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ABSTRACT
The analysis of network connections, diffusion processes and
cascades requires evaluating properties of the diffusion net-
work. Properties of interest often involve variables that are
not explicitly observed in real world diffusions. Connection
strengths in the network and diffusion paths of infections
over the network are examples of such hidden variables.
These hidden variables therefore need to be estimated for
these properties to be evaluated. In this paper, we pro-
pose and study this novel problem in a Bayesian framework
by capturing the posterior distribution of these hidden vari-
ables given the observed cascades, and computing the expec-
tation of these properties under this posterior distribution.
We identify and characterize interesting network diffusion
properties whose expectations can be computed exactly and
efficiently, either wholly or in part. For properties that are
not ‘nice’ in this sense, we propose a Gibbs Sampling frame-
work for Monte Carlo integration. In detailed experiments
using various network diffusion properties over multiple syn-
thetic and real datasets, we demonstrate that the proposed
approach is significantly more accurate than a frequentist
plug-in baseline. We also propose a map-reduce implemen-
tation of our framework and demonstrate that this can an-
alyze cascades with millions of infections in minutes.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data mining

Keywords
Social Influence Analysis; Information Cascades; Networks
of Diffusion; Bayesian Analysis; Gibbs Sampling

1. INTRODUCTION
The study of networks and diffusions over them has a long

history in epidemiology, sociology, econometrics and market-
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ing. Interest in the problem has increased many fold over
the last two decades in the context of information diffusion
and social networks, first because of the growth of the in-
ternet, and then the social media revolution [2, 13]. The
study typically involves three different objects of interest: a
network that defines connection strengths between entities,
a diffusion process that defines how ‘infections’ spread ran-
domly over the network, and cascades that trace the spread
of specific infections over the network. Many different prob-
lems have been studied in the context of these three objects
of interest. A problem that has received a lot of attention
is that of network inference [21, 7, 6, 8, 4, 9, 19, 22, 15],
where the task is to infer the hidden network of connection
strengths from the cascades.

However, inferring the network of diffusions is often an
intermediate task in the analysis. The main objective is
often to compute some property of the network and/or the
cascades, such as centrality and reach of individual nodes,
optimal seeds for viral marketing [14, 12, 10], community
structures [17, 1], the likelier diffusion mechanism [18], etc.

An example of such a property is the identity of ‘tribe
leaders’ [10], who are well connected to a large tribe of nodes
in the network, and whose tribe members follow their ac-
tions frequently in the cascades. Computing this notion of
node influence is expensive even when the cascades are com-
pletely observed, but consider a simplification that is still in-
teresting. Consider the out-degree of a node in the network,
counting only those edges that are strong and also frequently
used in the cascades. This influence score is much simpler to
compute given completely observed networks and cascades,
and yet is useful for marketers and epidemiologists.

In Fig. 1, we show the strength-frequency distribution of
edges in four different synthetically-generated network dif-
fusions. The x-axis shows edge strength (α) and the y-axis
transmission frequency (ρ), which is the number of times
an edge was used to transmit infections in the cascades.
The distribution only considers actual edges used in the cas-
cades. Fig. 1(a) through Fig. 1(d) correspond to Forest
Fire, Core-Periphery, Random and Hierarchical graphs re-
spectively, each with 1024 nodes and ∼ 2000 edges. In each
case, we generated 20 splitting, independent cascades [22]
over these graphs with 2 randomly chosen seeds for each
cascade. The plots can also be interpreted as the distribu-
tion of the simpler node influence score discussed above. The
plots clearly show that these distributions look very differ-
ent depending on the underlying network connections and
possibly also the diffusion mechanism. Thus, given network
diffusion data from some network with unknown structure
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(a) Forest fire (FF) (b) Core-Periphery (CP) (c) Random (Rnd) (d) Hierarchical (HI)

Figure 1: Actual strength-frequency distribution for cascades from synthetic graphs

and diffusion mechanism, it is clearly of interest to construct
and study such distributions.

In this paper, we investigate such joint properties of net-
works and cascades. The main difficulty in evaluating such
properties for real-world network diffusions is that the con-
nections strengths in the network are unknown. Addition-
ally, the diffusion edges are also unknown — the cascades
only record the catchers of the infections and the infection
times, but not the actual path traced by specific infections.
For example, in social information flows, the friends and fol-
lowers are known, but not the extent of influence between
them, and often users do not reveal the sources of infor-
mation. Therefore, to evaluate the properties, these hidden
variables need to be inferred from the observed cascades.

(a) Frequentist (b) Bayesian Expectation

Figure 2: Reconstructed distribution: CP

One way to evaluate a property is to take the ‘frequentist
plug-in approach’, that finds point estimates of the network
and the diffusion edges in the cascades, and then evaluates
the property using these point estimates. The most popular
point estimate used for network inference is the maximum
likelihood estimate [6, 22]. This approach for evaluating
properties has two drawbacks. The first is the well known
problem of overfitting for a frequentist approach. More im-
portantly, for properties that are not one-to-one functions of
the network and the diffusion paths, the most likely value of
the property need not correspond to the most likely network
and diffusion paths. Fig. 2(a) shows the reconstructed edge
distribution for the Core-Periphery diffusion data using this
frequentist approach. It has failed to recover the signature
shape of the distribution.

In this paper, we motivate and propose a Bayesian solu-
tion to this problem, where both the network and the dif-
fusion paths are modeled as random variables. This makes
network diffusion properties functions of random variables,
and our problem becomes one of computing the expecta-
tion of the property under the posterior distribution of the
hidden variables given the observed features of the cascade.

An obvious challenge for the Bayesian approach is the cost
of computing expectations. This seems daunting for the net-
work inference problem with its large number of coupled dis-
crete and continuous hidden variables. However, our analy-
sis shows that for the popular independent cascade model,
many interesting network diffusion properties are ‘nice’, in
that their expectations can be computed exactly and effi-
ciently, at least in part. For parts of the expectations that
are not ‘nice’, we propose a Gibbs Sampling technique for
efficient Monte Carlo integration. Fig. 2(b) shows the re-
construction of the Core-Periphery strength-frequency dis-
tribution using our proposed approach. It has recovered the
distinctive shape to a much better extent.

