-series using the Lomb-Scargle periodogram
[15]. For a time series where the value m[n] is sampled at
time t[n], the Lomb-Scargle periodogram estimates the en-
ergy at frequency ω as:

P (ω) =
1

2σ2

(∑
n[(m[n]− µ) cosω(t[n]− τ)]2∑

n cos2 ω(t[n]− τ)

+

∑
n[(m[n]− µ) sinω(t[n]− τ)]2∑

n sin2 ω(t[n]− τ)

)
where µ and σ are the mean and variance of the m[n], and
τ is defined as :

tan(2ωτ) =

∑
n sin(2ωt[n])∑
n cos(2ωt[n])

We define our computationally generated biomarker, MV,
as energy between 0.30 and 0.55 Hz (as estimated from the
Lomb-Scargle periodogram) in the time-series of aggregate
morphology changes constructed using DTW. The range of
0.30 to 0.55 Hz is based on theoretical and empirical ob-
servations suggesting that the discriminative ability of MV
for predicting death following heart attacks is maximized
over this range [22]. A flow chart of the whole process for
generating MV is shown in Figure 5.

4. SCALING TO LARGE DATASETS
The basic methodology described in Section 3 parallels the
approach investigated in our earlier clinical experiments [21].
Here, we focus on the question of how this methodology can
be scaled for use with very large volumes of ECG data.
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Figure 5: Flow chart of the process for generating
Morphological Variability (MV).

The runtime of measuring MV is dominated by the time
taken to quantify time-warped morphology differences be-
tween consecutive beats. For a total of p beats in an ECG
time-series of length less than n, the computational com-
plexity of this step is O(pn2). While reducing the number
of consecutive pairs of beats to be examined (i.e., reducing
p) offers one approach to reduce the overall runtime of MV,
this approach is made challenging by multiple factors (e.g.,
poorer estimation of spectral energy, less data available to
distinguish between persistent pathological variations and
true noise, increased latency for real-time decision-making
etc.). As a result, our efforts largely center on addressing
the quadratic runtime of DTW (i.e., reducing the n2 term
above). We achieve this by exploring the idea of adaptively
downsampling the time-series inputs to DTW, and describe
how the dynamic programming problem inherent in DTW
can be evolved to handle adaptively downsampled signals.

4.1 Adaptive Down-sampling (ADAP)
Our work builds upon the use of downsampling to improve
the efficiency of the basic DTW algorithm.The general idea
underlying this approach is to reduce the O(n2) runtime
of DTW by reducing the sizes of its inputs. Popular ex-
isting approaches such as aggregate approximation (PAA)
[9] and FastDTW [19] achieve this by downsampling signals
uniformly, i.e., by a constant factor across time. We note
that while the use of downsampling improves the runtime
and space efficiency of DTW, the decision to carry out this
downsampling by a constant factor over time causes both

rapidly and slowly changing parts of a signal to be treated
similarly. Downsampling in this case may be associated with
the loss of important information.

We believe that this process can be improved by exploiting
slowly changing parts of a signal by downsampling them at
a higher rate than rapidly changing regions. In contrast
to PAA and FastDTW, we therefore propose the idea of
adaptive downsampling where the rate of reduction of time
series varies according to the rate of changes taking place
locally. This allows for the reduction of time series, while
retaining sharp changes that would otherwise be smeared if
downsampling were applied uniformly to the entire signal.

We achieve adaptive downsampling using trace segmenta-
tion [11]. While we describe this approach in more detail
subsequently, the basic idea underlying trace segmentation
is to divide the signal into regions with equal cumulative
derivative activity. This places a higher number of bound-
aries for downsampling in regions that are rapidly changing
(i.e., have higher cumulative derivative activity).

