
On Social Event Organization

Keqian Li† Wei Lu† Smriti Bhagat‡ Laks V.S. Lakshmanan† Cong Yuq

†University of British Columbia ‡Technicolor Research qGoogle Research
Vancouver, B.C., Canada Palo Alto, CA, USA New York, NY, USA

{keqianli,welu,laks}@cs.ubc.ca smriti.bhagat@technicolor.com congyu@google.com

ABSTRACT
Online platforms, such as Meetup and Plancast, have recently be-
come popular for planning gatherings and event organization. How-
ever, there is a surprising lack of studies on how to effectively
and efficiently organize social events for a large group of people
through such platforms. In this paper, we study the key computa-
tional problem involved in organization of social events, to our best
knowledge, for the first time.

We propose the Social Event Organization (SEO) problem as one
of assigning a set of events for a group of users to attend, where the
users are socially connected with each other and have innate levels
of interest in those events. As a first step toward Social Event Orga-
nization, we introduce a formal definition of a restricted version of
the problem and show that it is NP-hard and is hard to approximate.
We propose efficient heuristic algorithms that improve upon simple
greedy algorithms by incorporating the notion of phantom events
and by using look-ahead estimation. Using synthetic datasets and
three real datasets including those from the platforms Meetup and
Plancast, we experimentally demonstrate that our greedy heuristics
are scalable and furthermore outperform the baseline algorithms
significantly in terms of achieving superior social welfare.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
Social Networks; Event Organization; Assignment Problems

1. INTRODUCTION
The problem of organizing social events for a large group of peo-

ple can resonate with the academic community: we are all familiar
with the “canned” social events offered by conference organizers,
which are often a simple list of activities to choose from and atten-
dance at each event is organically decided by people at the confer-
ence based on who they know and how interested they are in the
events.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623724.

More broadly, event organization is one of the most important so-
cial activities online, with many companies, established giants and
startups alike, such as Meetup1 and Plancast2, offering platforms
for their users to plan and organize events. The social networks data
and the data indicating the interests of the users on these platforms
offer a rich setting in which events can be organized effectively
and efficiently. Despite its importance, there are few academic stud-
ies on this topic: most of the existing research is focused on event
detection through time series analysis (e.g., burst detection). Our
goal in this paper is to provide a first principled definition of Social
Event Organization (SEO) and a platform of algorithmic solutions
for addressing this problem. To the best of our knowledge, this is
the first paper on organizing events, instead of detecting events.

The tasks of organizing various social events share many com-
mon characteristics. First, each user often has his or her unique
preference for the events being offered, a numeric measure which
we call a user’s innate affinity towards an event. Innate affinities
can be stated explicitly: e.g., a user can mark his preference for a
game of chess as 9 out of 10. Or they can be categorically stated
by the users and computed by the organizer: e.g., a user can list
outdoor activities in her profile and the organizer can deduce that
she will likely prefer hiking to playing chess. Finally, they can be
predicted by a recommender system based on the past events that
the user has participated in. Regardless of how innate affinities are
computed, they are one of the two key ingredients for users’ happi-
ness, for purposes of successful organization of social events.

The other key ingredient is the social connections among users –
individuals often enjoy an activity more if they attend it along with
their friends or others whom they would like to be around with. This
connection is often defined between a pair of users and we call this
pairwise social affinity. Similar to innate affinities, social affinities
can be stated explicitly by the users. For example, users on social
networks explicitly provide their friendship connections. They can
also be deduced based on users’ interests or past activities. For in-
stance, two users who share lots of interests and past activities are
more likely to enjoy each other’s company. Thus, similar to innate
affinity, social affinity is represented by a numerical measure.

Importantly, in real world situations, events typically come with
natural cardinality constraints. For example, most sports activities
need a certain number of participants: two or four for tennis, two
for chess, and two to nine for poker games.

We illustrate aforementioned characteristics more concretely
through the following motivating example. Academic conferences
and business conventions often provide networking opportunities
for attendees by offering social events. Planning them involves
gathering individuals with similar interests to facilitate interactions

1http://www.meetup.com
2http://www.plancast.com

1206

as well as ensuring that they have a good time. The current practice
is to offer these events as a “canned” list of options: e.g., everybody
selects from a small set of event choices based on their interests,
perhaps uses ad hoc conversations among friends for coordination.
Being able to automatically assign people to events from a large list
of options, in a centralized manner, taking into account both users’
interests and friendships will likely lead to people enjoying those
events more.

The above example illustrates the core technical challenge inher-
ent in event organization, viz., the assignment problem, where the
system has to assign a given set of users to events, with the goal
of making users happy. Other examples in this category include or-
ganization of activities at a reunion party, corporate activity day,
community fund raising, or volunteering gatherings.

