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ABSTRACT
How can we optimize the topology of a networked system
to bring a flu under control, propel a video to popularity, or
stifle a network malware in its infancy? Previous work on
information diffusion has focused on modeling the diffusion
dynamics and selecting nodes to maximize/minimize influ-
ence. Only a paucity of recent studies have attempted to
address the network modification problems, where the goal
is to either facilitate desirable spreads or curtail undesirable
ones by adding or deleting a small subset of network nodes
or edges. In this paper, we focus on the widely studied linear
threshold diffusion model, and prove, for the first time, that
the network modification problems under this model have
supermodular objective functions. This surprising property
allows us to design efficient data structures and scalable al-
gorithms with provable approximation guarantees, despite
the hardness of the problems in question. Both the time and
space complexities of our algorithms are linear in the size of
the network, which allows us to experiment with millions of
nodes and edges. We show that our algorithms outperform
an array of heuristics in terms of their effectiveness in con-
trolling diffusion processes, often beating the next best by a
significant margin.
Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications — Data Mining
General Terms: Algorithms, Theory, Experimentation
Keywords: diffusion networks; network optimization; su-
permodularity; approximation

1. INTRODUCTION
The diffusion of physical, conceptual or digital substances

over networks has been studied in many domains such as
epidemiology [10], social media [16], and computer and mo-
bile [19] networks. These studies have resulted in an array
of models aiming to capture the diffusion dynamics, among
which the most well-known are the linear threshold (LT)
model, the independent cascade (IC) model, and the Sus-
ceptible Infected Recovered (SIR) model. Starting with the
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work of Domingos and Richardson on viral marketing [6], a
lot of research has concentrated on how one can pick a small
set of source nodes, whose initial adoption of a given sub-
stance would trigger maximal spread in the network. The
seminal work of Kempe et al. [12] showed that source node
selection for influence maximization is a submodular maxi-
mization problem under the IC and LT diffusion models, and
therefore admits a simple greedy algorithm with approxima-
tion guarantees. Their result was followed by a whole line
of research on source node selection in various related infor-
mation diffusion contexts [4, 7, 9].

In contrast to these previous works where the diffusion
networks remain unchanged, we are rather interested in prob-
lems of modifying the topology of a diffusion network to ei-
ther facilitate the spread of desirable substances, or curtail
the spread of undesirable ones. One can consider deleting
edges or nodes to minimize possible undesirable spread, such
as that of a virus, disease or rumor, or one can consider
adding edges or nodes to facilitate, for example, the spread
of information or dispersal of endangered species. For in-
stance, in disease control, authorities may consider disallow-
ing travel between certain pairs of cities to curb the spread
of a flu epidemic. On the other hand, social media websites
can recommend to users additional information outlets to
follow to increase the spread of ideas and memes. The mod-
ification setting is particularly relevant when the agent op-
timizing the topology does not have control over the sources
of the spread, but is able to change some subset of the edges
or nodes that he has access to. Hence, our setting is most
relevant when the agent in question is looking to strategically
design the topology, as opposed to reacting to a particular
event. Thus, we will later assume that the set of nodes that
are likely to be sources of diffusion are known, but which
ones among them are the sources of a particular diffusion
event follows some probability distribution (e.g. uniform).
For example, in an information network, we may know which
popular news sites are typically the sources of viral news, but
are uncertain as to which of these sites will be the source
of a particular piece of news. Despite the broad practical
relevance of the diffusion network modification problems,
existing results are very limited, and lack in either formal
optimality guarantees or in algorithmic efficiency.

Related work. Under the SIR model, some positive net-
work optimization results exist: Tong et al. [22] address the
edge deletion (addition) problem by approximately minimiz-
ing (maximizing) the eigenvalue of the adjacency matrix.
In addition, methods have been designed to optimize sur-
rogates for diffusion spread under SIR [8, 20]. Instead of
maximizing/minimizing the spread of substances directly,
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these methods typically optimize a static property of the
network, in the hope of optimizing diffusion. For instance,
Schneider et al. [20] proposed “betweenness centrality” as a
heuristic for immunizing nodes or removing edges under the
SIR model, while “degree centrality” was adopted in [8] to
protect against virus propagation in email networks.

Under the IC model, existing results are negative: Sheldon
et al.[21] study the problem of node addition to maximize
spread, and provide a counter-example showing that the ob-
jective function is not submodular. Thus, they resort to
a principled but expensive approach based on sample aver-
age approximation and mixed integer programming, which
provides provable optimality guarantees but cannot scale to
large networks. Bogunovic [1] addresses the node deletion
problem. For the edge deletion problem under the IC model,
Kimura et al.[14] apply the greedy algorithm used by Kempe
et al. [12] for source node selection, but do not provide any
approximation guarantees. We note that the edge deletion
objective that we consider is not supermodular under IC; a
simple counter-example is provided in the extended version
of this paper.

Network optimization under the LT model is still largely
unexplored, and this paper seeks to fill that gap. The greedy
approach has been used in [13] to delete edges under the LT
model, albeit without any analysis of the supermodularity of
the objective, nor formal approximation guarantees. More
recently, Kuhlman et al. [15] propose heuristic algorithms
for edge removal under a simpler deterministic variant of the
LT model. In contrast, we describe principled algorithms for
edge deletion and addition by exploiting supermodularity of
the objectives under the more general stochastic LT model.
Most related are [3, 9], where node deletion under the “com-
petitive” LT model (a variant of stochastic LT) is addressed
using supermodularity. The node deletion problem can be
considered a special case of the “influence blocking maxi-
mization” problem described in [3, 9]. However, the super-
modularity results in those works are limited to node dele-
tion, whereas our theoretical framework leads to supermod-
ularity results for edge deletion and addition, node deletion
and addition.

Our contributions. In this paper, we will address net-
work topology optimization for diffusion under the linear
threshold model. We will focus on two network modifica-
tion problems involving the deletion of edges for minimizing
spread and the addition of edges for maximizing spread 1 :

Edge deletion problem: Given a set of source
nodes X, find a set of k edges to remove s.t. the
spread of a certain substance is minimized.

Edge addition problem: Given a set of source
nodes X, find a set of k edges to add s.t. the
spread of a certain substance is maximized.

Proof techniques used in the source node selection litera-
ture are inadequate for our more complex network modi-
fication problems. Instead, we propose a novel theoretical
framework (Section 3) that yields surprising results, namely
that the objective function in both problems is supermodu-
lar, a property that has positive algorithmic implications. In
particular, minimization of a supermodular function under
cardinality constraints, although typically an NP-hard prob-
lem, admits a greedy algorithm with approximation guaran-
tees [18]. Similarly, cardinality-constrained supermodular

1 One can also consider the analogous node deletion and ad-
dition problems, and our theoretical and algorithmic results
on the finer-scale edge problems can be extended trivially.

maximization has recently been shown to admit a simple
modular approximation scheme [11]. Our finding, combined
with these combinatorial optimization results allows, for the
first time, the design of efficient diffusion-aware algorithms
with approximation guarantees for the network modification
problems under the LT model, filling a gap in the existence
research literature on this topic.