More formally, given a signal Q = q1, . . . , qn and a number
of frames θ to downsample this signal to, we first calculate
the cumulative difference DQ[k] for k = 2, . . . , n between
each neighboring pair of samples:

DQ[k] =

k∑
i=2

| qi − qi−1 | (1)

with DQ[1] = 0. The sum of the total differences in Q is
given by DQ[n]. The cumulative difference in each adaptive

downsampling bin is then set to dQ =
DQ[n]

θ
. Using this,

downsampling proceeds by finding the sample numbers ti
for i = 0, . . . , θ such that for all values of i we have:

ti = min{k | DQ[k] ≥ dQ · i} (2)

The corresponding amplitudes of Q at samples ti are given
by xi = qti . We can then use interpolation to approximate
the fractional sample numbers t̂i where we would expect
DQ[t̂i] = dQ · i. For i = 0, . . . , θ using the notation:

βi =
DQ[ti]− dQ · i

DQ[ti]−DQ[ti − 1]
(3)

we have:

t̂i = ti − βi
x̂i = qti − βi(qti − qti−1) (4)

The resulting adaptively downsampled representation of
the original signal Q is given by two series corresponding to
time and amplitude:

TQ = t̂0, t̂1, . . . , t̂i, . . . , t̂θ

XQ = x̂0, x̂1, . . . , x̂i, . . . , x̂θ (5)

This process can be carried out in time that is linear in the
size of the input. Figure 6 presents the trace segmentation
approach for downsampling graphically.

For ECG time-series, trace segmentation can preserve im-
portant information related to sharply changing parts of the
signal (e.g., the QRS complex). This is illustrated in Fig-
ure 7. In contrast to PAA, a similar number of adaptively
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Figure 6: An illustration of the trace segmentation
process.

downsampled segments provide a better characterization of
notching within the R wave and also the sharpness of the
S wave. While PAA achieves good results in a variety of
real-world application domains, we believe the distinctions
retained by adaptively downsampling are relevant to the spe-
cific goal here of measuring MV to predict death following
heart attacks.

4.2 DTW with ADAP
DTW searches for the optimal alignment between two se-
quences in an efficient manner using dynamic programming.
For uniformly downsampled signals, the dynamic program-
ming process is essentially unchanged, although it is applied
to reduced representations of the original signals. For adap-
tively downsampled signals, however, the cost of alignment
cannot be calculated in a similarly simple manner from the
Euclidean distance between the samples of the downsampled
representations. Since the original signal is now divided into
segments of variable lengths, this length information needs
to be factored into consideration when deriving the distances
for the DTW dynamic programming recurrence.

We represent two adaptively downsampled signals Q and
C as comprised of segments sq(1),. . .,sq(θ) and sc(1),. . .,sc(θ)
respectively, with θ corresponding to the number of down-
sampled segments. The amplitude of each segment sq(i) is

(a) Original

(b) PAA

(c) ADAP

Figure 7: Adaptive downsampling of ECG signals.

represented by xq(i) and the duration by lq(i) (similar nota-
tion is used for the amplitude and duration of each segment
sc(i)). Using this notation, we describe the process through
which the dynamic programming of DTW can be modified
to handle adaptively downsampled segments.

Figure 8 shows, from left to right, three separate pos-
sibilities when aligning adaptively downsampled segments.
In each case, the alignments of the adaptively downsam-
pled segments are illustrated at the top, and the alignments
of the original signals are illustrated below. The leftmost
subfigure shows the situation where the adaptively down-
sampled segments are diagonally aligned, i.e. segment sq(i)
is aligned with segment sc(j), while sq(i + 1) is aligned
with segment sc(j + 1). Intuitively, we expect the warp-
ing path between the samples comprising the segments sq(i)
and sc(j) in the original signals to be close to the diagonal.
Without solving for the optimal path of alignment between
these original samples, we approximate the cost of align-
ment between the segments sq(i) and sc(j) as the product
of d(sq(i), sc(j)) (i.e., the Euclidean distance of xq(i) and
xc(j)) and max(lq(i), lc(j)) (i.e., an estimate for the length
of a diagonal path). We adopt a similar approach for the
subfigure shown in the middle of Figure 8. In this case,
the adaptively downsampled segment sq(i) is aligned with
both sc(j) and sc(j + 1). Again, without solving for the
optimal path of alignment between the original samples for
these segments, we expect the path of alignment for the
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Figure 8: Illustration of derivation for adaptive re-
currence equation. Left subfigure shows the diago-
nal case, the middle shows the horizontal case, while
the right subfigure shows the vertical case.

samples comprising sq(i) and sc(i) to be roughly horizontal.
We therefore approximate the length of this path to be the
product of d(sq(i), sc(j)) and lq(i). The situation shown in
the rightmost subfigure (i.e., a roughly vertical path of align-
ment for the samples comprising sq(i) and sc(j)) is treated
analogously.