In detailed experiments using various network diffusion
properties over multiple synthetic and real datasets, we demon-
strate that the proposed approach is significantly more accu-
rate than the MLE plug-in baseline, and is useful for tradi-
tional network inference as well. We show that the approach
scales easily to very large datasets using a map-reduce im-
plementation.

2. RELATED WORK
Different problems have been studied in the context of

diffusion networks [2, 13]. The network inference problem
[21, 7, 6, 8, 4, 9, 19, 22, 15] has been investigated in depth,
starting with stationary discrete time models [19], to the
more recent models that consider features [22] and time-
varying networks [9]. The solutions have mostly been based
on maximum-likelihood estimation.

Apart from inferring the complete network structure, there
has been work on inferring summaries of the network, such
as community structures [17, 1]. Other investigated proper-
ties are estimating influence of nodes [3], and subsequently
selecting a subset of nodes that maximize influence [12].
Sadikov et. al. [20] study various properties of cascades
assuming completely missing infections.

Milling et. al. [18] study the problem of deciding which of
two given networks caused a specific diffusion with its path
properties observed. Efficient algorithms have been designed
for identifying leaders and tribes [10] and mining propaga-
tion summaries [16] from cascades, assuming the underlying
network and the diffusion paths to be known. These prob-
lems may be seen as computing joint properties of networks
and cascades, with all variables observed.

In summary, we are not aware of any general framework
for estimating joint properties of networks and diffusion pro-
cesses in the context of hidden network and diffusions paths.
We are also not aware of any Bayesian framework for net-
work diffusion analysis.
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3. PROBLEM DEFINITION
In this section, we first review the network diffusion prob-

lem and the independent cascade model. Then we define
network diffusion properties and their expectations.

Network Diffusion and Independent Cascade Model: We
assume a network G = (V,E) with nodes V and edges E.
For (u, v) ∈ E, let αuv ∈ R+ denote the connection strength
between nodes u and v. We have a set C of cascades corre-
sponding to spreading infections over the network G. Each
cascade c ∈ C consists of a set of time-stamped infections:
c = {(ui, zi, ti)}. The ith infection records that node ui got
infected at time ti by its parent infection zi. We will assume
that ti < tj for i < j. Let πi ⊆ {1 . . . i − 1} denote the set
of ‘potential parents’ for the ith infection, so that zi ∈ πi.
Observe that the infecting parent zi provides edge informa-
tion for reconstructing the infection paths over the network.
We also know that the cascades were observed for time T ,
which is at least as large as the final infection time.

The joint distribution p(C|α) on the cascades C given
the network strengths is typically defined using a generative
process that captures the dynamics of spreading infections.
While many diffusion models have been proposed, we follow
the popular Continuous-Time Independent Cascade Model
[6]. Under this model, each cascade starts with an initial set
of seed nodes getting infected. Each infected node proposes
an infection times for each currently uninfected neighbor
in the network. An uninfected node catches its infection
from that infected neighbor who has proposed the earliest
infection time for it. We consider the setting where nodes
can get infected multiple times in the same cascade, and the
splitting model for this [22], where all infections between the
current and the previous infections of a node are considered
as its potential parents.

The main building block of the model is the probability
density function f(ti|ui, uj , tj ;αujui), which models the con-
ditional likelihood of node ui getting infected at time ti by
node uj which got infected at time tj for tj < ti. [6, 22]:

p(c|α) =
∏
i

H(ti|tzi ;αuziui)
∏
j∈πi

S(ti|tj ;αuzjui)∏
v:lv<ti

S(T |ti;αuiv)

where S(t) = 1 − F (t) is the survival function, H(t) =
f(t)/S(t) is the hazard function corresponding to the CDF

F (t) =
∫ t

0
f(t)dt, lv is the time of last infection of node v.

Assuming cascades to be generated iid, the likelihood of C
becomes p(C|α) =

∏
c∈C p(c|α).

In real-world network diffusions, many of the variables
above are unobserved. We will assume that the observed
trace Co = {co} of the cascade C only contains the infected
node ui and the infection time ti: c

o = {(ui, ti)}. The in-
fecting parent zi is not observed. The posterior distribution
p(z|{co}, α) over infection parents, conditioned on observed
cascades {co} and α, has the following form:

p(z | {co}, α) =
∏
i

H(ti|tzi ;αuziui)∑
j∈πi H(ti|tj ;αujui)

(1)

Observe that this decouples into terms involving individual
infection parents zi. This will be a key property for efficient
computation of network diffusion properties in Sec. 5.

The network connection strengths αuv are also typically
unobserved. Further, we assume that the set of network
edges E is also not known. Therefore, we consider α to be
a |V | × |V | matrix of unknown variables. The goal of the
popular network inference problem is to reconstruct this α
matrix using {co} [6, 22]. The state-of-the-art approach is
to obtain a maximum likelihood estimate:

α̂ = arg max
α

log p({co}|α) = arg max
α

log
∑
z

p(C|α) (2)

For modeling f(ti|ui, uj , tj ;α), the Exponential, Power-
law and Rayleigh distributions have been proposed [6, 22].
For the Exponential distribution,

f(ti|tj ;α) = αe−α(ti−tj)

H(ti|tj) = α; S(ti|tj) = e−α(ti−tj)

and for the Rayleigh distribution,

f(ti|tj ;α) = α(ti − tj)e−
1
2
α(ti−tj)2

H(ti|tj) = α(ti − tj); S(ti|tj) = e−
1
2
α(ti−tj)2

Network Diffusion Properties and Expectations: Given this
background, we now define our problem. We are interested
in computing properties f(α,C) of the cascades C and the
network connections α. Two examples properties are the
strength-frequency distribution of edges, and influence of
leader nodes. We will see more examples in Sec. 5.

Since α and z are unobserved, the properties are not di-
rectly computable. We investigate a fully Bayesian solu-
tion to the problem, where we model both α and z to be
random variables, so that the property f(α, z) is a func-
tion of random variables. Assuming a joint distribution
p(C,α) to be defined on the cascade C and the network con-
nections strengths α, we consider the posterior distribution
p(z, α|{co}) over the hidden variables z and α conditioned
on the observed trace co = {(ui, ti)} of the cascades. Then
we evaluate the expectation f̄(C,α) of f(C,α) under this
posterior distribution:

f̄(C,α) = Ep(z,α|{co})[f(C,α)] (3)

For properties that do not involve z, we consider the expec-
tation under the marginal posterior distribution p(α|{co}) =∑
z p(z, α|{c

o}). We similarly define expectations of prop-
erties that do not involve α.