We address several challenges in transforming the two gen-
eral supermodular approximation algorithms into efficient
and practical approaches for our setting. Directly imple-
menting the supermodular optimization algorithms is im-
practical, since evaluating the objective function given a set
of source nodes is #P-hard in general [4]. We exploit the
correspondence between the LT model and the “live-edge
graph” construction [12], and estimate the objective func-
tion using a sample of random live-edge graphs. Neverthe-
less, a naive application of the supermodular approximation
schemes to the sample of random live-edge graphs will re-
sult in runtime quadratic in the network size, an approach
that does not scale to modern problems with millions of
nodes and edges. To tackle this issue, we design two data
structures, the descendant-count trees for the edge deletion
problem, and the neighbor-counting graphs for the edge ad-
dition problem, in order to support approximate evaluation
of the objective function. These data structures can be con-
structed in time linear in the network size, and queried in
constant time, allowing us to scale the supermodular opti-
mization algorithms to networks with millions of nodes.

Finally, we evaluate our algorithms on both synthetic and
real-world diffusion networks and compare the quality of the
solutions to scalable alternative approaches, based on opti-
mizing structural properties of the networks. Our algorithms
can lead to as large as 10-20% additional efficacy for edge
deletion, and up to 100% for edge addition, compared to the
other approaches. In terms of scalability, our algorithms can
scale to large networks with millions of nodes and edges.

2. LINEAR THRESHOLD MODEL
In this section, we will provide background on the linear

threshold (LT) model for diffusion processes [12], which will
be at the center of this study. This model is well-suited for
representing threshold behavior, where entities in a network
have a“tipping point” in terms of the fraction of neighboring
nodes that have to adopt the diffusing substance, beyond
which they would adopt it themselves. For instance, in a
social setting, an individual may refrain from voicing his
opinion, until a significant fraction (e.g. half) of his friends
have voiced a similar opinion.

2.1 Cascade Generative Process
Underlying the LT model is a weighted directed graph

G = (V,E,w), called the influence graph, where V is a
set of n nodes and E is a set of m directed edges, and
w : V ×V → [0, 1] is a weight function. For edges (u, v) /∈ E
we ignore the value of w(u, v). We further require that∑
u:(u,v)∈E w(u, v) ≤ 1 for each node v. Starting from a

source node (or an initially activated node) S0 = {a}, a cas-
cade then proceeds in discrete time steps t = 0, 1, 2, . . . as
follows: (1) at t = 0, every node v first independently se-
lects a threshold θv uniformly at random in the range [0, 1],
reflecting the uncertainty as to users’ true thresholds; (2)
subsequently, an inactive node v becomes activated at time
t + 1 if

∑
u:u∈St,(u,v)∈E w(u, v) ≥ θv where St is the set of

nodes activated up to time t; (3) finally, the process termi-
nates if no more activations are possible.
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Given an influence graph G = (V,E,w), the influence
function σ(a,G) of a source node a ∈ V is defined as the
expected number of active nodes at the end of the diffusion
process, σ(a,G) = Eθv [|S∞|], where the expectation is taken
with respect to the randomness of the node thresholds θv.

2.2 Live-Edge Graph Representation
Kempe et al. [12] showed that the influence function can

be computed in an alternative way using what is referred to
as “live-edge graphs”, a construction that is more amenable
to mathematical analysis. More specifically, a random live-
edge graph X is generated as follows: Independently for each
node v ∈ V , at most one of its incoming edges is selected
with probability w(u, v), and no edge is selected with prob-
ability 1−

∑
u:(u,v)∈E w(u, v). Note that the set of nodes of

X is equal to V , the set of “live” (or sampled) edges EX of
X is a subset of E, i.e., EX ⊆ E, and these edges are un-
weighted. Then, the influence function can be alternatively
computed as

σ(a,G) = EX [r(a,X)] =
∑

X∈XG

Pr[X|G] · r(a,X), (1)

where XG is the space of all possible live-edge graphs based
on G, Pr[X|G] is the probability of sampling a particular
live-edge graph X, and r(a,X) is the set of all reachable
nodes in X from source a. If we define function

p(v,X,G) :=

{
w(u, v), if ∃u : (u, v) ∈ EX
1−

∑
u:(u,v)∈E w(u, v), otherwise

which is the probability of the configuration of incoming
edges for node v in X; then, the probability of a particular
live-edge graph X is

Pr[X|G] =
∏

v∈V
p(v,X,G). (2)

3. SPACE OF LIVE-EDGE GRAPHS
We will show that the objective functions of the edge dele-

tion and addition problems are supermodular in the next
section. However, the proofs require some properties beyond
those used in [12]. Thus, we will first give some intuition as
to why these properties are needed. We will denote the mod-
ification of an influence graph G by deleting or adding a set
of edges S respectively by

G \ S := (V,E \ S,w), and G ∪ S := (V,E ∪ S,w).
Consider the monotonicity of the influence function as de-
fined in Eq. (1), with respect to the set of source nodes A:
σ(A ∪ a,G) − σ(A,G) is a sum over XG, and so proving
that Pr[X|G] · r(A ∪ a,X) − Pr[X|G] · r(A,X) ≥ 0 for the
single live-edge graph X ∈ XG suffices to prove monotonic-
ity, in this case. In contrast, consider the monotonicity of
the influence function, with respect to the set of edges in the
graph: σ(a,G\S)−σ(a,G\(S∪{e})). The issue here lies in
that the former function sums over XG\S , whereas the latter
sums over XG\(S∪{e}): since the set of live-edge graphs and
the associated probabilities involved in the computation of
the influence function will change as edges are deleted, it is
not obvious that this function is monotone at all. Similar
difficulties apply to proving supermodularity.

In this section, we will prove four properties related to the
space of live-edge graphs, which will form the basis of our
later analysis. More specifically, we are concerned with

• a subset S of the edge set E in the original influence
graph G, i.e., S ⊆ E; and
• two distinct edges e = (u, v) ∈ E \S and g = (u′, v′) ∈
E \ S outside S, where v may or may not equal v′.

