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ABSTRACT
The diffusion of information, rumors, and diseases are assumed to
be probabilistic processes over some network structure. An event
starts at one node of the network, and then spreads to the edges
of the network. In most cases, the underlying network structure
that generates the diffusion process is unobserved, and we only ob-
serve the times at which each node is altered/influenced by the pro-
cess. This paper proposes a probabilistic model for inferring the
diffusion network, which we call Probabilistic Latent Network Vi-
sualization (PLNV); it is based on cascade data, a record of ob-
served times of node influence. An important characteristic of
our approach is to infer the network by embedding it into a low-
dimensional visualization space. We assume that each node in the
network has latent coordinates in the visualization space, and dif-
fusion is more likely to occur between nodes that are placed close
together. Our model uses maximum a posteriori estimation to learn
the latent coordinates of nodes that best explain the observed cas-
cade data. The latent coordinates of nodes in the visualization space
can 1) enable the system to suggest network layouts most suitable
for browsing, and 2) lead to high accuracy in inferring the under-
lying network when analyzing the diffusion process of new or rare
information, rumors, and disease.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing; I.5.1 [Pattern Recognition]: Models

Keywords
Diffusion network; network visualization; survival analysis

1. INTRODUCTION
In a broad range of domains such as viral marketing, information

propagation in social network, and disease infection, there has been
a great interest in analyzing the diffusion process with respect to
the underlying network or, equivalently, a graph. Diffusion starts
at one node and then spreads from node to node to the edge of

http://dx.doi.org/10.1145/2623330.2623646.

the network. Understanding the mechanism that causes the diffu-
sion process helps to optimize advertising strategies, predict meme
propagation, or counter infection. Some existing methods assume
that the network structure (i.e. a set of connectivities) is predefined
[5, 6]. However, in most cases, the exact path of the diffusion of
information, influence, and disease over networks is unknown, and
we only observe when a node mentions information, makes a deci-
sion, or becomes infected. Inferring and understanding the under-
lying network that causes the diffusion process is quite challenging
and remains an interesting subject for study [14, 16, 7, 21, 3, 4].

We propose a probabilistic model that processes observed cas-
cade data to infer diffusion networks, which we call Probabilis-
tic Latent Network Visualization (PLNV). A cascade is, for one
process, a record of when nodes are altered/influenced by the pro-
cess. We have two criteria for designing a method that can esti-
mate diffusion networks. First, suggesting a network that is em-
bedded into a low-dimensional visualization space is important. In
general, visualization techniques are very useful for understanding
high-dimensional and complex data such as networks since they en-
able us to browse intuitively through huge numbers of nodes. The
desired property of the diffusion network layout in terms of the
visualization space is as follows; each node attempts to place its
influential nodes relatively closer than non-influential ones in the
visualization space, we call this the influence preservation princi-
ple. For example, a marketer, who wants to trigger a chain reaction
of people into ordering goods for sale, can, from the initial sight
of the layout, identify communities wherein the nodes strongly in-
fluence each other. A visualization space that satisfies this princi-
ple also serves as a vehicle for suggesting the growth process of
the cascade since it seems that diffusion spreads over the visual-
ization space gradually. Second, inferring the underlying diffusion
network accurately is important, particularly when many cascades
remain hidden. When we analyze the diffusion process of new in-
formation, disease, and rumors, only a little amount of cascade data
might be available. Understanding the underlying diffusion net-
work soon after its occurrence leads to a quick response to a crisis
such as the spread of false rumors or disease.

With these criteria in mind, we develop a method for inferring
diffusion networks. An important feature of our approach is to in-
fer the network by embedding it into a low-dimensional visualiza-
tion space. We assume that each node in the network has latent
coordinates in the visualization space, and diffusion is more likely
to occur between nodes that are placed close together. Our model
learns the latent coordinates of nodes that best explain the observed
cascade data. By incorporating this assumption into the generative
process of diffusion, our model can suggest the diffusion network
layout in the visualization space that fulfills the influence preserva-
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tion principle. Moreover, our proposed model can recognize latent
influence relationships between nodes even if we have not observed
the common events linking the nodes, since the distances between
nodes in the low-dimensional visualization space implies the pres-
ence of an influence relation.

There has been great interest in processing cascade data to in-
fer underlying networks. Some approaches infer only the network
structure [15, 17], while others infer not only the network struc-
ture but also the strength of every edge in the network [13, 14, 16,
7, 21, 3, 4]. The strength of each edge, called transmission rate,
represents how quickly or likely information is to spread from one
node to another. The network structure estimated by existing dif-
fusion models is complex when the network is large. Visualization
methods such as Multi-Dimensional Scaling (MDS) [20], Isomap
[19], and the spring method [9], can embed high-dimensional net-
works into low dimensional spaces, and help in the study of the
inferred network. Existing visualization methods can employ a set
of distances in the inferred diffusion network as input. The separa-
tion distance for each node pair is obtained from the transmission
rate of the two nodes.