We note that our approach of modifying the dynamic pro-
gramming of DTW for use with adaptive downsampling ap-
proximates the path length in each case, and this approx-
imation may not be optimal. However, this approach pro-
vides a simple way to augment the dynamic programming of
DTW. In particular, in this setting, the recurrence relation
for the cumulative path distance γ(i, j) till the adaptively
downsampled segments i and j can be represented as:

γ(i, j) = min

 γ(i, j,d)
γ(i, j,h)
γ(i, j,v)

where the cumulative path distance γ(i, j) depends on the
direction in which the path proceeds next (i.e., diagonal d,
horizontal h, or vertical v) and:

γ(i, j,d) = d(sq(i), sc(j)) max(lq(i), lc(j))+

min

 γ(i− 1, j − 1,d)
γ(i− 1, j,h)
γ(i, j − 1,v)

γ(i, j,h) = d(sq(i), sc(j))lq(i) + min

 γ(i− 1, j − 1,d)
γ(i− 1, j,h)
γ(i, j − 1,v)

γ(i, j,v) = d(sq(i), sc(j))lc(j) + min

 γ(i− 1, j − 1,d)
γ(i− 1, j,h)
γ(i, j − 1,v)

4.3 Path Constraints
In Section 3 we described a modification to the basic DTW
recurrence relation to find more biologically plausible align-
ments (i.e., the situation shown in Figure 4). In this case,
we made use of the recurrence relation:

γ(i, j) = d(qi, cj)+

min


γ(i− 1, j − 1)
d(qi−1, cj) + γ(i− 2, j − 1)
d(qi−1, cj) + d(qi−2, cj) + γ(i− 3, j − 1)
d(qi, cj−1) + γ(i− 1, j − 2)
d(qi, cj−1) + d(qi, cj−2) + γ(i− 1, j − 3)

We adopt an analogous approach to constrain DTW with
adaptive downsampling for more meaningful alignments. Since
the original signal is divided into unequally sized segments,
we note that the above recurrence would not be directly ap-
plicable. Instead of restricting valid paths to pass through
no more than 3 consecutive horizontal or vertical steps, we
therefore restrict the path to traverse through at most k
steps such that no such implausible alignment would occur.
In other words, a segment sq(i) is only allowed to align with
segments of sc such that the total length of those k segments
is no greater than three times the length of sq(i), which can

be expressed as 3 · lq(i) ≤
∑k
n=1 lc(j − n).

5. EVALUATION
We evaluated our research on ECG data from patients in the
DISPERSE2-TIMI33 trial [5]. Patients in the DISPERSE2-
TIMI33 trial were enrolled if they experienced ischemic symp-
toms at rest for a duration exceeding 10 minutes with either
biochemical marker evidence of myocardial infarction (de-
fined as Tronponin-T, -I, or creatinine kinase-MB elevation
greater than the local myocardial infarction decision limit)
or ECG evidence of ischemia (defined as the presence of
new or presumably new ST-segment depression ≥0.05 mV,
transient ST-segment elevation ≥0.1 mV, or T-wave inver-
sion ≥0.1 mV in 2 or more contiguous leads). As part of
this study, continuous electrocardiographic (ECG) data were
recorded for a median duration of 4 days. Three-lead Life-
Card CF Holter monitors were placed within 48 hours of the
initial event, and the data were sampled at 128 Hz. Patients
were followed up for a period of 90 days for cardiovascular
death. In our study, we used data from the first 24 hours of
ECG recording during hospitalization to predict the risk of
death following heart attacks. There were a total of 765 pa-
tients in the DISPERSE2-TIMI33 trial with available ECG
signals used in this analyses, with 14 deaths during follow-
up. On average, each 24 hour recording contained 103,180
instantaneous heart rate measurements.