Deleting a set S from E will result in a new influence
graph G \ S, which will generate a new space of live-edge
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Figure 1: Four properties of the space of live-edge graphs: (1)
within space mapping, (2) space inclusion, (3) across space map-
ping, and (4) across space probability mapping.

graphs, XG\S , and the associated live-edge graph probabil-
ities, Pr[X|G \ S]. Furthermore, we will divide the space
XG\S , according to the edge e, into three disjoint partitions
(see Fig. 1(left)):

• X eG\S , the set of live-edge graphs where incoming edge

e = (u, v) is selected for node v;
• X ēG\S , the set of live-edge graphs where a different in-

coming edge ē = (y, v) is selected for node v;

• X ∅G\S , the set of live-edge graphs where no incoming

edge is selected for v.

Note that the probabilities of a live-edge graph X common
to both XG and XG\{e} may or may not change. Specifically,
if node v has another incoming edge g = (u′, v) in X, then

Pr[X|G]− Pr[X|G \ {e}] = 0.
Otherwise, if node v has no incoming edge in X, then

Pr[X|G]− Pr[X|G \ {e}] = −w(u, v)
∏
v′ 6=v

p(v′, X,G) (3)

since all terms in Eq. (2) for Pr[X|G] and Pr[X|G \ {e}]
concerning nodes v′ 6= v are exactly the same, and

p(v,X,G) = 1−
∑

u′:(u′,v)∈E\{e}

w(u′, v)− w(u, v)

= p(v,X,G \ {e})− w(u, v).
We establish the following four relations between the spaces
of live-edge graphs, and defer their proofs to the appendix.
See Fig. 1 for illustrations.

3.1 Within Space Mapping
Our first result establishes a one-to-one mapping between

the elements in partition X eG\S and X ∅G\S .

Proposition 1. For every live-edge graph X ∈ X ∅G\S,

there exists a corresponding live-edge graph X̃ ∈ X eG\S, and

vice versa. If X = (V,EX), then X̃ = (V,EX ∪ {e}).

3.2 Space Inclusion
Our second result relates partitions X ēG\S and X ∅G\S of

the space XG\S , to the space XG\(S∪{e}). We note that this
second space of live-edge graphs, XG\(S∪{e}), is generated
from the influence graph G \ (S ∪ {e}) with an additional
edge e deleted from G \ S. This result also shows that the
space XG\(S∪{e}) is included in the space XG\S .

Proposition 2. XG\(S∪{e}) ⊆ XG\S, and furthermore

XG\(S∪{e}) = X ēG\S ∪ X ∅G\S.
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Figure 2: A dashed line means the edge has been deleted.

3.3 Across Space Mapping
Our third result further partitions X ∅G\S into a collec-

tion of sets {Φi}, and establishes a one-to-one mapping be-

tween Φi and element Xi in the space X ∅G\(S∪{g}), where

g = (u′, v′) is an edge in E \ S with v′ 6= v.

Proposition 3. Let t = |X ∅G\(S∪{g})|, then X ∅G\S can be

partitioned into t sets {Φi}ti=1 such that, for every Φi, there

exists a corresponding Xi ∈ X ∅G\(S∪{g}), and vice versa.

3.4 Across Space Probability Mapping
Our fourth result relates the probability of the partition

Φi ⊆ X ∅G\S to the probability of the corresponding live-edge

graph Xi ∈ X ∅G\(S∪{g}). This result is a sequel to the across

space mapping property in the last section. Essentially, we
show that the sum of the probabilities of the elements in Φi
is equal to the probability of Xi.

Proposition 4. For every Φi ⊆ X ∅G\S and its associated

Xi ∈ X ∅G\(S∪{g}), Pr[Xi|G\(S∪{g})] =
∑
H∈Φi

Pr[H|G\S].

4. NETWORK OPTIMIZATION
In this section, we will prove a set of results for the LT

model, namely that the objective functions are supermodular
in both the edge deletion and the edge addition problems.
These results will form the basis for our algorithm design.

A set function f : 2E 7→ R defined over the power set 2E

of a set E is called supermodular iff ∀S ⊆ T ⊂ E, ∀e ∈ E \T
f(S ∪ {e})− f(S) ≤ f(T ∪ {e})− f(T ). (4)

Intuitively, for a monotone increasing supermodular func-
tion f , the marginal gain of adding a new element e to a set
T is greater than the gain of adding e to any subset S of
T . This property is referred to as the increasing differences
property, as opposed to diminishing returns in the case of
a submodular function. If f is a monotone decreasing func-
tion (as will be the case when we consider deleting edges or
nodes), then the marginal loss in adding e to T would be
smaller than that of adding e to S.

We define the susceptibility of an influence graph G to a
set of potential sources A as

∑
a∈A σ(a,G), which is the sum

of the influence function for each node a. Intuitively, one can
think of each node a ∈ A as having equal probability of be-
ing the source, and the susceptibility of G as the expected
value of the influence function with respect to the random-
ness of picking an a from A. Our definition of susceptibility
can also be generalized to the case where each node a has a
different probability of being the source. In this case, all our
subsequent theorems would still hold. Furthermore, we as-
sume that the size of the source set is only poly-logarithmic
in the total number of nodes in the network, i.e., |A| � |V |.

4.1 Edge Deletion Problem
In this problem, given an influence graph G = (V,E,w)

and a set of sources A, we want to delete a set of edges S∗

of size k from G such that the susceptibility of the resulting

influence graph is minimized. That is

S∗ := argmin
S⊆E:|S|=k

∑
a∈A

σ(a,G \ S), (5)

where the objective function is a set function over the edges
S to be deleted. We will show that each σ(a,G \ S) is a
monotonically decreasing and supermodular function of S,
and hence their positive sum,

∑
a∈A σ(a,G \ S), also is.

Monotonicity. In this section, we prove that σ(a,G \S)
is a monotonically decreasing function of S. We will use
the within space mapping property in Prop. 1 and the space
inclusion property in Prop. 2 to prove the following result:

Theorem 5. σ(a,G \ S) is a monotonically decreasing
function of the set of edges S to be deleted.

Proof. Given the influence graphG = (V,E,w), we need
to show that for any set S ⊆ E and e = (u, v) ∈ E \ S:

σ(a,G \ S)− σ(a,G \ (S ∪ {e})) > 0.
Using the fact that the space XG\S is partitioned into

three sets, X eG\S , X ēG\S and X ∅G\S , and the space XG\(S∪{e})
is partitioned into two sets X ēG\S and X ∅G\S (space inclusion

property in Prop. 2), we can write the difference as
σ(a,G \ S)− σ(a,G \ (S ∪ {e})) (6)

=
∑

X∈Xe
G\S

Pr[X|G \ S] · r(a,X)

+
∑

X∈X∅
G\S

(Pr[X|G \ S]− Pr[X|G \ (S ∪ {e})]) · r(a,X)

+
∑

X∈X ē
G\S

(Pr[X|G \ S]− Pr[X|G \ (S ∪ {e})]) · r(a,X)

Recall that e = (u, v). We will simplify the last two sum-
mands in the above equation using the following two facts:

• For X ∈ X ∅G\S based on Eq. (3): Pr[X|G\S]−Pr[X|G\
(S ∪ {e})] = −w(u, v)

∏
v′ 6=v p(v

′, X,G \ S).