However, the distances between nodes in the network may not be
suitable when they are embedded in the visualization space since
the distances are estimated in a space different from the visual-
ization space. Furthermore, the objective function maximized by
existing visualization methods is not the likelihood of all cascades,
but rather that of input distances. Thus it is impossible for exist-
ing visualization methods to determine which distance should be
preferentially restored in the visualization space based on the like-
lihood function of all cascades. Moreover, the accumulation of er-
rors in the network inference process cannot be corrected in the
embedding process with existing visualization methods since they
are modulated, which may result in poor visualization. Our pro-
posal simultaneously infers and visualizes the diffusion network
in one probabilistic framework. Therefore, latent coordinates are
estimated so as to be optimal in terms of the likelihood of all cas-
cades when nodes are embedded in the low-dimensional visualiza-
tion space.

Additionally, when analyzing diffusion networks of new infor-
mation, disease, and rumors, the network inference performance of
existing models is likely to be poor since there are few events that
can provide clues as to the influence relations. In existing network
inference models, the influence relation of each pair of nodes is
recognized only after observing common events that link the pair
members. The number of parameters (i.e. transmission rates) to be
estimated by existing models is the square of the number of nodes.
Thus a lot of cascades are required to estimate all parameters. On
the other hand, the proposed model has far fewer parameters. Thus
it can capture the essential features of the underlying diffusion net-
work even if the number of cascades is small.

We demonstrate the effectiveness of the proposed model on the
MemeTracker dataset, which records information diffusion among
Web sites. We conduct two quantitative experiments. The first
quantitatively shows that the network layout yielded by our pro-
posed model satisfies the influence preservation principle. The
second experiment compares its network inference performance
against that of the existing network inference model, and shows
that ours yields better performance when the number of cascades
is small. Our qualitative experiments show that the visualization
space learned by our model is not only useful for browsing the un-
derlying network layout intuitively, but also serves as a vehicle for
suggesting the growth process of the observed diffusion data.

Table 1: Notation
Symbol Description
n node (e.g. person, news article, and blog post)
N number of nodes
c cascade (event)
C set of cascades
tc observed infection times of cascade, c ∈ C
T c length of the observation window of cascade c
β scale parameter

for the width of the visualization space
D dimensionality of the visualization space

2. PROBABILISTIC LATENT NETWORK VI-
SUALIZATION

2.1 Preliminaries
Our model is based on survival analysis [10, 11]. By utiliz-

ing time information, survival analysis provides a powerful way
to model event occurrence such as infection and information diffu-
sion. We first present the basic concept of basing diffusion models
on survival analysis.

We start with a set of cascades C = {t1, ..., t|C|}. A cascade is
represented by N -dimensional vector tc = (tc1, ..., t

c
N ), where N

is the number of nodes. Cascade tc is the history of event c within
the population during time interval [0, T c]. For example, when we
analyze the spread of an infection, a certain infectious disease (say
influenza) corresponds to an event, and people are represented by
nodes. When we analyze information diffusion in Web space, a
news topic of a newly-released mobile phone is an event, and a
personal blog site that refers to it can be represented by a node. tcn
of event c records the time stamp when event c occurs at or to node
n, and tcn ∈ [0, T c] ∪ {∞}. The symbol ∞ labels nodes that are
not reached in a cascade within observation window [0, T c]. The
clock is set to 0 at the start of each cascade (i.e. the time stamp of
the node where each event happens first is set to 0). The notations
used are summarized in Table 1.

The transmission function f(ti|tj) is the conditional likelihood
of transmission time from node j to node i; it represents the likeli-
hood of an event happening to node i at time ti given that the same
event has already happened to node j at time tj . If f(ti|tj) is the
probability density function of time, F (ti|tj) =

∫ ti
tj

f(t)dt and is
thus its cumulative distribution function. Given that node j was
infected at time tj , F (ti|tj) represents the probability that node i
was infected by node j within the period of time tj to time ti. Only
if tj < ti can node j, which was infected at time tj , infect node i
at time ti.

The survival function is defined as the probability that node i is
not infected by node j before time ti; it is calculated by

S (ti|tj) = 1− F (ti|tj) =
∫ ∞

ti

f (t) dt. (1)

The survival function is a monotonically decreasing function with
S (∆ji = 0) = 1 and S (∆ji = ∞) = 0, where ∆ji = ti − tj is
the time difference between node j and node i.