Recall that existing approaches for network inference only
model the conditional distribution p(C|α) assuming α to be
given. In the rest of this paper, our goal is two fold: (a)
augment this conditional using a prior p(α) to model the
joint distribution p(C,α), (b) investigate tractability of this
expectation for interesting network diffusion properties. We
look at the first aspect in Sec. 4 and the second in Sec. 5.

4. A BAYESIAN FRAMEWORK
In this section, we introduce a Bayesian framework that

will enable us to compute expectations of network diffusion
properties. For a Bayesian analysis, we need to model α as
a random variable, with a prior distribution. Assuming an
iid prior p(α) =

∏
uv p(αuv), the joint distribution is simply

p(C,α) = p(C|α)
∏
uv p(αuv), and the posterior distribution

p(α|{co}, z) looks as follows:

p(α | {co}, z) =
∏
uv

H̄uvS̄uvp(αuv)∫
αuv

H̄uvS̄uvp(αuv)dαuv
(4)

1218



where H̄uv =
∏
i∈Auv H(ti|tzi ;αuv, z) with Auv(z) = {i :

ui = v, uzi = u} denoting infections of v by u, S̄uv =∏
i,j∈Puv S(ti|tj ;αuv)

∏
j∈Tuv S(T |tj ;αuv), with Puv = {i, j :

ui = u, uj = v; j ∈ πi} denoting potential infections of v by
u and Tuv = {j : uj = u, lv < tj} denoting survivals of v
from u. Observe that this decouples into terms involving
individual network strengths αuv. Efficient computation of
network properties in Sec. 5 hinges critically on this, as on
the decoupling in Eqn. 1.

Another requirement for efficient computation is analyt-
ical integration of network properties with respect to αuv.
For this, we need conjugate priors. Both Rayleigh and Ex-
ponential are special cases of the Weibull distribution (cor-
responding to shape parameters 1 and 2) [3]. For likelihoods
involving the Weibull distribution with given shape param-
eter, the conjugate distribution is the Gamma distribution:

Gamma(αuv; a, b) =
ba

Γ(a)
αa−1
uv exp{−bαuv} (5)

Substitution into Eqn. 4 gives us the following:

p(α|{co}, z) =
∏
uv

Gamma(a+ ρuv(z), b+ ∆uv) (6)

where ρuv(z) = |Auv(z)|, ∆uv =
∑
i,j∈Puv

δ(ti, tj)

+
∑
j∈Tuv δ(T, tj), and δ(ti, tj) = (ti− tj) for the Exponen-

tial distribution and 1
2
(ti−tj)2 for the Rayleigh distribution.

From now on we refer to ρuv(z) as ρuv.
This posterior is suitable for the network inference prob-

lem. Consider a < 1. Then using a suitable b, for no trans-
missions across an edge, ρuv = 0, and the posterior distribu-
tion is peaked sharply at 0. This implies that in the absence
of any transmission evidence in the cascade, there is very
little belief in the existence of an edge. Once an observation
is made and we have ρuv ≥ 1, the posterior distribution is
unimodal and peaked at (a+ ρuv)/(b+ ∆uv).

When we have large volumes of data so that ρuv � a and
∆uv � b, the mean of the posterior approaches the MLE.
While the parameterization a < 1 models prior belief in
sparse network connections, it is also possible to make the
Gamma prior noninformative if necessary, using a, b� 1 [5].

5. NETWORK DIFFUSION PROPERTIES
In this section, we consider multiple types of network

diffusion properties, and analyze the tractability of com-
puting their expectations under the posterior distribution
p(z, α|{c0}). Consider, as a motivation, the network dif-
fusion property in the introduction that counts leaders of
tribes. Computing this properties is hard even when all the
network diffusion variables are observed, and we will see that
computing the expectations with unobserved variables is not
tractable. However, we will investigate simplifications of this
properties that are interesting and useful, and at the same
time allow their expectations to be computed efficiently.

We consider two different categories of network diffusion
properties — network centric and cascade centric. In a
network-centric property, the focus is on entities in the net-
work, such as nodes, or edges, which satisfy some constraints
in the network as well as in the cascade. The ‘counting lead-
ers’ property is an example in this category, with nodes in
the network being the focus. A cascade-centric property,
on the other hand, is about entities in the cascade, such
as individual infections, which satisfy certain cascade con-

straints and additionally some network constraints. Before
discussing more about such properties in Sec 5.2 and Sec
5.3, we first investigate conditions under which expectations
of network diffusion properties are efficiently computable.

5.1 Niceness of Properties
Given the large size of real-world network diffusion data,

in all of the following discussion, we consider a computa-
tion to be efficient if it is linear in the size of the network
and the size of the cascade. Computing the expectation in-
volves marginalizing out two variables: an integration over
possible network strengths α, and a summation over possi-
ble network paths defined by the infection parent variables
z. We first analyze these two marginalizations separately,
before looking at computing the complete expectation.

Integrating over α: First, we characterize properties
for which the integration over α can be performed efficiently.
We call such properties nice-α. Intuitively, a nice-α property
decomposes into terms that involve the parent variables z,
and individual connection strengths αuv. Additionally, the
functions involving αuv should be amenable to analytical
integration with p(αuv|z, {co}) which is in the Gamma form.

Definition 5.1. A property f(α, z) is nice-α if it can be
written as g(z)

∏
u,v huv(αuv, z) or as g(z)

∑
u,v huv(αuv, z)

where
∫
huv(αuv, z) p(αuv|z, {co})dαuv can be performed an-

alytically ∀ u, v.

Theorem 5.1. Let f(α, z) be nice-α. Then computing
the z-marginal f̄z(z) =

∫
α
f(α, z)p(α|z, {co})dα is O(|V|2).