• For X ∈ X ēG\S , the probability is the same, p(v,X,G\
S) = p(v,X,G \ (S ∪ {e})) = w(ē).

Then Eq. (6) simplifies to
∑
X∈Xe

G\S
Pr[X|G \ S] · r(a,X)

+
∑
X∈X∅

G\S
−w(u, v)

∏
v′ 6=v p(v

′, X,G \ S) · r(a,X). Since

any X̃ ∈ X eG\S has probability Pr[X̃|G \ S] = w(u, v) ·∏
v′ 6=v p(v

′, X̃, G\S), then using Prop. 1 to match X̃ ∈ X eG\S
to X ∈ X ∅G\S , we have that Eq. (6) is equal to∑

X∈X∅
G\S

Pr[X̃|G \ S] ·
(
r(a, X̃)− r(a,X)

)
. (7)

Since the live-edge graph X̃ has one more edge than X,

clearly r(a, X̃)−r(a,X) > 0, which completes the proof.
Supermodularity. We will use the across space map-

ping property in Prop. 3 (also Prop. 4) and the probability
mapping property in Prop. 1 to prove the following result:

Theorem 6. The function σ(a,G \ S) is a supermodular
function of the set of edges S to be deleted.

Proof. Let t = |X ∅G\(S∪{g})|, then using the across space

mapping property in Prop. 3, we can partition X ∅G\S into t

sets {Φi}ti=1 and rewrite Eq. (7) in the proof of Thm. 5 as:∑t

i=1

∑
X∈Φi

Pr[X̃|G \ S] ·
(
r(a, X̃)− r(a,X)

)
(8)

Using similar reasoning to that in Eq. (7) in the proof of
Thm. 5 for G \ (S ∪ {g}), we have
σ(a,G \ (S ∪ {g}))− σ(a,G \ (S ∪ {g, e}) (9)

=
∑

X∈X∅
G\(S∪{g})

Pr[X̃|G \ (S ∪ g)] ·
(
r(a, X̃)− r(a,X)

)
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Then we need only compare Eq. (9) and (8) term by term

for each Xi ∈ X ∅G\(S∪{g}), i = 1, . . . , t. Clearly, when Φi =

{Xi}, the terms from the two equations are equal. When
Φi = {Xi, X ′i}, we need to show

Pr[X̃i|G \ S] ·
(
r(a, X̃i)− r(a,Xi)

)
+ Pr[X̃ ′i|G \ S] ·

(
r(a, X̃ ′i)− r(a,X ′i)

)
> Pr[X̃i|G \ (S ∪ {g})] ·

(
r(a, X̃i)− r(a,Xi)

)
(10)

Based on the probability mapping property in Prop. 4, we

have Pr[X̃i|G \ (S ∪ {g})] = Pr[X̃i|G \ S] + Pr[X̃ ′i|G \ S].
Then to establish Eq. (10), it suffices to show that

r(a, X̃ ′i)− r(a,X ′i) > r(a, X̃i)− r(a,Xi).
Recall that X ′i = (V,EXi ∪ {g}). Since live-edge graphs are
constructed in a way that each node has at most one in-
coming edge, each reachable node y has a unique path from
the source node a to node y. Furthermore: (1) a reacha-

bility path in X̃i is clearly also present in X̃ ′i, hence if re-

moving edge e = (u, v) from X̃i results in unreachability of
some nodes in Xi then those same nodes become unreach-
able when removing e from X̃ ′i; (2) removing edge e from X̃ ′i
may disconnect some additional nodes whose paths from the
source a include edge g. Therefore the reduction in reach-

able nodes when removing edge e from X̃ ′i is the same or

larger than the reduction when removing edge e from X̃i.
This completes the proof.

4.2 Edge Addition Problem
In this section, given a partial influence graph G′(V,E′, w)

and a larger potential influence graph G = (V,E,w) with
E′ ⊆ E, we want to add to G′ a set of edges S∗ of size k from
E \ E′ such that the resulting susceptibility is maximized:

S∗ := argmax
S′⊆E\E′:|S′|=k

∑
a∈A

σ(a,G′ ∪ S′), (11)

where the objective function is a set function over the edges
S′ to be added. We will show that each σ(a,G′ ∪ S′) is
monotone and supermodular, and hence their positive com-
bination, σ(A,G′∪S′), is also monotone and supermodular.

Theorem 7. The function σ(a,G′ ∪ S′) is a monotone
and supermodular function of the set of S′ edges to be added.

Proof. We will prove the results by relating the objec-
tive function to that in the edge deletion problem and then
apply the results from the edge deletion problem. More
specifically, let S′ ⊆ T ′ and e ∈ E \ T ′. If we define
S = E \ (S′ ∪ E′ ∪ {e}), then

σ(a,G′ ∪ (S′ ∪ {e})) = σ(a,G \ S)

σ(a,G′ ∪ S′) = σ(a,G \ (S ∪ {e})),
since G′ ∪ (S′ ∪ {e}) = G \ S and G′ ∪ S′ = G \ (S ∪ {e}).
Similarly, if we define T = E \ (T ′ ∪ E′ ∪ {e}), then

σ(a,G′ ∪ (T ′ ∪ {e})) = σ(a,G \ T )

σ(a,G′ ∪ T ′) = σ(a,G \ (T ∪ {e})).
Note that S′ ⊆ T ′ implies that T ⊆ S. Then we apply the
supermodularity of σ(a,G \ S) as a function of the edges S
to be deleted in Thm. 6, and obtain

σ(a,G′∪(S′ ∪ {e}))− σ(a,G′ ∪ S′)
6 σ(a,G′ ∪ (T ′ ∪ {e}))− σ(a,G′ ∪ T ′),

which completes the proof.
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Figure 3: Illustration of a live-edge graph X, the tree TaX in-

duced by BFS rooted at a, the part of the graph T
a
X which is

the complement to TaX . For the edge deletion problem, we build
a descendant counting tree data structure for each live-edge tree
TaX where each node stores its number of descendants. For the
edge addition problem, we build a neighbor-counting graph data
structure for each complement T

a
X , where each node stores a list

of q least labels
{
l∗i (v)

}
obtained over q random labelings.