The hazard function is the instantaneous infection rate, the rate
at which node i, which has not been infected yet (up to time ti),
will become infected within a small interval after time ti. It is
calculated by

h (ti|tj) =
f (ti|tj)
S (ti|tj)

. (2)
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Table 2: Model
Model Transmission function f (ti|tj) Log survival function logS (ti|tj) Hazard function h (ti|tj)

Weibull µ α (xi,xj) (∆ji)
µ−1 exp (−α (xi,xj) (∆ji)

µ) −α (xi,xj) (∆ji)
µ µ α (xi,xj) (∆ji)

µ−1

Exponential α (xi,xj) exp (−α (xi,xj)∆ji) −α (xi,xj)∆ji α (xi,xj)

Rayleigh α (xi,xj)∆ji exp

(
−α (xi,xj)

(∆ji)
2

2

)
−α (xi,xj)

(∆ji)
2

2
α (xi,xj)∆ji

Here we focus on the shift-invariant transmission function whose
value only depends on the time difference ∆ji. That is to say,
f (ti|tj) = f (∆ji), F (ti|tj) = F (∆ji), S (ti|tj) = S (∆ji),
and h (ti|tj) = h (∆ji).

The likelihood ℓ (tc) of a cascade induced by event c is the prod-
uct of all individual likelihoods ℓn (tc) of event c occurring to each
node n. If we do not observe event c happening to node n in ob-
servation window [0, T c], the individual likelihood is calculated as
the product of survival functions,

ℓsurviven (tc) =
∏

{j|tcj≤Tc}

S
(
∆c

jn

)
, (3)

since node n is not infected by nodes that have already been in-
fected up to T c. ∆c

ji is the time difference between node j and
node i as recorded in cascade c; it is calculated by

∆c
ji =

{
T c − tcj if tci > T c

tci − tcj otherwise.
(4)

The observation of infection plays a much more prominent role
in determining the likelihood of transmission. Let us consider that
event c happens to node n at tcn in observation window [0, T c]. In
this case, we consider all possible transmission routes. One possi-
bility is that node n was infected by already-infected node j (i.e.
tcj < tcn), and is not infected by any other infected node. The like-
lihood is calculated as the sum of all possibilities:

ℓinfectedn (tc) =
∑

{j|tcj<tcn}

f(∆c
jn)

∏
{k|k ̸=j,tc

k
<tcn}

S (∆c
kn) . (5)

The likelihood ℓ (tc) of a cascade induced by event c can be calcu-
lated by the product of these two scenarios:

ℓ (tc) =
∏

{n|tcn>T c}

ℓsurviven (tc)×
∏

{n|tcn≤Tc}

ℓinfectedn (tc) . (6)

Finally, the likelihood of all cascades C is the product of individual
cascade likelihoods. The negative log likelihood of all cascades can
be described using the hazard and the survival functions as follows:

L (C) = −
∑
i

∑
j

∑
{c|tcj<tci}

logS
(
∆c

ji

)
−
∑
i

∑
{c|tci≤Tc}

log
∑

{j|tcj≤tci}

h
(
∆c

ji

)
. (7)

2.2 Proposed Model
The proposed model infers the diffusion network by embedding

it into a low-dimensional visualization space. Our model estimates
node coordinates X = {xn}Nn=1, where xn = (xn1, ..., xnD)
are the coordinates of the nth node in the visualization space; D is
its dimensionality, usually D = 2 or 3. We assume that informa-
tion is more likely to be propagated between nodes that are located
close together in the visualization space. We estimate coordinates
X such that we can explain the observed cascade data. By incorpo-
rating this assumption into the generative process of diffusion, our

model suggests the diffusion network layout in the visualization
space that fulfills the influence preservation principle.

We assume that the transmission function f (∆ji) from node j
to i is determined by the Euclidean distance between them in the
visualization space. Here, we use the Weibul model to define the
transmission function as follows;

f (∆ji|xi,xj)

= µα (xi,xj) (∆ji)
µ−1 exp (−α (xi,xj) (∆ji)

µ) , (8)

where α (xi,xj) ≥ 0 is the transmission rate (represents how
likely node j with coordinates xj is to infect node i with xi);
µ determines the shape of the probability density function. As
α (xi,xj) approaches zero, the expected diffusion time becomes
arbitrarily long (i.e. node j does not infect node i). The transmis-
sion rate α (xi,xj) is assumed to be determined by the Euclidean
distance in the visualization space as follows:

α (xi,xj) = exp

(
−β

2
||xj − xi||2

)
, (9)

where β is the scale parameter of the visualization space. The as-
sumption underlying our model appeals to our intuition. Consider
an outbreak of influenza in the real world. The infection rate is
high among those people in close proximity. For example, when
a person has been infected, her/his family, friends, and colleagues
are also likely to be infected since she/he often meets them in the
real world. However, the risk of infection fades over time since the
infected person recovers from her/his illness. In this example, the
likelihood of infection depends on the individual’s activity area like
her home, school, and office. Thus the learned visualization space
is expected to reflect the geographical closeness between people in
the real world.