We evaluated MV, MV measured with downsampling us-
ing PAA, and MV measured with adaptive downsampling
for cardiovascular risk stratification in multiple ways. First,
we measured the areas under the receiver operating charac-
teristic curves (AUROCs), which reflects the ability of the
different MV approaches to discriminate between patients
who died during follow up and those that remained event
free. The AUROC is widely used in medicine, and is gen-
erally considered the standard for evaluating risk stratifica-
tion methods [1]. As part of this evaluation, we compared
the AUROC values for the downsampled MV approaches to
the basic MV algorithm without downsampling using the
method proposed by DeLong et al. [6] to assess whether
the changes are statistically significant. Second, we also as-
sessed the MV models with downsampling relative to the
basic MV algorithm without downsampling by measuring
the integrated discrimination improvement (IDI) proposed
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Table 1: Univariate association of MV and other
clinical variables with death following heart attacks.

Parameter Hazard Ratio P-value
Age>65 3.72 0.024
Women 2.76 0.054
Smoker 0.53 0.225

Hypertension 6.66 0.067
Diabetes 2.77 0.049

Hyperlipidemia 0.66 0.422
Previous Heart Attack 1.94 0.210

Previous Angina 2.86 0.103
ST depression>0.5mm 2.69 0.091

MV 5.16 0.002

by Pencina et al. [18]. This was done by translating the MV
values obtained through each approach into regression-based
probabilistic risk estimates, and then measuring the differ-
ence between the mean predicted probabilities of events and
non-events.

In addition to evaluating the predictive accuracy of MV
measured through each approach, we also evaluated the run-
time of the algorithms as the average time taken across
ten runs to compute MV for all patients. These experi-
ments were performed on a machine with quad-core Intel
Xeon X3450 processors (2.67 GHz, 8MB Cache) and 8 GB
RAM. The distance metrics were uniformly implemented in
C++ on the Red Hat Enterprise Linux Server release 5.6
(Tikanga).

Finally, we also assessed how the relative ranking of pa-
tients between the different MV approaches changed with
adaptive and non-adaptive downsampling. This metric was
used to study how downsampling moves patients relative to
each other while measuring MV. To measure this informa-
tion, we computed the average absolute difference in the
ranking of each patient by MV across different approaches.

6. RESULTS

6.1 Association of MV and death
The basic MV algorithm achieved an AUROC of 0.75 for
discriminating between high and low risk patients following
heart attacks. When the MV predictions were dichotomized
at a simple threshold (MV>50 vs. MV≤50), patients with
high MV were found to be at a significantly increased risk
of death following heart attacks (Figure 9). For compari-
son, we show the relative increase in risk between patients
with high and low MV, as well as the relative increases in
risk for a variety of existing clinical variables in Table 1.
In the DISPERSE2-TIMI33 dataset, MV identified a group
of patients at a higher relative risk than any of these other
metrics. These results are consistent with our earlier find-
ings reported in the clinical literature [20].

6.2 Scaling up MV to Large Datasets
Table 2 compares the AUROC for the basic MV algorithm
with the AUROCs obtained for MV measured with down-
sampling using PAA and MV measured with adaptive down-
sampling. For both the downsampling approaches, we exper-
imented with downsampling the original heart beat signals
to down to 30, 50 and 70 samples.

Figure 9: Kaplan-Meier mortality curve for patients
in high MV (MV>50; shown in red) and low MV
(MV≤50; shown in blue) groups. Patients with high
MV were at a consistently elevated risk of death over
the 90 day period following a heart attack.

Table 2: Comparison of AUROCs between DTW,
PAA-DTW, and ADAP-DTW

Methods AUROC P-value
DTW 0.748 Referent
PAA30 0.658 0.331
PAA50 0.669 0.345
PAA70 0.693 0.384
ADAP30 0.718 0.345
ADAP50 0.737 0.729
ADAP70 0.736 0.721

In general, downsampling the original signal led to a re-
duction in the discriminative ability of MV (although this
difference was not significant at the 5% level given the sam-
ple size). In all of our experiments, however, MV with adap-
tive downsampling achieved a higher AUROC than down-
sampling with PAA for a similar factor of reduction. These
results suggest that our use of adaptive downsampling re-
tained more information that was relevant to the task of
distinguishing between high and low risk patients than the
use of PAA for this application.