5. SCALABLE ALGORITHMS
Given that the edge deletion and addition problems are

supermodular, we can, in principle, solve the network topol-
ogy optimization problems using the state-of-the-art super-
modular optimization algorithms. However, there remain
great challenges in scaling these algorithms up to diffusion
networks with millions of nodes. First, supermodular op-
timization requires evaluating the influence function many
times. The problem of computing the influence function
σ(a,G) exactly has been shown to be #P-Hard [4]. Thus
there is a need to design methods to approximately com-
pute the influence function in near-linear time. To tackle
this problem, we will estimate σ(a,G) using empirical aver-
aging (EA) over a fixed set of live-edge graphs, pre-sampled
using the LT live-edge graph generation process described
in section 2.2. That is

σ(a,G) ≈ σ̂(a,G) :=
1

|L| ·
∑
Xi∈L

r(a, T aXi
) (12)

where L = {Xi}1≤i≤l is the set of sampled live-edge graphs
from G. Recall T aXi

is the tree rooted at a induced from Xi.
Second, typically, the marginal change of the influence

function for each candidate edge needs to be computed.
This imposes the additional requirement that each marginal
change computation has to be nearly constant-time to han-
dle the large number of candidate edges. To address these
challenges, we will design an efficient descendant-counting
tree data structure for the edge deletion problem, and use
it as part of a greedy algorithm to minimize the supermod-
ular objective function. For the edge addition problem, we
will employ an efficient randomized neighbor-counting graph
data structure, and use it inside a modular approximation
algorithm to maximize the supermodular objective function.
Fig. 3 illustrates the data structures. In both cases, time and
space complexities are linear in the network size.

5.1 Edge Deletion
It is easy to see that the empirical average influence func-

tion σ̂(a,G\S) under edge deletion is also supermodular and
monotonically decreasing. To solve the problem at hand, we
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adopt a simple greedy approach: at each iteration, given the
current solution St, add to the solution the element e with
the largest marginal loss ∆(e|St) defined using Eq. (12)

1

L
∑
a∈A

∑
Xi∈L

r(a, T aXi
\ St)− r(a, T aXi

\ (St ∪ {e})) (13)

where T aXi
\St means deleting edges St from tree T aXi

. Based
on this expansion, we notice that the edge with largest marginal
loss is the edge whose deletion results in the largest decrease
in the average number of descendants over all source nodes
and the set of induced live-edge trees T aX . Note that we use
the terminology “marginal loss” rather than “marginal gain”
because our objective function is monotone decreasing, hence
∆(e|St) measures the marginal loss resulting from removing
e after edges St have been removed.

Näıvely applying the greedy algorithm is computation-
ally intensive and will not scale to networks with millions of
nodes. Basically, at iteration t, for every edge e ∈ E \ St
and every T aX , we need to compute ∆(e|St) by performing
a Breadth-First-Search (BFS) traversal from the source a,
and count the number of nodes reachable in T aXi

\ St and
T aXi
\ (St ∪{e}). It is easy to see that such an approach will

lead to an O(|V |2 + |V ||E|) complexity algorithm: BFS is
O(|V | + |E|) and we need to check O(|E|) edges in E \ St.
Such quadratic dependence on the network size motivates
us to design a more efficient solution.
Scaling Up. Can we avoid the many BFS traversals? To

answer this question, we first make the following observation
Observation 1. Given an edge e = (u, v) to be deleted

where v is reachable from the source a, the marginal loss
∆(e|St) can be computed as
r(a, T aX \St)− r(a, T aX \ (St ∪{e})) = r(v, T aX \St) + 1 (14)

This observation implies that, if we can compute r(v, T aX)
for all v ∈ V in the original live-edge tree T aX , we can then
compute the marginal gain of each edge e efficiently.

Can we compute the number of descendant, r(v, T aX), ef-
ficiently, for all v ∈ V ? Fortunately, since we are dealing
with trees of at most |V | edges each, this can be done in
time O(|V |) using a single BFS traversal. More specifically,
after initializing r(v, T aX) = 0, ∀v ∈ V ,

1. Perform a BFS starting from the source a of T aX , adding
each traversed edge e to a stack H; at the end of the
BFS, the top of the queue is the last edge traversed.

2. While stack H is not empty, pop edge e = (u, v) and
increment r(u, T aX) by r(v, T aX) + 1.

The correctness of the above procedure is easy to verify: the
number of descendants of a node is equal to the sum of the
number of descendants of its children, plus the number of
children it has, which is exactly what we are computing.

Suppose we have already maintained the descendant counts
r(v, T aX \ St) for all node v ∈ V . Then after deleting edge
e = (u, v), there are two types of nodes for which need to up-
date the descendant counts: the ancestors u′ of node v, and
the nodes that have become unreachable. For the former,
we update their descendant counts by subtracting out the
number of descendants of node v plus 1. Similar to Eq. (14),
r(u′, T aX \ (St ∪ {e})) = r(u′, T aX \ St)− r(v, T aX \ St)− 1.

For the latter, we simply set their descendant counts to
zero, i.e., r(u′, T aX \ (St ∪ {e})) = 0. Last, the marginal
loss of each edge can also be updated according to Eq. (14).
Overall Algorithm: GreedyCutting is summarized in

Algorithm 1. It first samples live-edge graphs and obtains
the corresponding live-edge trees for the input sources A.
Lines 4–12 compute the initial descendant counts variables
r(u, T aX) for each node u and each T aX , and the edge marginal

loss variables ∆(e) for all edges in E. For each iteration, line
15 adds to the solution set the edge with largest marginal
loss, and lines 16–27 locally update the descendant count
variables for nodes, and marginal loss variables for edges.
Finally, the solution set S∗ is returned.

If we assume the number of source nodes to be poly-
logarithmic in |V |, then Algorithm 1 has computational com-
plexity O(k|L||V |), which is linear (up to poly-logarithmic
factors) in the size of the network. As for space complex-
ity, our main data structures store the node descendant
counts for each induced live-edge tree on one hand, and the
marginal losses of the edges on the other, requiring space of
complexity O(|E|+ |V ||L|), linear in the network size.

Lemma 8. Let S∗ ∈ argminS⊆E:|S|=k
∑
a∈A σ(a,G \ S),

and h(S) =
∑
a∈A σ(a,G) − σ(a,G \ S), the reduction in

influence when S is deleted from E. Let α be the approxi-
mation factor for influence estimation by EA. The solution

Ŝ returned by GreedyCutting satisfies

h(Ŝ) > (1− 1/e− α)h(S∗)
Proof. Straightforward based on [18].