By plugging (8) and (9) into (1) and (2), the log survival and
hazard functions of our model are

logS (∆ji|xi,xj) = − exp

(
−β

2
||xj − xi||2

)
(∆ji)

µ , (10)

h (∆ji|xi,xj) = µ exp

(
−β

2
||xj − xi||2

)
(∆ji)

µ−1 . (11)

Our model has the capacity to deal with a wide variety of cascade
data since its definition is based on the Weibull distribution. Some
existing network inference methods use exponential or Rayleigh
distributions for modeling the process of diffusion [14, 16, 21, 3].
The exponential distribution is a special case of the Weibull distri-
bution where µ = 1. Furthermore, the Weibull distribution with
µ = 2 is a good approximation of the Rayleigh distribution. Pa-
rameter µ is predefined by the user of our system to suit the cascade
type. Table 2 summarizes the transmission, survival, and hazard
functions of each distribution.

2.3 Inference
We use maximum a posteriori (MAP) estimation to determine

the unknown parameters X in the proposed model that yield best
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fits to the observed cascade data. The number of dimensions, D, is
assumed to be specified for visualization.

The negative log likelihood of parameters X for the given set of
cascades, C, with prior is as follows:

L (X|C) =
∑
i

∑
j

∑
{c|tcj<tci}

exp

(
−β

2
||xj − xi||2

)(
∆c

ji

)µ
−
∑
i

∑
{c|tci≤Tc}

log
∑

{j|tcj≤tci}

µ exp

(
−β

2
||xj − xi||2

)(
∆c

ji

)µ−1

−
∑
i

log

(( γ

2π

)D
2
exp

(
−γ

2
||xn||2

))
, (12)

where γ is a hyper-parameter. In order to control the size of the
resultant embedding, we use a Gaussian prior with zero mean and
spherical covariance for coordinates xn. We use γ = 0.1 in all
experiments described in Section 4. The objective function can be
minimized through the use of a gradient-based numerical optimiza-
tion method such as the quasi-Newton method [12].

The gradient of xn used in gradient-based numerical optimiza-
tion can be calculated by considering two cases as follows: If i =
n, the gradient of xn is calculated by

∂L

∂xn
=

∑
j

∑
{c|tcj<tcn}

β (xj − xn) exp

(
−β

2
||xj − xn||2

)(
∆c

jn

)µ

−
∑

{c|tcn≤Tc}

∑
{j|tcj<tcn} β(xj − xn) exp(−β

2
||xj − xn||2)(∆c

jn)
µ−1∑

{j|tcj<tcn} exp(−
β
2
||xj − xn||2)(∆c

jn)
µ−1

+ γxn. (13)

If j = n, the gradient of xn is calculated by

∂L

∂xn
=

∑
i

∑
{c|tcn<tci}

β (xi − xn) exp

(
−β

2
||xn − xi||2

)
(∆c

ni)
µ

−
∑
i

∑
{c|tci≤Tc}

β(xi − xn) exp(−β
2
||xn − xi||2)(∆c

ni)
µ−1∑

{j′|tc
j′<tci}

exp(−β
2
||xj′ − xi||2)(∆c

j′i)
µ−1

.

(14)

Combining the two above scenarios, yields the gradient of xn as
follows:

∂L

∂xn
=

∑
j

∑
{c|tcn ̸=tcj}

β (xj − xn) exp

(
−β

2
||xj − xn||2

)(
∆c

jn

)µ
−

∑
{c|tcn≤Tc}

∑
{j|tcj<tcn}

β (xj − xn)P (n|j)

−
∑
j

∑
{c|tcj≤Tc}

β (xj − xn)P (j|n) + γxn, (15)

where P (n|j) is the conditional probability of infection from node
j to node n, and P (j|n) is the conditional probability of infection
from node n to node j. These values are calculated by

P (n|j) =
exp

(
−β

2
||xj − xn||2

) (
∆c

jn

)µ−1∑
{i|tci<tcn} exp

(
−β

2
||xi − xn||2

)
(∆c

in)
µ−1 , (16)

P (j|n) =
exp

(
−β

2
||xn − xj ||2

) (
∆c

nj

)µ−1∑
{i|tci<tcj}

exp
(
−β

2
||xi − xj ||2

) (
∆c

ij

)µ−1 . (17)

Scale parameter β can be estimated by using cross validation.

Existing network inference models directly infer transmission
parameter αji, which represents how likely information is to spread
from node j to node i. The number of parameters to be estimated
is N ×N , and the number of parameters increases as the square of
N . Thus a lot of cascades are required to learn all parameters. On
the other hand, the number of parameters to be estimated by our
model is D × N . In general, D, the dimensionality of the visual-
ization space, is considerably smaller than the number of nodes N .
Thus the proposed model has significantly fewer parameters than
existing models. Accordingly, our model can capture the essen-
tial features of underlying diffusion networks even if the number of
cascades is small.