In this first paper towards Social Event Organization, we focus
on the assignment problem illustrated above. Specifically, we are
given a set of users, who are socially connected and have varying
inherent interests in the events being offered. We need to assign
users to events so as to maximize the “overall happiness” of the
users, while respecting the event cardinality constraints (min and
max). In event organization over a wide area, in addition to cardi-
nality constraints, time and location also play a role. E.g., user’s
proximity to the event’s location may affect the user’s innate affin-
ity for the event. A similar remark holds for the time at which the
event is organized. In order to allow us to focus on the key tech-
nical problem of assignment, we assume that users’ proximity to
the location of events as well as availability of users for the events
are factored in while determining the innate affinity of a user to an
event. Consequently, our focus is squarely on finding good assign-
ments of users to events as opposed to scheduling of events.

One critical aspect of the solution is to define the overall happi-
ness as a combination innate and social affinities. We provide an
intuitive definition of social welfare, as a linear combination of (i)
the total innate affinities enjoyed by the users to the events they are
assigned, and (ii) the aggregate social affinities enjoyed by pairs
of users assigned to the same event (exact definition in §3.1). This
focus allows us to cast the Social Event Organization problem as
a constrained discrete optimization problem, for which we can ex-
plore algorithmic solutions.

Our event organization problem has close connections with sev-
eral major bodies of work – generalized assignment problem (GAP)
[20, 7, 6, 12], a family of two-sided matching problems includ-
ing the National Resident Matching Problem (NRMP) [19], and
community-search problems [21]. We depart from them by taking
both innate and social affinities into account and solving the event
organization problem under a unified framework. A detailed com-
parison with these related works appears in §2.

Specifically, we make the following contributions.
• We formally define social event organization as a constrained

discrete optimization problem that asks for an assignment with
maximum social welfare while respecting cardinality con-
straints of events (§3.1).
• The problem is shown to be NP-hard. Given this, we ana-

lyze its approximability: we establish close connections be-
tween restricted versions of our problem and the SUBSET-
SUM problem and DENSE k-SUBGRAPH problem. We ex-
ploit these connections to offer strong evidence that the prob-
lem is hard to approximate (§3.2).
• We then develop several heuristics including a greedy hill-

climbing strategy and several improvements. Our improve-
ments are based on a notion of “phantom events” which refer
to tentatively scheduled events which have yet to meet their

lower cardinality constraint, and a look-ahead based technique
(§4).
• We conduct a comprehensive experimental study on both syn-

thetic and real data sets from Plancast, Meetup and SIG-
COMM 2009. Our results show that our methods with look
ahead estimation far exceed the baseline methods in terms of
the social welfare achieved and the regret attained. Further-
more, our most sophisticated algorithm completes event as-
signments on a dataset consisting of 100,000 users and 500
events in under 17 minutes (§5).

Finally, we conclude the paper and summarize interesting direc-
tions for future work in §6.

2. RELATED WORK
Our problem has close connections to the generalized assign-

ment problem (GAP) [20, 7, 6, 12]: there are multiple bins with
capacity constraints, multiple objects with a size and a profit for
placing an object in a bin; the problem is to find an assignment of
objects to bins respecting capacity such that the total profit is maxi-
mized. In a special case, all objects have the same size and capacity
is replaced by (maximum) cardinality. Differences between GAP
and event organization are two-fold. First, events typically have
lower bound constraints on cardinality: e.g., a game of Mahjong
cannot be played by fewer than four people. Both lower and up-
per cardinality constraints must be respected by the solutions we
propose. Very recently, lower bound constraints have been studied
in the context of GAP [12], and the precise relationship between
event organization and [12] will be made clear in §3.2. Second, so-
cial affinity is not considered in GAP, whereas it is a key ingredient
in social event organization.

Our problem is also related to the National Resident Matching
Problem (NRMP) and other two-sided matching problems such as
college admissions [19, 9, 8, 5]. In NRMP, medical school grad-
uates are matched with residency programs offered by hospitals
throughout the U.S. The differences with event organization are
three-fold. First, graduates choose residency programs as individ-
uals, and social affinity is almost never a concern, except in rare
cases where two graduates are a couple. Second, in NRMP, every
graduate provides an ordered list of programs she’d like to join and
every program has its own preference list over graduates. Stability
is an important concern. A matching is stable if there is no pair of
a graduate and a program so that they both prefer each other over
the current assignment they get. While stability is similar in spirit
to avoiding regrets (i.e., assigning a user to an event she does not
enjoy) in event organization, in event organization stability is not
important as events treat all users alike! Third, in contrast to the ob-
jectives in NRMP, our goal is to maximize social welfare (defined
in §3.1) of the assignment, taking both innate and social affinities
into account, while respecting the cardinality constraints of events.
In §4, we adapt the NRMP solution to solve our problem, and em-
pirically compare it in §5.

In a sense, event organization is also similar to group recommen-
dations: so long as we know which set of users will attend the same
event, i.e., group memberships, but not which one, we can, in prin-
ciple, determine that event using group recommendations [2]. How-
ever, we do not know these groups and part of the challenge is to
find them. Besides, our assignment of users (and hence of groups)
to events is more “holistic” in considering not only innate, but also
social affinity: it is their combination that drives our assignment.
Thus, group recommendations cannot solve our problem.