The notion of nice-α can be extended to properties that
depend only on α and not on z. Such properties f(α) need
to be of the form

∏
u,v huv(αuv) or

∑
u,v huv(αuv), where∫

huv(αuv)p(αuv|z, {co})dαuv can be performed analytically
for all z. Note that the z-marginal f̄z(z) is still a function
of z through p(α|z, {co}) Also, properties that are indepen-
dent of α are trivially nice-α. Finally, this complexity corre-
sponds to the scenario when no edge information is available.
Given a set E of potential edges, the complexity is O(|E|).

Summing over z: Now we characterize properties for
which the summation over infection parents z can be per-
formed efficiently. We call such properties nice-z. Recall
from Eqn. 1 that the posterior distribution p(z|α, {co}) de-
composes into terms involving individual zi variables. Intu-
itively, the summation over z can be performed efficiently if
the property f(α, z) also decomposes over z.

Definition 5.2. A property f(α, z) is nice-z if it can be
written either as g(α)

∏
i hi(zi, α) or as g(α)

∑
i hi(zi, α)

Theorem 5.2. Let f(α, z) be nice-z. Then the α-marginal
f̄α(α) =

∑
z f(α, z)p(z|α, {co}) can be computed in O(π|C|)

time, where π = maxi πi is the maximum number of poten-
tial parents over all infections.

As for nice-α, the notion of nice-z can be extended to
properties that involve only z and ignore α. Note that for
such properties, the α-marginal f̄α(α) still depends on α
through the posterior distribution p(z|α, {co}). Also, a func-
tion which is independent of z is trivially nice-z.

Marginalizing both α and z: For computing the com-
plete expectation in Eqn. 3, both marginalizations need to
be performed. We now investigate strategies for dong this.
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Interestingly, it turns out that the complete expectation can
be computed efficiently and exactly for some network diffu-
sion properties, which we call nice-z, α.

Definition 5.3. A property f(α, z) is nice-z, α if it can

be written as
∏
u,v guv(αuv)

∏|D|
i=1

hi(zi)
αuziui

where analytical so-

lutions exist for
∫
guv(αuv)p(αuv|z, {co})dαuv ∀u, v.

Lemma 5.3. A property that is nice-z, α is both nice-α
according to Defn. 5.1 and nice-z according to Defn 5.2.

In addition to being nice-α and nice-z, nice-z, α properties
require decoupling of α and z variables, not just in the prop-
erty, but also in the posterior distribution p(α, z|{co}). This
is achieved by the αuziui terms in the property definition.
These cancel out the corresponding terms in p(α, z|{co}),
which are responsible for the coupling.

Theorem 5.4. Let f(α, z) be nice-z, α. Then the expec-
tation f̄(α, z) can be computed in O(π|C|)) +O(|V|2) time,
up to a multiplicative constant.

The multiplicative constant in question is the inverse of
the likelihood p({co}) of the observed variables in the cas-
cades. This implies that we may not be able to compute the
exact value of any nice-z, α efficiently, but we may efficiently
compare two different nice-z, α properties.

In general, there will be properties for which any one or
both marginalizations cannot be performed analytically or
efficiently. In such cases, we resort to Monte Carlo tech-
niques. Here, we will assume that it is possible to draw iid
samples (α(s), z(s)) from the joint distribution p(α, z|{co}),
and similarly (α(s)) ∼ p(α|{co}) and (z(s)) ∼ p(z|{co}) from
the marginal distributions. In Sec 6, we describe a Gibbs
Sampling algorithm for drawing such samples.

First consider properties which are nice-α but for which
the subsequent marginalization

∑
z fz(z)p(z|{c

o}) over z can-
not be performed efficiently. For such properties, we first
obtain the z-marginal f̄z(z) efficiently, and then use Monte
Carlo summation for z:

f̄(α, z) ≈ 1

S

∑
s

f̄z(z
(s)), where z(s) ∼ p(z|{co}), s = 1 . . . S

Similarly, consider properties which are nice-z but for
which the subsequent marginalization

∫
fα(α)p(α|{co})dα

over α cannot be performed efficiently. For such properties,
we first obtain the α-marginal f̄α(α) efficiently, and then use
Monte Carlo integration for α:

f̄(α, z) ≈ 1

S

∑
s

f̄α(α(s)), where α(s) ∼ p(α|{co}), s = 1 . . . S

Finally, for properties where neither of the two marginal-
izations can be performed efficiently, we use Monte Carlo
integration for both α and z:

f̄(α, z) ≈ 1

S

∑
s

f(α(s), z(s)),

where (α(s), z(s)) ∼ p(α, z|{co}), s = 1 . . . S

Having characterized the notion of niceness for network
diffusion properties in terms of computing expectations, we
now return to our motivating properties, and analyze them
in this light.

5.2 Network-centric Properties
We first discuss network-centric properties, which involve

computing scores for specific entities in the network, such as
nodes, edges, etc. These scores are functions of the network
connection strengths α and also of the cascade C. Recall
that the network and the cascades are connected through
the node index ui in the individual infections.

The basic building block for network scores of network en-
tities is the direct connection strength αuv between nodes u
and v. Using this, we can define the second-order network

connection strength α
(2)
uv between u and v as

∑
w αuwαwv or

its approximation maxw min(αuw, αwv). Generalizing fur-

ther, the rth-order connection strength α
(r)
uv between them

is
∑
w α

(r−1)
uw αwv, and α∗uv =

∑R
r=1 α

(r)
uv .

On the other hand, the building block for cascade scores
of network entities is the direct transmission frequency ρuv
between u and v in the cascades, defined as

∑
ij I(ui =

v, zi = j, uj = u). This can be similarly generalized to

define the second-order transmission frequency ρ
(2)
uv between

u and v in the cascades as
∑
w ρuwρwv or its approximation

maxw min(ρuw, ρwv). The interpretation is that u frequently
infects some node w, who in turn frequently infects v in the
cascades. This can be similarly generalized further to define

the rth-order transmission frequency ρ
(r)
uv , and finally ρ∗uv.

Node-centric Properties: We now formally define
our first motivating network diffusion property, that of find-
ing influential nodes considering both network strengths α∗uv
and transmission frequencies ρ∗uv.