3. RELATED WORK
A great deal of effort has been expended to model diffusion pro-

cesses with respect to the underlying network structure; published
techniques are used for viral marketing, information propagation
in social network, and following the spread of infectious diseases.
Independent cascade models [5] and linear threshold models [6],
two representative diffusion models, are mainly used for analyzing
activities in online social communities. These models treat time
in discrete steps rather than as a continuous variable although real
events happen in continuous time. Some prior work treats time
as a continuous variable. NETINF uses submodular optimization
to estimate network connections [15]. NETINF assumes that the
transmission rates between all nodes are predefined and not in-
ferred. On the other hand, [14] proposed a continuous model called
NETRATE; it allows different transmission rates across different
edges. [14] provides a basic and simple framework for solving
the network inference problem, and has been extended as follows;
[16] uses stochastic gradients to estimate the time-varying trans-
mission rates of edges and thus capture the temporal dynamics of
the network. TOPICCASCADE proposed by [3] estimates topic-
dependent transmission rates of edges by using LDA to represent
topic structure of memes. MoNET considers additional features
of nodes; it uses a predefined similarity measure between meme
contents [21]. [7] used shared cascade Poisson processes to model
information diffusion in online social communities, and proposed
a Baysian inference procedure. However, in the existing diffusion
models, The influence relation of each node pair is recognized only
after observing common events linking them. The performance
of network inference decreases when the number of cascades is
small since there are few events that can provide clues as to the
influence relations. Our model infers the network embedded into
a low-dimensional visualization space. Since the proposed model
has significantly fewer parameters than existing models, ours ac-
curately infers the underlying network even when there are few
observed cascades. The distance in the visualization space indi-
cates the strength of the influence relation between nodes even if
we have not observed common event(s) that link them. The method
proposed by [4] estimates a block matrix of transmission rates by
combining ideas from stochastic block modeling and network in-
ference models. The method by [4] is similar to ours in that it
reduces the dimensionality of the diffusion network, but differs in
that it can not visualize the diffusion network. Ours not only infers
the low-dimensional representation of diffusion network but also
visualizes it in a Euclidean space, which is a metric space that most
closely corresponds to our intuitive understanding of space.

The network structure estimated by existing diffusion models
is complex when the network is large. This complexity hinders
the scientific discovery of knowledge or principles from the results
since we can not understand the results in an intuitive way. In or-
der to embed and visualize high-dimensional data such as diffusion
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networks, a number of visualization methods have been proposed
[19, 20, 18, 9]. These methods attempt to embed nodes into a low-
dimensional Euclidean space in order to restore predefined pairwise
distances between nodes. However, the 2-step process frequently
results in poor visualization for the reasons noted in Section 1. In
order to best explain the observed diffusion process, our model si-
multaneously estimates the latent coordinates of nodes and visual-
izes them in the same probabilistic framework.

In the sense of utilizing latent coordinates for modeling gener-
ative probabilistic models, the proposed model is related to Prob-
abilistic Latent Semantic Visualization (PLSV), which extracts top-
ics by embedding documents in a low-dimensional space [8]. While
PLSV is designed for visualizing documents, our proposal, PLNV,
is designed for visualizing networks.

4. EXPERIMENTS

4.1 Data
We evaluated the proposal by analyzing the information diffu-

sion process occurring in Web space. For this we used the Meme-
Tracker dataset of [16]. In this dataset, a cascade is represented by
a set of time-stamps. Each time-stamp represents when a news arti-
cle or blog post referred to a keyword (an event), and is recorded at
the time scale of seconds. Each cascade in the dataset is categorized
into topics based on what type of keyword it referred to. We chose
eight types of cascade data related to eight topics; “iPhone”, “Jobs”,
“Baseball”, “Basketball”, “Earthquake”, “Fukushima”, “Sept. 11”,
and “Syria”. Each topic-dependent-dataset consisted of the top 500
sites and contained about 1,000 cascades.

4.2 Baseline methods
We compared the proposed method against various existing net-

work inference and visualization methods. We used NETRATE
as the state-of-the-art network inference method for estimating the
weight for each edge in the directed graph based on observed cas-
cade data. NETRATE directly estimates transmission parameter
αji which represents how likely information is to spread from node
j to node i. For both our proposed model and NETRATE, we define
the transmission function as an exponential model for simplicity.
That is to say, our model was defined based on the Weibull distri-
bution with µ = 1. Based on an N × N matrix of transmission
rates estimated by NETRATE, we embedded N nodes into a D-
dimensional visualization space using the KK spring method [9],
MDS [20], or Isomap [19] as existing visualization methods.

Although NETRATE outputs a similarity matrix where each el-
ement is the degree of similarity, the visualization method expects
a distance matrix as its input. In the distance matrix, as an element
approaches infinity, it is much less likely to be infected. Thus, as
a pre-processing step, αji is converted into its inverse α̂ji, which
represents how far j is from i.

α̂ji =
1

αji + ϵ
, (18)

where ϵ is a smoothing factor (this yields a value when αji = 0).
We used ϵ = 10−3 in this experiment.

The KK spring method is a visualization method that uses a pair-
wise graph-theoretic distance matrix. We define the graph-theoretic
distance from node j to node i as α̂ji. The method determines the
coordinates of each node in the visualization space such that the
following objective function is minimized.