Algorithm 1: GreedyCutting

Input: Influence Graph G(V,E,w), Sources A, k
Output: Edges S∗

1 Sample a set of live-edge graphs L = {X} from G
2 Obtain the set of induced live-edge trees {T aX} from L
3 Initialize ∆(e) = 0 for all e ∈ E, r(u, T aX) = 0 for all
u ∈ V and T aX

4 for each T aX do
5 Initialize queue Q, stack H, Q.enqueue(a),

visited = {a}
6 while Q is not empty do
7 s = Q.dequeue()
8 for u ∈ V and (s, u) is an edge in T aX do
9 if u /∈ visited then

10 visited = visited ∪ {u}, Q.enqueue(u),
H.push((s, u))

11 while H is not empty do
12 (u, v) = H.pop(), r(u, T aX) += r(v, T aX) + 1,

∆((u, v)) += r(v, T aX) + 1
13 S∗ = ∅
14 for t=1 to k do
15 et = (ut, vt) = argmaxe∈E\S∗ ∆(e), S∗ = S∗ ∪ {et}
16 for each T aX do
17 if et is an edge in T aX then
18 s = ut
19 while s is not the source a do
20 r(s, T aX) −= r(vt, T

a
X) + 1,

∆((parent(s), s)) −= r(vt, T
a
X) + 1,

s = parent(s)
21 Initialize queue Q, Q.enqueue(ut),

visited = {ut}
22 while Q is not empty do
23 s = Q.dequeue()
24 for u ∈ V and (s, u) is an edge in T aX do
25 if u /∈ visited then
26 visited = visited ∪ {u},

Q.enqueue(u),
∆((s, u)) −= r(u, T aX) + 1,
r(s, T aX) = 0, r(u, T aX) = 0

27 return S∗

5.2 Edge Addition
We now turn to our algorithmic framework for solving the

problem of adding edges. Recently, Iyer et al. [11] proposed
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a simple approach for constrained submodular minimization
with approximation guarantees, which we will adapt for our
(analog) supermodular maximization problem. Recall that
given a partial influence graph G′(V,E′, w) and a larger po-
tential influence graph G = (V,E,w) with E′ ⊆ E, we want
to add to G′ a set of edges S∗ of size k from E \E′ such that
the resulting susceptibility is maximized (Eq. (11)). The
algorithm constructs a modular lower bound (MLB) of the
objective function, and then adds edges that maximize this
lower bound, instead of the original objective. That is,
1

|L|
∑
a∈A

∑
Xi∈L

r(a, T aXi
∪ S) >

1

|L|
∑
a∈A

∑
Xi∈L

∑
e∈S

r(a, T aXi
∪ {e}),

where L = {Xi}1≤i≤l is the set of sampled live-edge graphs
from G′, and T aXi

is the tree rooted at a induced from Xi.
Then, T aXi

∪ S refers to the live-edge tree resulting from
adding new edges S to T aXi

. Note that the resulting tree
may allow the source a to reach some nodes originally not
reachable in T aXi

.
The MLB approach has several nice properties. First, the

modular lower bound function is simple, essentially requiring
us to compute the reachability score r(a, T aXi

∪{e}) for each
candidate edge to be added. Second, maximizing the MLB
for a budget k reduces to simply finding the top k edges
which lead to the largest function value∑

a∈A

σ̂(a,G′ ∪ {e}) =
1

|L|
∑
a∈A

∑
Xi∈L

r(a, T aXi
∪ {e}). (15)

However, näıvely applying the MLB algorithm is compu-
tationally intensive and can not be scaled up to networks
with millions of nodes. Basically, for every candidate edge
e to be added and for every T aX , we need to compute the
reachability r(a, T aXi

∪ {e}) by performing a BFS traversal
from the source a, and count the number of nodes reachable
in T aXi

∪ {e}. It is easy to see that such an approach will
lead to an O(|V ||E|) complexity algorithm: BFS is O(|V |)
(since trees T aX have at most |V | edges), and we need to
check O(|E|) edges in E \ E′. Again, we are motivated to
design a more efficient solution.

Scaling Up. Can we avoid the many BFS traversals? To
answer this question, we first make the following observation

Observation 2. Given an edge e = (u, v) to be added,
where node v is originally not reachable from the source a,
but becomes reachable with the addition of e, the reachability
of a can be updated as

r(a, T aX ∪ {e}) = r(a, T aX) + w(e) · (r(v, T aX) + 1) (16)

where T
a
X is the complement of T aX containing those nodes

and edges not reachable from a.

We note that the term r(v, T
a
X) + 1 is multiplied by the

weight w(e) of edge e to account for the probability of that
edge being actually picked by node v in the live-edge gener-
ation process of the new influence graph G′ ∪ {e}. Further-

more, note that T
a
X may contain cycles.

Can we compute the number of reachable nodes, r(v, T
a
X),

efficiently, for all v in T
a
X? Fortunately, this problem has

been extensively studied in the theoretical computer science
literature as the neighborhood size-estimation problem [5],
and was recently applied in the context of influence estima-
tion for a continuous-time diffusion model [7]. We will adapt
a linear-time algorithm by Cohen [5] for our problem.

We apply the algorithm to T
a
X as follows: first, we assign

to each node u a label l(u) drawn from the exponential dis-
tribution with parameter (mean) 1. Then, we exploit the
fact that the minimum l∗(v) of the set of exponential ran-
dom labels {l(u)} for nodes u reachable from v will itself be
an exponential random variable, with its parameter equal

to r(v, T
a
X). If we repeat the random labeling q times and

obtain q such least labels {l∗i (v)}qi=1, then the neighborhood
size is estimated as

r(v, T
a
X) ≈ q − 1∑q

i=1 l
∗
i (v)

. (17)

Can we find the least labels efficiently for all nodes v given
each random labeling? In fact, this can be done using a
modified BFS traversal which requires time only linear in
the network size. More specifically, For a given labeling, we
start from the node v with the smallest label, and perform
a BFS traversal in the reverse direction of the graph edges.
For each node u encountered in the BFS, we set l∗(u) = l(v).
Once a node has been encountered in a BFS and its least
label has been set, it is marked as visited, not only for this
particular BFS, but across all subsequent BFS runs. After
the BFS traversal from node v is complete, we move to the
unvisited node with the next smallest label, and repeat the
procedure iteratively until all nodes have been marked as
visited. It is easy to see why this algorithm correctly assigns
the appropriate least label l∗(v) to each node v: since we
order the BFS runs by minimum labels, and traverse the
edges in reversed direction, then once a node u has been
visited, we are guaranteed that the l∗(u) we assign to it is
the smallest, and any subsequent BFS that can reach u will
have a label larger than l∗(u).