Node influence score: Intuitively, a node’s influence score
fu(α, z) is high if it has many ‘followers’ v with high α∗uv and
high ρ∗uv. One way to capture this is to define

fu(α, z; a, r) =
∑
v

I(α∗uv > a)I(ρ∗uv(z) ≥ r) (7)

Alternatively, we may couple α∗uv and ρ∗uv as
∑
v α
∗
uvρ
∗
uv or∑

v α
∗
uv
ρ∗uv Unfortunately, all of these forms are neither nice-

α nor nice-z even when we consider only first and second
order infections (R = 2). So their computation requires
sampling over both α and z. But it turns out that the
definition for R = 1 is more tractable, as we see next.

Node influence score for direct infections: This is the
special case of node influence score considering only directly
connected nodes in the network who are also directly in-
fected in the cascades:

fu(α, z; a, r) =
∑
v

I(αuv > a)I(ρuv(z) ≥ r) (8)

It turns out that this property is nice-α, so that the ex-
pectation can be calculated efficiently and exactly, in part.
Though ρuv(z) is itself nice-z, Eqn. 8 is not nice-z since
discretization of ρuv(z) through I(ρuv(z) ≥ r) leads to cou-
pling across zi variables. This implies that the alterna-
tives fu(α, z; a) =

∑
v I(αuv > a)ρuv(z) and fu(α, z) =∑

v αuv
ρuv(z) are both nice-α and nice-z, though not nice-

z, α, providing two different routes for partly approximating
their expectations.

As a further simplification of Eqn. 8, we may restrict the
node influence score to consider only the network connec-
tions and ignore the cascade:

f(α; a)u =
∑
v

I(αuv > a) (9)
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Interestingly this still remains nice-α and (trivially) nice-z,
but not nice-z, α. Alternatively, we could consider only the
transmission frequencies:

f(z, r)u =
∑
v

I(ρuv(z) ≥ r) (10)

This is (trivially) nice-α but not nice-z because of the dis-
cretization.

Edge-centric Properties: Edge-centric properties com-
pute scores for an edge (u, v) in the network. As before, we
will focus on scores involving connection strengths αuv and
transmission frequencies ρuv.

Edge Distribution: Given a range (r1, r2) for the trans-
mission frequency, and a range (a1, a2) for the connection
strength, this counts the number of edges (u, v) in the net-
work whose connection strength αuv and transmission fre-
quency ρuv lie in this range.

f(α, z) =
∑
u,v

I(a1 < αuv < a2)I(r1 ≤ ρuv(z) < r2) (11)

The resultant distribution of the edges over the (α, ρ) space
can be suggestive of the effectiveness of viral marketing strate-
gies for this network, or the susceptibility of this network to
epidemics. Eqn. 11 can also be viewed as the distribution
of the summed (or averaged) direct node influence scores.
Recall that the plots in the introduction correspond to this
property.

Marginals or projections of this distribution along the ρ
and α dimensions can also be useful.

f(z) =
∑
u,v

I(r1 ≤ ρuv(z) < r2); f(α) =
∑
u,v

I(a1 < αuv < a2)

The first two edge-centric properties are nice-α but not nice-
z. The last property is both nice-α and nice-z but not nice-
z, α.

Observe that removing the binning for the α-projection
recovers the well studied network inference problem.

f(α, z) = α (12)

Computing the expectation of this score is the Bayesian for-
mulation of the network inference problem, where we are
seeking the expected network connection strengths given the
cascades. This is again nice-α, and nice-z.

All the network-centric properties introduced so far are at
best partly nice. We conclude this discussion by presenting
an interesting property that is nice-z, α. Imagine that we
are interested in finding strong edges that are not frequent,
and weak edges that are frequent. For this, the following
score is useful:

fuv(α, z) = α−ρuv(z)
uv (13)

This function satisfies Def. 5.3, and therefore the complete
expectation can be computed efficiently upto a multiplica-
tive constant.

5.3 Cascade-centric Properties
For cascade centric properties, the focus is on entities in

the cascade, such as individual infections, for which we com-
pute some score based on the network as well as the cascade.
We illustrate such properties using individual infections.

Infections due to Strongest Neighbor: The strongest neigh-
bor of a node v in the network is the one with the maximum

connection strength αuv. We may count the number of in-
fections for which the infecting parent uzi is the strongest
neighbor for ui in the network:

f(α, z) =
∑
i

I(uzi = arg max
v

αvui) (14)

We can similarly count number of infections by the nth-
strongest neighbor, for n > 1. Both properties are nice-z,
but not nice-α.

As an even simpler example of a cascade property, we can
consider checking the parents nodes for individual infections.

Infection parent identification: This indicates if node u is
the parent of infection i.

f(α, z)iu = 1 if zi = u; = 0 otherwise (15)

This is equivalent to computing the diffusion paths for a
cascade. This infection-centric property is nice-z and also
trivially nice-α.

It is worth observing that the complete likelihood p({co}, z |
α) of a cascade C given network strengths α can be seen as
a cascade-centric property, where the entity of interest is the
entire cascade.

f(α, z) = p({co}, z | α) =
∏
u,v

e−αuv∆uv
∏
i

αuziui (16)

The likelihood can be viewed similarly as a cascade-centric
property. Unlike complete likelihood, the likelihood is a
function of only the observed infection variables, and the
parent variables z are summed out.

f(α) = p({co} | α) =
∏
u,v

e−αuv∆uv
∏
i

∑
j∈πi

αujui (17)

Both of these properties are nice-z (the likelihood trivially
so), but not nice-α. In the context of test cascades, the
expectation of this property can be interpreted as consider-
ing the entire posterior distribution over α, learnt from the
training cascades, to explain the test cascades. In contrast,
the frequentist strategy uses only a point estimate.

6. INFERENCE
We have seen in Sec. 5 that computing the expecta-

tion for network diffusion properties that are not completely
nice requires drawing samples from the posterior distribu-
tion p(α, z|{co}) over network strengths α and infection par-
ents z conditioned on the observed cascades {co}. In this
section, we propose a Gibbs Sampling framework for this. In
this framework, we iterate over all latent variables, sampling
a new value for it from its conditional distribution, given
the current values of all other variables. Asymptotically,
the samples are from the joint posterior distribution over all
latent variables. For our problem, we need to draw samples
from p(zi|{co}, α, z−i) and from p(αuv|{co}, z, α−uv), where
z−i and α−uv denote variables other than zi and αuv. All
expressions below are for the Exponential Distribution. Ex-
pressions for Rayleigh can be derived in a similar manner.