LKK =
1

2

∑
j

∑
{i|i̸=j}

(α̂ji − ||xj − xi||)2

α̂2
ji

. (19)

MDS is a linear dimensionality reduction method, and can em-
bed nodes so as to minimize the discrepancy between pairwise dis-
tances in the visualization space and those in the original space. We
also used Isomap as a non-linear dimensionality reduction method;
it first constructs a graph connecting h-nearest neighbors, and then
embeds nodes so as to preserve the shortest path distances in the
graph by MDS. Note that MDS and Isomap require the input to be
a symmetric matrix (i.e. αji = αij). We calculated distance αji

(= αij), used as input to MDS and Isomap, by two methods listed
below.

• αji = Minimum(α̂ji, α̂ij)

• αji = Average(α̂ji, α̂ij)

Minimum chooses and returns the minimum value from among
the arguments; Average calculates and returns the average score
of arguments.

Finally, we compared our method with six baselines; the KK
spring method, Minimum-MDS, Average-MDS, Minimum-Isomap,
and Average-Isomap.

4.3 Quantitative Experiments

4.3.1 Performance of Visualization
This experiment quantitatively shows that our method can out-

put a visualization space wherein each node is placed closer to its
influential nodes than non-influential ones. We consider that j is an
influential node for node i if i is likely to be infected by j. That is
to say, we determine if the visualization space as estimated by our
method satisfies the influence preservation principle.

We divided cascades into training and test sets, and evaluated
whether or not the visualization space learned from the training
data could predict the influence relations present in the test data.
We considered that the influence relation between nodes is true
(there exists a influence relation between nodes) if test data has
an event (cascade) wherein both of them are infected.

We designed an evaluation metric to evaluate embedded diffu-
sion network layouts in terms of how well the influence relations
were preserved. We adopted the idea of the F-measure, which is
widely used in the research field of information retrieval [1]. The
method of calculating the F-measure score for the results of the vi-
sualization space is as follows: The F-measure combines precision
and recall. For each node n, we consider a D-dimensional ball
Bn(rn) with center xn and radius rn. The precision for node n is
the fraction of nodes that are contained in the D-dimensional ball
Bn(rn) that have influence relations to node n; it is calculated by

Precisionn(rn) =
#{k|xk ∈ Bn(rn), I(n, k) = 1, k ̸= n}

#{k|xk ∈ Bn(rn), k ̸= n} ,

(20)

where I(n, k) = 1 if there is an influence relation and I(n, k) =
0 otherwise. The recall evaluates the sensitivity of the method.
The recall for node n is the fraction of nodes that have influence
relations that are successfully contained in Bn(rn); it is calculated
by

Recalln(rn) =
#{k|xk ∈ Bn(rn), I(n, k) = 1, k ̸= n}

#{k|I(n, k) = 1, k ̸= n} . (21)

The F-measure for node n is the weighted harmonic average of
precision and recall as follows

F -measuren(rn) =

1/

(
1

2
· 1

Precisionn(rn)
+ (1− 1

2
) · 1

Recalln(rn)

)
. (22)
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Figure 1: Comparisons of averaged F-measure in terms of the visualization task. The number of dimensions, D, is 2.

The final score for a visualization space is the averaged F-measure
over all N nodes. In general, a small rn leads to high precision
and low recall, while a large one leads to low precision and high
recall. For each method and node n, we chose rn that yielded the
best F-measure.

Figures 1 and 2 show the results of the F-measures so as to com-
pare methods with different dimensions, D = 2 and 3. For more
reliable results, 5-fold cross validation was used for testing: We di-
vided the cascades into five subsets. One subset was used for test-
ing, and the others were used for training. This was repeated using
each of the subsets as the test set. Thus, the Y-axis in these figures
shows the averaged score over all trials. We set 86, 400 seconds (a
day) as T c for our model and baseline methods. For simplicity, we
assume T c = 86, 400 for all cascades. Parameter β of our model
was set to the best parameter value based on the results of 5-fold
cross validation; β was chosen from 101, 102, 103, 104, 105, and
106. As shown, for each dataset (topic), our model yielded bet-
ter performance than the baseline methods. The results show that
the proposed method ensured that node pairs likely to be infected in
the same event were placed close to each other. The performance of
each baseline method strongly depends on the topic. Based on the
type of analyzed data, a user of baseline method may have to find
the right combination of distance metric and visualization method
which would demand a lot of effort. Our model allows the user to
avoid this trial and error process since it simultaneously estimates
the coordinates of nodes in one probabilistic framework.

4.3.2 Performance of Network Inference
This experiment evaluates our proposed model in terms of net-

work inference performance. When only few cascades are ob-
served, the N × N matrix output by existing network inference
models is likely to be sparse since there are few events available to
provide clues as to the underlying diffusion network. However, in-
ferring underlying the network with few observations is important.
As noted before, our method can infer robust models even when

there are few cascades. Our model predicts an unknown element
in the sparse matrix (i.e. transmission rate between nodes) based
on the distance in the low-dimensional space. More intuitively,
even if two nodes have not experienced infection in the same event,
the proposed method can predict the existence of connectivity be-
tween them from whether the existence of their common influential
nodes. This experiment shows that our proposal can accurately pre-
dict connections between users even when relatively few cascades
have been observed.