Overall Algorithm: ModularAdding is summarized
in Algorithm 2: we first generate the live-edge graphs, in-
duce the live-edge trees, and draw q labels for each node
v ∈ V from the exponential distribution with mean 1 (lines
1-5). Then, for each source node a ∈ A, we iterate over the
induced live-edge trees T aX , collecting the estimated neigh-
borhood size of each node v in the complement T

a
X of each

such tree, by applying Cohen’s algorithm (lines 7-20). After
iterating over the live-edge trees, we compute the final score
for each edge e ∈ C in the candidate set C as the sum over v’s
neighborhood size estimates, weighted by the edge’s diffu-
sion probability w(e) (lines 21-22). Finally we sort the scores
vector in descending order, and return the top k edges.

We assume the number of sources |A| is poly-logarithmic
in |V | and hence ignored in the complexity analysis. Then
Algorithm 2 has computational complexity O(q|L||V |) and
space complexity O(q|V |). This is because the Cohen’s algo-
rithm has complexity O(q|V |), and is invoked O(|L|) times.
The final sorting of the scores can be done in O(|E \ E′|).
As for space, we only require data structures of sizes linear
in the number of nodes O(q|V |) to hold the least labels.

Lemma 9. Let S∗ ∈ argmaxS′⊆E\E′:|S′|=k
∑
a∈A σ(a,G′∪

S′), and g(S) =
∑
a∈A σ(a,G)−σ(a,G′∪S′), the difference

between the influence in the potential graph G and the influ-
ence when S is added to E′. Let κg be the curvature [11] of
g, and β be the approximation factor of our two estimation
subroutines (1) EA and (2) Cohen’s algorithm. The solution

Ŝ returned by ModularAdding satisfies

g(Ŝ) 6 β/(1− κg) · g(S∗)

Proof. Straightforward based on Thm. 5.4 in [11].

6. EXPERIMENTS AND RESULTS
We now present our experimental setting and results.

6.1 Setting
Synthetic networks. We generate three types of net-

works using the Kronecker graph model2 [17], known to

2http://snap.stanford.edu/data/
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Algorithm 2: ModularAdding

Input: G′(V,E′, w), k,Sources A,Candidates C
Output: Edges S∗

1 Sample a set of live-edge graphs L = {X} from G′

2 Obtain the set of induced live-edge trees {T aX} from L
3 for each v ∈ V do
4 for each i = 1, . . . , q do
5 li(v) ∼ exp (−x)
6 for each a ∈ A do
7 for each T

a
X do

8 for each i = 1, . . . , q do
9 visited = ∅

10 for nodes v in T
a
X ordered according to

argsort({li(v)}) do
11 if v /∈ visited then
12 visited = visited ∪ {v}
13 Initialize Q, Q.enqueue(v)
14 while Q is not empty do
15 u = Q.dequeue(), l∗i (u) = l(v)
16 visited = visited ∪ {u}
17 for each parent s of u in T

a
X do

18 Q.enqueue(s)

19 for each node v in T
a
X do

20 r(v, T
a
X) =

q − 1∑q
i=1 l

∗
i (v)

21 for each e = (u, v) ∈ C do
22 score(e) += w(e) ·

∑
Xi∈L(r(v, T

a
X) + 1)

23 S∗ = argsort(score, k,descending)
24 return S∗

Table 1: Datasets summary. Numbers outside (inside) bracket
are for edge deletion (addition) experiments. Last column is for
Kronecker parameter matrices.

Dataset #Nodes #Edges Kronecker

CorePeriphery
1M(65K) 2M (131K)

[.9 .5; .5 .3]
ErdosRenyi [.5 .5; .5 .5]
Hierarchical [.9 .1; .1 .9]
HepPH 35K 420K

—Epinions 75K 509K
MemeTracker 1.8K 5K

generalize a number of realistic graph models: (1) CorePe-
riphery, (2) ErdosRenyi and (3) Hierarchical. These
three graph models have very different structural properties,
allowing us to test for sensitivity to network structure.

Real-world networks. We choose three publicly avail-
able real-world datasets2 that are amenable to diffusion pro-
cesses and hence suitable for our problems: (1) HepPH: a
whom-cites-whom citation network based on the Arxiv High-
energy Physics papers over the period 1993-2003; (2) Epin-
ions: a who-trusts-whom online social network of the con-
sumer review site Epinions.com; (3) MemeTracker: a who-
copies-from-whom network of news media sites and blogs.
The statistics of the datasets are summarized in Table 1.

Assigning probabilities. Given a network G(V,E), we
populate the weight vector representing the probabilities on
the edges E according to the LT model, as follows: for a
given node v ∈ V , we draw a probability value w̃(u, v) for
each edge e = (u, v) ∈ E that is incoming into v, uniformly
at random from the interval [0, 1]. In addition, we draw
from the same interval a probability value wv representing
no infection, i.e the probability that v’s infected parents fail

Table 2: Parameter values used in the experiments of Fig. 4 (1st

row), and Fig. 5 (2nd row): A is the set of sources, Lopt is the set
of live-edge graphs used by our algorithm, Leval is the set of live-
edge graphs used for evaluation of all algorithms and heuristics,
t refers to the budget of edges deleted for which diffusion stops
completely, q is the number of random labelings used in Algo. 2.

Parameters for Experiments

Problem |A| |Lopt| |Leval| k q

Edge Deletion
100 1, 000 5, 000

[0, t] −
Edge Addition [0, 2000] 20

to activate it. Since the probabilities on the edges plus the
probability of no infection must sum to 1, we then normalize
each probability over the sum of all the probabilities, i.e., we
obtain w(u, v) = w̃(u, v)/(

∑
u∈V w̃(u, v) + wv). We apply

this method for all datasets except for MemeTracker.
For MemeTracker, we make use of the median transmis-

sion time, also provided as part of the dataset. Let t̃(u, v) be
the median transmission time between two nodes u and v,
then we set w(u, v) ∝ t̃(u, v)−1, rewarding smaller transmis-
sion times with higher diffusion probabilities, and vice versa.
We assign a probability of wv = 0.2,∀v ∈ V , and normalize
the weights for all nodes v such that

∑
u∈V w(u, v)+wv = 1.

Competing heuristics. To evaluate the efficacy of the
solutions provided by our algorithms, we compare against
other heuristic measures that are not based on the dynam-
ics entailed by the LT diffusion model. These heuristic
strategies can be described as follows: (1) Random: select k
edges uniformly at random from the input set of edges, (2)
Weights: select the k edges with highest diffusion probabil-
ity (weight) w(u, v), (3) Betweenness: select k edges with
highest edge betweenness centrality [2, 20], (4) Eigen: select
the k edges that cause the maximum decrease (increase) in
the leading eigenvalue of the network when removed from
it, or added to it [22], (5) Degree: select the k edges whose
destination nodes have the highest out-degrees [8].