We also assessed changes in the clinical utility of MV with
downsampling by computing the IDI for each downsampled
approaches relative to the basic MV algorithm. These re-
sults are presented in Table 3. In this case, the data from our
experiments show that (consistent with the AUROC case)
the use of downsampling with PAA led to a small decrease
in performance. Conversely, the use of adaptive downsam-
pling actually resulted in an increase in discriminative per-
formance relative to the basic DTW algorithm as measured
by the IDI. The differences for both downsampling with PAA
and with adaptive downsampling relative to the basic DTW
algorithm was not significant at the 5% level given the sam-
ple size.
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Table 3: IDI comparing DTW with PAA-DTW and
ADAP-DTW

Methods IDI P-value
PAA30 -0.009 0.164
PAA50 -0.009 0.178
PAA70 -0.007 0.209
ADAP30 0.017 0.160
ADAP50 0.014 0.204
ADAP70 0.020 0.160

Table 4: Average change in patient ranks relative to
the basic DTW algorithm (shown as percentages of
the DISPERSE2-TIMI33 population).

Methods Change
PAA30 20.3%
PAA50 21.2%
PAA70 20.9%
ADAP30 18.3%
ADAP50 18.8%
ADAP70 18.4%

Table 5: Timing of the different MV algorithms.
Methods Time (sec)
DTW 146,940
PAA30 5,663
PAA50 7,311
PAA70 9,207
ADAP30 7,831
ADAP50 13,292
ADAP70 20,782

The relative changes in ranks of patients between the basic
DTW algorithm and the DTW approaches with downsam-
pling are shown in Table 4. Consistent with the AUROC and
IDI results, DTW with adaptive downsampling resulted in
a smaller relative change in rank within the DISPERSE2-
TIMI33 population relative to the basic DTW algorithm.

Finally, the timing results for the different methods are
shown in Table 5. While downsampling reduced the runtime
of the basic DTW algorithm substantially in each case, this
reduction was greater for PAA than with the use of adap-
tive downsampling. This result can be attributed to the
additional work that needs to be done to solve the modified
dynamic programming problem for adaptively downsampled
DTW. Comparing the PAA and adaptively downsampled
approaches based on time rather than downsampling fac-
tor, however, still showed a higher level of performance with
adaptive downsampling than with the use of PAA (e.g., for
PAA70 AUROC: 0.693, IDI: -0.007, average rank change:
20.9% and time: 9,207 vs. for ADAP30 AUROC: 0.718, IDI:
0.017, average rank change: 18.3% and time: 7,831)

7. CONCLUSION
In this paper, we studied the question of mining noise-like
variations in long-term ECG time-series to identify patients
at an increased risk of death following heart attacks. To
achieve this, we made use of a modified DTW- and Lomb-
Scargle periodogram-based approach that first transforms
ECG time-series into sequences of beat-to-beat time-aligned
morphology differences, and then relates properties of these
sequences to patient risk. While the ideas underlying this
work derive from our earlier experiments reported in the
clinical literature [21], we focused here on the question of
how this basic approach can be scaled to very large ECG
time-series databases and for use in embedded devices. As
part of this work, we investigated a novel approach to ad-
dress the quadratic runtime of DTW. In particular, we pro-
posed the idea of adaptive downsampling, i.e., downsam-
pling slowly changing parts of a signal much more than
rapidly changing parts of the same signal, to reduce the size
of the inputs presented to DTW while retaining a good rep-
resentation of the original time-series being compared. We
also described changes to the dynamic programming under-
lying DTW to exploit such adaptively downsampled signals,
where the downsampled segments may be of varying lengths.

We evaluated our ideas on real-world data from patients
within the DISPERSE2-TIMI33 trial. Our experiments sug-
gest that measuring MV with adaptive donwsampling sub-
stantially reduces runtime while providing similar perfor-
mance to the basic MV algorithm that is not optimized for
large volumes of data. In addition, the use of adaptive down-
sampling leads to more accurate performance than down-
sampling through the commonly used approach of PAA. We
believe that these ideas may have additional merit in clini-
cal applications where physiological time-warping is an issue
during stratification.
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