First, the posterior distribution p(z, α | {co}) over both z
and α looks as follows:

p(z, α | {co}) ∝
∏
uv

αρuv(z)+a−1
uv e−αuv(∆uv+b)
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Given this, the conditional distribution for the ith infec-
tion parent zi turns out to have a very simple form:

p(zi = j | z−i, α, {co}) ∼ αji

The conditional distribution for individual network strengths
αuv also has a simple Gamma density form:

p(αuv | {co}, z, α−uv) ∼ Gamma(ρuv + a,∆uv + b)

For network properties that are nice-α, only samples of
z are required. In such cases, an alternative is to perform
collapsed Gibbs Sampling, by analytically integrating out α:

p(z|{co}) ∝
∫
α

p(z, {co} | α)p(α)dα ∝
∏
uv

Γ(ρuv(z) + a)

(∆uv + b)(ρuv(z)+a)

Given this conditional, the conditional distribution for in-
dividual infection parents zi looks as follows:

p(zi = j | z−i, {co}) ∝
(ρ−iujui(z) + a)

∆ujui + b

where ρ−iujui(z) ignores the ith infection for pair-wise infec-
tion counts over nodes. The collapsed Gibbs Sampling al-
gorithm is remarkably simple. It repeatedly samples the
parents of the individual infections from Multinomial distri-
butions and updating infection counts for pairs of nodes.

The posterior over αuv when ρuv = 0 is given by Gamma(a,b
+ ∆uv). Since this is peaked sharply at 0, we sample αuv
only when ρuv > 0. This is significantly smaller than |V |2.

Recently, the independent cascade model has been ex-
tended to handle features of individual infections [22], which
is useful to capture contents of social media posts when infer-
ring influences. Our approach can be extended in a straight-
forward manner to incorporate features in this way. The
analysis in Sec. 5 remains unchanged since the decoupling
in Eqns. 1 and 6 still hold. The Gibbs Sampling conditional
distributions acquire an additional feature term. We omit
further details due to space constraints.

Map-Reduce Implementation: For computing the ∆uv val-
ues, each cascade can be processed in parallel. The final
value for each for each u, v pair can be obtained by adding
across cascades. This is exploited by the Mapper. Each
Mapper computes ∆uv for the set of cascades given to it and
emits (v:∆uv) pairs. Each Mapper also generates a list of
possible parents for each infection and emits (v:[i,πi]) pairs.

Sampling a parent for an infection of node v requires ρ∗v
and ∆∗v in case of collapsed sampler, and α∗v in the case
of uncollapsed sampler. Sampling α∗v requires only ρ∗v and
∆∗v. Moreover, after sampling only ρ∗v and α∗v are needed
to be updated. As a result, the sampler for each node v can
be run in parallel if the set of possible parents of each infec-
tion is known. The sampling is performed in the Reducer,
which exploits this parallelism. Each Reducer performs sam-
pling for a subset of nodes. For each node v assigned, a Re-
ducer combines information from different mappers to com-
pute the final ∆uv, and the complete list of infections of node
v. It performs sampling for these infections and generates
the samples. The samples from all Reducers are combined
to get the complete set of samples.

7. EXPERIMENTS
In this section, we present experimental evaluations of var-

ious network diffusion properties defined in Sec. 5 using our

Bayesian approach on synthetic and real world datasets. We
focus on the accuracy of the properties computations and on
the scalability of our algorithms for large datasets.

Baseline: We note at the outset that this general prob-
lem has not been studied before, and that there exists no
baseline for comparison. However, one potential strategy is
to first recover a point estimate α̂ (e.g. MLE) of the network
strengths α using a state-of-the-art approach, consider the
most likely infection parents ẑ = arg maxz p(z|α̂, {co}) for
α̂, and then evaluate the property f(α̂, ẑ) at (α̂, ẑ). While
this suffers from deficiencies outlined in Sec. 3, this is the
best possible baseline using existing network inference tech-
niques. As the state-of-the-art network inference approach
for the continuous time independent cascade model, we used
the featureless version of MONET [22]. We do not use NE-
TRATE [6], since it does not support multiple infections of
a node in a cascade. In the rest of this section, we will refer
to this approach as the frequentist plug-in approach (FP),
and to our proposed approach of computing expectations
as the Bayesian Expectation approach (BE). We have used
the Exponential distribution for all experiments. For the
Gamma prior we use a = 0.00001 and b = 0.1.

Synthetic data experiments: We first conducted
experiments on multiple synthetic datasets. These experi-
ments allowed us to evaluate accuracy against a gold-standard,
which is unavailable for most real-world network diffusion
datasets. Secondly, these helped us analyze our proposed
approach for different families of graphs. Following earlier
experiments on network inference [7, 6], we created synthetic
graphs with 1024 nodes using Forest Fire (FF), Random
(Rnd), Hierarchical (HI) and Core-Periphery (CP) Graph
models, the last three being instances of Kronecker Graph
models. We used parameter values [0.5, 0.5; 0.5, 0.5] for
Rnd, [0.9,0.1;0.1,0.9] for HI, [0.9,0.5;0.5,0.9] for CP, follow-
ing Gomez-Rodriguez et. al. [6]. To generate weights αuv
for each edge (u, v), we sampled uniformly from (0.01, 10) [3].
We then generated 20 splitting cascades over these graphs
with 2 randomly chosen seeds for each cascade. Finally, we
obtained 2046 edges and 48947 infections for the Random
graph, 1496 and 38046 for the Hierarchical, 2042 and 58062
for the Core-Periphery, and 2023 and 55274 for the Forest
Fire graph.

Recall that one of the reasons behind the synthetic data
experiments is to be able to evaluate accuracy. For the in-
fection parents z, we considered the true parents as the gold-
standard. However, for the real-valued network connections
αuv, the true values are not always possible to recover from
finite length cascades. For example, it is impossible to re-
cover the strength for any edge that has no transmission in
the cascade. Therefore, we considered as our gold-standard
the best achievable αuv given the true infection parents in
the cascades: α∗ = arg maxα f({co}, z∗;α). For accuracy in
case of a scalar property, we used absolute error between the
gold-standard f(α∗, z∗) and the computed value of the prop-
erty, and for vectors and matrices the root mean squares of
the individual errors.