6.2 Deleting Edges
We carry out each experiment as follows: given an in-

fluence graph G(V,E,w), a set of source nodes A chosen
uniformly at random from V , and a budget k of edges to
delete, we run GreedyCutting and the five heuristics and
obtain a set of edges from each. Then, for each algorithm or
heuristic, we simulate the LT diffusion process by generating
a set of live-edge graphs Leval based on G, and then delet-
ing the proposed set of edges S∗ from all live-edge graphs
in Leval. The efficacy of each proposed set of edges is mea-
sured by Ik, the average number of infected nodes over Leval.
These parameters are summarized in Table 2. The budget
k is increased until diffusion is no longer possible, i.e., the
source nodes are completely isolated.

Synthetic networks. The results are shown in Fig. 4
(a-c). First, we observe that our algorithm clearly outper-
forms all five other heuristics: for any budget k of edges to
delete, our algorithm minimizes the graph susceptibility ra-
tio (Ik/I0) better than any of the heuristics for all three syn-
thetic network types, implying that it produces good solu-
tions independently of the structural properties of the input
network. On the other hand, the considered heuristics per-
form arbitrarily good or bad, as we vary the type of synthetic
network. At last, we observe that even for |Lopt| = 1, 000,
a quantity much smaller than the typical 10, 000 used in
the literature, the green and red lines are almost indistin-
guishable, meaning our solution generalizes well to the larger
evaluation set of 5, 000 live-edge graphs.
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Figure 4: Efficacy of the edge deletion solutions provided by different algorithms. Lower is better. The x-axis refers to the budget k; the
y-axis refers to the graph susceptibility ratio, defined in the range [0, 1] as: Ik/I0.

Real-world networks. We observe similar performance
for real-world networks (Fig. 4 (d-f)). For instance, for the
Epinions dataset (Fig. 4(e)), our method has decreased the
graph susceptibility to 40% of its original value at k =
200, whereas the best performing heuristic at the same k
is Weights with 60% (here, lower is better).

6.3 Adding Edges
The experimental procedure for evaluating our Modu-

larAdding algorithm and other heuristics is analogous to
that described in 6.2 for edge deletion. We compare our al-
gorithm to all previously described heuristics, for the excep-
tion of the Betweenness heuristic, as it is not obvious how
meaningful it would be to compute this metric for edges that
do not initially exist in the network. Results are in Fig. 5.

Synthetic networks. Our algorithm is almost always
twice as effective as the next best heuristic, be it Weights or
Degree. This efficacy gap is consistent across all three types
of networks, confirming yet again the robustness of the so-
lutions we find to varying structural properties of networks.
Real-world networks. Similarly to the synthetic set-

ting, our algorithm significantly outperforms all four heuris-
tics in the real-world setting, for all three datasets. For
instance, for the HepPH dataset in Fig. 5(d), the Degree
heuristic requires adding 2, 000 edges to the set A of 100
sources in order to increase the graph susceptibility by twice
its initial value (i.e., at k = 0), whereas our algorithm
increases the graph susceptibility by the same amount for
k = 200 edges, a small fraction of 2000. This superior per-
formance implies that our algorithm is more amenable to
real-world applications, where the budget is typically very
small relative to the number of nodes, possibly representing
humans in a social network, blogs on the web, etc.

6.4 Scalability
Scalability is a major concern in the industrial setting. We

experimentally verify the scalability of both our edge dele-
tion and addition algorithms. All experiments were executed
on a laptop with a 2.7GHz quad-core i7 CPU and 16Gb
RAM. The results presented in Fig. 6 measure the runtime
of our algorithms on synthetic CorePeriphery networks of
increasing number of nodes, and fixed average degree of 2.
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Figure 6: Runtime on synthetic core-periphery networks: for both
lines, each point represents the average time in seconds per edge
deleted or added. The number of sources is poly-logarithmic in
the number of nodes and the number of live-edge graphs used is
100, for both problems. For ModularAdding, q = 5.

We vary the number of nodes, starting at 27 = 128 nodes,
and up to 223 = 8, 388, 608 nodes (16, 777, 216 edges). The
experimental results show that our algorithms scale linearly
in the size of the network. As expected, ModularAdding,
while also having a linear scaling, is more time-consuming
than GreedyCutting, due to the repeated linear-time al-
gorithm for building the neighbor-counting graph.
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APPENDIX
Proof of Prop. 1. Since edge e /∈ S, we can always find

two live-edge graphs within XG\S which differ by the edge
e. The first live-edge graph X does not contain e, and the
second live-edge graphX ′ contains the additional edge e.

Proof of Prop. 2. Since S ⊂ S ∪ {e}, the influence
graph G\ (S∪{e}) has one less edge than G\S, while other
parameters of the two graphs remain the same. This implies
that any live-edge graph X generated from the former in-
fluence graph can always be generated from the latter one,
which establishes the first part of the proposition. Further-
more, XG\(S∪{e}) contains those live-edge graphs without

edge e, which is essentially the union of X ēG\S and X ∅G\S by

definition.
Proof of Prop. 3. We will explicitly construct a set Φi ⊆

X ∅G\S for each element Xi ∈ X ∅G\(S∪{g}). There are two

types of elements in X ∅G\(S∪{g}), and we will construct Φi
respectively as follows: (1) If node v′ has an incoming edge

in Xi, then Φi = {Xi}. Φi is contained in X ∅G\S since

X ∅G\(S∪{g}) ⊆ X
∅
G\S using a similar argument as in the space

inclusion property. (2) Otherwise, Φi = {Xi, X ′i}, where
X ′i = (V,EXi ∪ {g}) is obtained by extending Xi with edge

g. Φi is also contained in X ∅G\S since g /∈ S and hence X ′i

is a valid live-edge graph in X ∅G\S . It is easy to see that the

Φis are pairwise disjoint and form a partition of the space
X ∅G\S .

Proof of Prop. 4. We will consider two cases. When
Φi = {Xi} is a singleton, Pr[Xi|G\(S∪{g})] = Pr[Xi|G\S]
and hence the statement holds true trivially. When Φi =
{Xi, X ′i}, the difference Pr[Xi|G\(S∪{g})]−

∑
H∈Φi

Pr[H|G\
S] is proportional to p(v′, Xi, G \ (S ∪ {g})) − p(v′, Xi, G \
S)−p(v′, X ′i, G\S), where we only need to consider the con-
tribution of the terminal node v′ of edge g = (u′, v′), since
all other nodes contribute the same amount to the probabil-
ity of each live-edge graph involved. Based on Eq. (3), the
difference between the first two terms, w(u′, v′), cancels out
with the third term, w(u′, v′), which shows that the differ-
ence Pr[Xi|G \ (S ∪ {g})]−

∑
H∈Φi

Pr[H|G \ S] is zero, and

completes the proof.
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