We evaluated the diffusion network estimated by the network
inference model from the training data in terms of how well it ex-
plains the influence relations present in the test data. As in the
previous experiment, we used the F-measure as the evaluation met-
ric. Let wkn be the distance from node k to node n as estimated
by each network inference method, and dn be its threshold which
determines whether node k is an influential node for node n or not.
The precision for node n represents the probability that the influ-
ential node for node n is located within dn; it is calculated by

Precisionn(dn) =
#{k|wkn ≤ dn, I(n, k) = 1, n ̸= k}

#{k|wkn ≤ dn, n ̸= k} . (23)

Recall for node n is the fraction of its influential nodes that are
actually located within dn; it is calculated by

Recalln(dn) =
#{k|wkn ≤ dn, I(n, k) = 1, n ̸= k}

#{k|I(n, k) = 1, n ̸= k} . (24)

The F-measure score is calculated by (22). We compared the aver-
aged F-measures of our model against those of an existing network
inference model, NETRATE. We used α̂kn for wkn when calculat-
ing the F-measure of NETRATE, and ||xk − xn|| for wkn when
calculating the F-measure of the proposed model. One parameter
that also influences the performance of our method is the number
of dimensions D. Although the number of dimensions D in our
model is set to 2 or 3 for visualization, a larger number of dimen-
sions can be set in our model. This experiment considered four
values of D (2,3,5, and 10).
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Figure 2: Comparisons of averaged F-measure in terms of the visualization task. The number of dimensions, D, is 3.

We studied the influence of the number of cascades on the per-
formance of network inference. Figure 3 shows the performance
of each model at different cascade sizes. We changed the number
of cascades from 100 to 1,000 in steps of 100. For each step, we
calculated the averaged F-measure. As shown, the proposed model
demonstrated better network inference performance than NETRATE
when the number of cascades was less than 300. The results suggest
that our model is appropriate for solving network inference prob-
lems with sparse cascade data. In some datasets (“Earthquake” and
“Sept.11”), even when the number of cascades is relatively large,
the proposal inferred connections with the same or better accuracy
than NETRATE. In the previous experiment, we tested the per-
formance of visualization on the condition that a lot of cascades
were used in training (the number of cascades was set to 1,000).
The low accuracy of NETRATE in terms of network inference with
the sparse training data implies low accuracy in terms of visualiza-
tion, since the existing visualization method learns the visualization
space by maximizing the likelihood of the given parameters (i.e.
transmission rates) from NETRATE. Even if it succeeds in con-
structing a low-dimensional representation of NETRATE parame-
ters, the existing visualization method yields only inferior visual-
ization performance, particularly when few cascades are observed.

4.4 Qualitative Experiments
This experiment qualitatively discusses the value of our model

for two different application scenarios.
Browsing network layout: While it remains difficult to evalu-

ate whether a given network layout is suitable for browsing or not,
we observed the characteristic features of each method. Figure 4
illustrates the 2- and 3-dimensional layout yielded by each method
examined. We used the cascades related to “Baseball”. Based on
the results of the quantitative experiments, we adopted the mini-
mum function as the distance measure for MDS and Isomap since
it yields better performances than the average function for most
datasets. In the layouts created by MDS and Isomap, many nodes

are collapsed to a single point, which is not desirable for brows-
ing. As shown, the layout created by the KK spring method avoids
the node collapse problem, but many nodes tend to be placed on
the circumferences of circles. This phenomenon is referred to as
the dandelion effect [2]. Our model is superior to the KK spring
method in terms of its support for community-finding. Our visu-
alization space exhibits several densely-populated areas, which we
call communities. The nodes in a community are likely to influence
each another. An event experienced by a member is likely to be
propagated throughput the community. When we use our method
for the purpose of viral marketing, the marketer can get key in-
formation from the layouts created by the proposed method since
the marketer can trigger a chain reaction of people wanting to the
goods for sale. Even if the goods are new releases, for which there
are few cascades, the proposed method can suggest the network
layout that best explains the mechanism of the diffusion process to
the marketer.