(A) Network-centric Properties: In this category, we first
evaluate the edge-distribution (Eqn. 11) as an example of a
property on edges. Evaluating accuracy for this property
is challenging because of the threshold parameters a and
r. We discretized the α and the ρ ranges, and within each
region of the (α, ρ) space, computed the actual, BE and FP
values of these properties, and the errors for BE and FP.

1222



(a) Frequentist (b) Bayesian Expectation

Figure 3: Reconstructed edge distribution: FF

(a) Frequentist (b) Bayesian Expectation

Figure 4: Reconstructed edge distribution: Rnd

The actual plots for the four networks were introduced
in Fig. 1. The FE and BE reconstructions for the Core-
Periphery graph were also introduced earlier in Fig. 2. The
reconstructions for the other three graphs are shown in Figs.
3, 4, and 5. It can be seen quite clearly that while BE is
able to reconstruct the actual distributions to a reasonable
extent for all 4 graphs, FP does quite poorly. In fact, the
FP reconstruction looks similar in all 4 cases, and fails to
pick up the signatures for the different graphs.

We also calculated the actual errors for the two approaches
over the (α, ρ) space. Since it is difficult to visualize the plots
in 2D, we evaluated the projections on the α-dimension and
z-dimension (Eqn. 5.2) for the edge distribution for the 4
graphs.

Table 1: α-proj. for edge distribution: abs. error
NW CP HI Rnd FF

α BE FE BE FE BE FE BE FE

0 1 591 6514 156 1501 470 4004 432 4008

1 2 169 1587 5 287 34 1085 30 1039

2 3 13 618 18 166 6 497 8 379

3 4 9 340 1 87 6 265 15 196

4 5 8 159 2 57 32 139 9 101

5 6 6 138 1 51 14 127 11 61

6 7 3 75 1 34 7 86 13 62

7 8 1 82 14 9 9 70 4 64

8 9 2 48 8 17 13 45 1 38

9 10 1 46 1 16 4 44 4 36

Table 2: ρ-proj. for edge distribution: abs. error
NW CP HI Rnd FF

ρ BE FE BE FE BE FE BE FE

0 10 524 4373 69 1032 344 3339 287 2903

10 20 348 228 14 15 108 8 89 21

20 30 20 82 3 0 40 87 20 51

30 40 59 91 1 14 28 64 29 73

40 50 47 100 3 19 13 44 10 43

50 60 43 59 5 16 6 16 8 34

60 70 19 27 0 3 1 13 9 12

70 80 1 1 1 0 2 6 2 3

80 90 4 4 2 0 0 4 2 12

90 100 3 5 2 1 1 2 2 8

In Tab. 1, we record the errors for BE α-projection and
the FP α-projection for different α-intervals. We can see

(a) Frequentist (b) Bayesian Expectation

Figure 5: Reconstructed edge distribution: HI

that for the α-projection, the FP errors are an order of mag-
nitude bigger for all intervals, except for α ∈ (7, 8) for Hier-
archical. Similarly, in Tab. 2, we record the errors for BE ρ-
projection and the FP ρ-projection for different ρ-intervals.
In this case as well, FP error is significantly lower only for
the (10, 20) interval for CP and Rnd.

Finally, we come to properties of nodes. We evaluated
direct node influence (Eqn. 8), and indirect node influence
for 2nd-order neighbors (Eqn. 7) for the 4 graphs. Again,
we partitioned the (α, ρ)-space into regions. However, re-
porting detailed results is even harder here, since we have
actual, BE and FP scores for each node in each α, ρ-region.
We consider the sum (or average) of the influence scores
over all nodes. Recall that one interpretation of the edge-
distribution is the distribution of the sum of direct influence
scores over all nodes. So the edge-distribution evaluation
above additionally serves as an evaluation of the direct node
influence scores at an aggregate level.

(a) Actual

(b) Frequentist (c) Bayesian Expectation

Figure 6: Indirect node influence distribution: HI

For indirect node influence, due to space constraints, we
show the (averaged) indirect node influence distribution only
for the Hierarchical graph in Fig. 6. Again, we see that
BE is able to pick up the signature of the distribution to a
reasonable extent, whereas FP has failed completely.

In Tab. 3, we report the aggregated errors over all nodes
and over all (α, ρ) regions for both direct and indirect influ-
ence scores. We have scaled down the values by the total
number of nodes, which is 1024. We again see that the BE
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Table 3: Node influence scores: agg. error
NW CP HI Rnd FF

BE FP BE FP BE FP BE FP

Dir 29 124 22 46 30 104 30 98

InDir 62 417 15 98 27 288 27 273

errors are significant smaller than the FP errors across the
board.

(B) Cascade-centric Properties: Under cascade-centric
properties, we evaluate infections due to nth strongest neigh-
bor (Eqn. 14) for n = 1, 2, 3.

Table 4: Infections by nth-strongest nbr: abs. error
NW CP HI Rnd FF

n BE FP BE FP BE FP BE FP

1 3711 22090 631 13537 578 21613 127 23476

2 2374 6171 691 2506 1352 3533 1284 712

3 191 59 194 3924 152 4825 388 6828

Tab. 4 records the absolute error for the number of infec-
tions by the nth-strongest neighbor for n = 1, 2, 3. Notice
that FP has very high errors for n = 1. There are just
two instances where FP works better than BE: for n = 2 in
Forest Fire and for n = 1 in Core-Periphery, where the val-
ues are comparable. In all other cases, FP has significantly
higher error than BE.

Likelihood, Network Inference and Parent Identification:
The performance improvement of BE over FP in the experi-
ments so far is attributable to two reasons: (a) the Bayesian
approach of using the full posterior distribution instead of
the frequentist point estimate, and (b) many-to-one map-
ping of network variables to property values. We now look
at experiments using the basic inference problems for net-
work analysis, and generalization ability on held-out data,
which are one-to-one network diffusion properties in our for-
mulation.