Browsing growth process of cascade: The visualization space
output by our model serves as a vehicle for suggesting the growth
process of a cascade since it satisfies the influence preservation
principle. An event that occurs at one node in a community is
expected to spread like an epidemic from node to node. Figure
5 shows examples of cascade visualizations yielded by the net-
work layout. We used the cascade datasets related to three topics;
“iPhone”, “Basketball”, and “Sept. 11”. For each topic, we chose
the most widely propagated event (cascade), and show the infected
and survival nodes at four different time points. In these figures,
colored and uncolored nodes indicate infected and survival nodes,
respectively. For example, the node that was the first to experi-
ence an event related to iPhone is plotted on (a). The nodes which
became infected within 1200, 2400, and 3600 seconds of the start
of the event are marked by the colored nodes in (b), (c), and (d),
respectively. We compared our proposed method against the com-
bination of NETRATE and the KK spring model. As shown, in the
layout created by the KK spring method, each event seems to prop-
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Figure 3: Comparisons of averaged F-measure in terms of the network inference task.

agate along the circumference of a circle since many nodes tend to
be arranged on circles. On the other hand, in the layout created by
the proposed model, each event propagates within a narrow space
at an early stage, but diffusion eventually covers a much wider area.
The structure enables us to grasp an appropriate understanding of
the present situation since we can characterize each diffusion event
by its speed, coverage, and density. Thus we can gain an under-
standing of the big picture through the visualization. Furthermore,
an analysis of a diffusion process is expected to establish a reason-
able understanding of future infection patterns since diffusion grad-
ually spreads over the visualization space. For example, to prevent
the initial carrier from spreading his infectious disease or spreading
a rumor, the people in his community can be put on their guard.

5. CONCLUSION
This paper proposed a probabilistic model for estimating diffu-

sion networks and embedding them into low-dimensional visual-
ization spaces. We consider that the desired property of the layout
of the diffusion network is that each node should be more closely
co-sited with its influential nodes than with non-influential ones in
the visualization space; we call this the influence preservation prin-
ciple. This property is realized by the proposed model through the
following assumption; each node in a network has latent coordi-
nates in the visualization space, and propagation is more likely to
occur between nodes that are placed closer together. Our model
learns the latent coordinates in the visualization space that best ex-

plain the observed cascade data; our model is fitted to the given
cascade data by using maximum a posteriori estimation. Different
from previous works, our model simultaneously estimates the latent
coordinates of nodes in the visualization space in one probabilistic
framework. As a result, the coordinates of nodes are optimal in
terms of the likelihood of all cascades. Another important feature
of our model is its robustness. The parameters in our model can be
learned accurately even when there are few cascades since the num-
ber of parameters to be estimated is significantly smaller than that
in existing network inference models. Our model can accurately
predict unknown influence-relations between nodes based on the
distance in the learned space, even if we have not yet observed a
common event which both nodes are infected.

We used the histories of information diffusion in a Web space
to evaluate the performance of network visualization, and quantita-
tively showed that the visualization results of the proposed model
satisfy the influence preserving principle, unlike the existing method-
ology; it combines existing network inference and visualization
methods. The visualization space learned by our model is not only
useful for browsing the underlying network layout intuitively, but
also serves as a vehicle for suggesting the growth process of the ob-
served cascade. The second experiment showed that our model ad-
dresses the sparsity problem better than existing network inference
models. We compared its performance in the network inference
task to that of an existing network inference method, and showed
that ours yields better performance when there are few cascades.
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Figure 4: Comparisons of 2-, and 3- dimensional visualizations of each method. Each visualization space was learned from a set of
cascades related to “Baseball”.

This is because our model allows us to associate nodes based on
the distance in the visualization space, even in the absence of any
event that involves both nodes.

Our experiments, offline evaluations using observed cascade data,
are an important starting point for exploring the validity of our
model, but are only one approach to evaluating visualization meth-
ods. We will let real users in realistic settings evaluate the real
strengths of our approach. Another future direction is to use other
types of cascade data for evaluating the effectiveness of our model.
We will analyze diffusion process with respect to information prop-
agation in social networks, and the spread of infectious diseases.
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(a) PLNV - “iPhone” - 0 sec. (b) PLNV - “iPhone” - 1,200 sec. (c) PLNV - “iPhone” - 2,400 sec. (d) PLNV - “iPhone” - 3,600 sec.

KK - “iPhone” - 0 sec. KK - “iPhone” - 1,200 sec. KK - “iPhone” - 2,400 sec. KK - “iPhone” - 3,600 sec.

PLNV - “Basketball” - 0 sec. PLNV - “Basketball” - 2,400 sec. PLNV - “Basketball” - 4,800 sec. PLNV - “Basketball” - 7,200 sec.

KK - “Basketball” - 0 sec. KK - “Basketball” - 2,400 sec. KK - “Basketball” - 4,800 sec. KK - “Basketball” - 7,200 sec.

PLNV - “Sept. 11” - 0 sec. PLNV - “Sept. 11” - 2,400 sec. PLNV - “Sept. 11” - 4,800 sec. PLNV - “Sept. 11” - 7,200 sec.

KK - “Sept. 11” - 0 sec. KK - “Sept. 11” - 2,400 sec. KK - “Sept. 11” - 4,800 sec. KK - “Sept. 11” - 7,200 sec.

Figure 5: Comparisons of 2-dimensional cascade visualization. We compared the proposed method against the combination of
NETRATE and the KK spring model. The infected and survival nodes at four different time points are shown.

1245