Table 5: Loglikelihood for synthetic data
NW CP HI Rnd FF

BE, FP BE, FP BE, FP BE, FP

Test 1.0e4, 0.6e4 6.5e3, 2.4e3 1.1e4, -1.5e4 1.2e4, 926

Train 2.8e4, 3.6e4 2.0e4, 2.2e4 2.3e4, 2.9e4 2.8e4, 3.3e4

In Tab. 5, we record the train and test likehoods for the 4
synthetic datasets. We see that BE consistently has higher
test likelihood, while the train likelihood is higher for FP,
suggesting overfitting.

Table 6: Network Inf. (NI) & Parent Id. (PI)
NW CP HI Rnd FF

BE FP BE FP BE FP BE FP

NI 0.116 2.553 0.884 3.210 0.147 17.483 0.329 736.821

PI 0.533 0.406 0.861 0.783 0.757 0.646 0.770 0.674

In Tab. 6, we record the errors in recovery of α for BE
and FP. Observe that the errors are consistently lower for
BE across the 4 datasets. In fact, the FP errors are very high
for the Random and Forest Fire datasets. In Tab. 6, we also
see that parent identification accuracy of BE is consistently
around 10% more than that of FP. These three experiments
demonstrate that the Bayesian approach for network diffu-
sion analysis has advantages even for one-to-one properties.

(C) Iterations vs Error: Before moving on to experiments
on real-world data, we make a note about Gibbs Sampling
iterations. Gibbs Sampling algorithms often take thousands

of iterations to converge, which can be a serious problem for
large real-world datasets. The number of iterations required
for the Gibbs Sampler to converge can be greatly reduced
by choosing a good initialization. We use ẑ = arg maxz p(z |
{co}; α̂) as the initial z, where ˆαuv = |P (u, v)|/∆uv. α̂ is
an approximation of αMLE where we use |P (u, v)| which
is purely a function of that data instead of ρuv in the nu-
merator. In our experiments, we observe that the accuracy
increases very sharply in the initial iterations, and is close
to the best value within 100-200 iterations.

Experiments on real-world data: We now report
experiments on real-world data, where the graph structures
are more complex than the synthetic settings. The under-
lying diffusion process is also likely to be different from the
Independent Cascade model, which our models assume, and
which we used for generating the synthetic cascades.

The Meme Tracker dataset1 records the diffusion of
“memes” or catch-phrases across 5000 most active blogs and
news sites between March 2011 and February 2012. The
flow of each meme corresponds to one cascade. Related
memes are grouped into one topics. For our experiments,
we selected 5 topics, 2 of which have been used in earlier
experiments involving non-stationary networks [9], and 3
others for which the networks are likely to be stationary.
Basketball has 1187 Nodes, 130317 Infections and 2663 cas-
cades, Alcohol has 1549 nodes, 151136 infections and 3018
cascades, Technology has 1797 nodes, 338931 infections and
6658 cascades, NBA has 1891 nodes, 179864 infections and
3637 cascades, and Occupy has 1601 nodes, 147135 infec-
tions and 2851 cascades. In each topic, we consider all suf-
ficiently long cascades (length > 30). We split the cascades
randomly to generate the training and test cascades(80-20),
and then prune infections of those users in test cascades who
are not present in the training cascades.

Table 7: Loglikelihood for Meme Tracker
Bball Alcohol Tech. NBA Occupy

BE -1.5e6 -5.8e5 -6.6e5 -8.9e5 -5.1e5

FP -3.5e6 -8.9e5 -2.6e6 -1.1e7 -1.2e6

Since no gold-standard is available for α or z for this
dataset, we compared BE and FP using loglikelihood on
held-out test data, with the knowledge of α learnt from
training data. In Tab. 7, we report the loglikelihood val-
ues for the 5 selected topics. We can see that the BE values
are significantly better than the FP values. Recall that this
is the best scenario for the baseline since likelihood, as a net-
work diffusion property, is a one-to-one function of α for this
problem. This suggests that BE is likely to outperform FP
to a larger extent for other properties on real-world datasets.

We also computed the proposed network-centric and cascade-
centric properties for Meme Tracker using BE. In Fig. 7, we
plot the edge distribution for two of the topics. Recall that
there is no gold-standard for this. We can see that the na-
ture of the plots is different from all of the synthetic datasets.
The mass is more concentrated towards weaker, infrequent
edges. We suspect that this is because of the way users were
sampled for this dataset.
Scaling experiments: We also experimented with larger vol-
umes of the Meme Tracker data using our map-reduce im-
plementation. We created increasingly larger dataset sizes
by randomly sampling cascades and checking the execution

1http://snap.stanford.edu/infopath//data.html
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(a) Tech (b) Alcohol

Figure 7: Edge distribution for Meme Tracker topics

Table 8: Millions of Infections vs time (secs)
# Infections Time (12 nodes) Time (1 node)

15 552 3635

31 888 6873

43 1311 10277

63 1948 14783

time for 100 iterations of Gibbs Sampling. We performed ex-
periments on a Intel Xeon server with 100GB RAM, which
supports 12 mapper/ reducer tasks in parallel.

In Tab. 8, we record execution time with increasing data
size on 12 processor nodes and compare against the time
taken on a single node. We can see that the map-reduce
implementation allows us to scale our analysis by providing
a (roughly) linear speed-up in terms of number or processor
nodes.

In summary, the experiments clearly demonstrate that
computing expectations under the posterior distribution leads
to significantly better reconstruction of a wide variety of
network diffusion properties. The proposed Bayesian frame-
work that combines exact efficient computation with Gibbs
Sampling based approximations outperforms state-of-the-
art algorithms even for the well-studied network inference
and parent identification problems, and in generalizing to
held-out test data. The map-reduce implementation is promis-
ing in terms of scaling up the analysis to study properties of
large network diffusion datasets.

8. CONCLUSIONS
In this paper, we have investigated the novel problem of

computing expectations of properties of network diffusions
involving hidden variables. We have proposed a Bayesian
framework for computing such expectations, and proposed
and characterized network diffusion properties that can be
handled efficiently in this framework. In experiments over
synthetic and real world datasets, we have shown that we
are able to reconstruct network properties significantly more
accurately than a frequentist baseline.
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