Team formation problems in social networks [13, 3] assume for
each user a set of skills and for each pair of users a compatibility

1207

measure. The problem is to put together teams that satisfy the skill
requirements of a given task while minimizing the communication
overhead of the team, e.g., the diameter or weight of the minimum
spanning tree of the graph of the formed team. The problem is NP-
hard and many of the works resort to approximation algorithms.
Superficially, the team formation problem seems similar to ours.
However, while social affinity has a counterpart in compatibility,
there is no direct innate affinity between users and tasks, except
indirectly via skills. More importantly, cardinality constraints in
event organization make the problem significantly more challeng-
ing. Finally, a user may be assigned to more than one task whereas
users are assigned to at most one event in our problem.

Also relevant to our work is the community search problem [21],
where given a set of query nodes, the task is to find a community
containing the query nodes that maximizes the overall social affin-
ity, subject to a maximum cardinality constraint. However, there
is no notion of events, nor users’ innate affinities towards events
in [21]. In contrast, our problem involves a combination of social
and innate affinities and thus a holistic approach is needed which
at once pays attention to the innate aspect (matching quality) and
the social aspect. There have also been studies on geo-social query
processing [4]. Though both our problem and theirs consider social
effects, the SEO problem is inherently an assignment problem and
cannot be solved by issuing queries.

3. SOCIAL EVENT ORGANIZATION
We now formulate Social Event Organization (SEO) as an as-

signment problem and study its hardness and approximation.

3.1 Problem Definition
Consider a setting where organizers of a large gathering (e.g.,

an international conference or a company-wide retreat) are plan-
ning social activities for the conference attendees. Or a scenario in
which or an event planning platform (e.g., Meetup) is being used
to plan social events for its users over a wide local area such as a
city. In both cases, there is a set of users U who must be assigned
to events or activities from a given set of possible events A. We
assume the presence of a social network, through which the friend-
ships among those users can be obtained. Let G = (U,E) be the
friendship graph induced on U . Each event a ∈ A is associated
with a minimum cardinality bound γa and a maximum cardinality
bound δa, as motivated in §1.

There is a function σ : U × A → R+ such that for each user u
and event a, σ(u, a) models the user’s innate affinity for the event.
We often denote σ(u, a) as σu,a for simplicity. As mentioned in
the introduction, we assume that the innate affinity σu,a factors in
u’s proximity to a’s location and u’s availability w.r.t. the time at
which a is held. In addition to their innate affinity to events, users
have pair-wise social affinity with each other, and we capture this
by a function w : U × U → R+, such that w(u, v) is the social
affinity between u and v. Both innate affinity to events and social
affinity to other users attending the same event contribute to a user’s
sense of “utility” for attending an event. Note that as discussed in
§1, social affinity is important because an individual may enjoy
an event more when she is joined by her friends. We assume in
this paper that social affinity is non-negative and that social affinity
values are symmetric, i.e., w(u, v) = w(v, u), for all u, v ∈ U .

Suppose a set of users S ⊂ U is assigned to an event a ∈ A. We
define the utility of this assignment as:

µ(S, a) = (1− α)
∑
u∈S

σu,a + α
∑

u,v∈S,u6=v
w(u, v), (1)

where α ∈ [0, 1] can be chosen by the user of the SEO system, i.e.,
the organizer, to adjust the relative importance of the two affinities.

That is, the overall utility of the set of participants of an event is
a linear combination of the total innate affinity of the participants
for the event and the total social affinity of all pairs of participants.
As a special case, we define µ(∅, a) = 0: when nobody is assigned
to an event, it results in zero utility. As mentioned in the introduc-
tion, both innate affinity σu,a and social affinity w(u, v) can be
provided by the users explicitly through stated interests and friend-
ships. However, in case such explicit information is not available,
those values can be estimated from a user’s implicit interests and
past activities. For example, social affinity can be computed using
well-studied social distance measures (e.g., graph distance, Katz,
or hitting time) [14]. We defer the details to §5.

An assignment is a (possibly partial) function M : U → A.
For a ∈ A, we denote by M−1(a) the (possibly empty) subset
of users assigned to a, i.e., M−1(a) = {u ∈ U | M(u) = a}.
An assignment M is said to be feasible provided all cardinality
constraints are satisfied, i.e., ∀a ∈ A for which M−1(a) 6= ∅,
we have γa ≤ |M−1(a)| ≤ δa, in words, for all events to which
at least one user is assigned, the number of users assigned to that
event lies within its lower and upper bounds. Notice that owing to
the cardinality constraints and the number of users and events in an
instance of the assignment problem, it may not be possible to find a
feasible assignment that covers all users: e.g., we may have 10 users
and 1 event such that the event can accommodate at most 5 people.
This is the reason we allow partial functions above. Similarly, not
all events may be scheduled by an assignment, i.e., M need not be
onto. We define the social welfare of a feasible assignment M as

ω(M) =
∑

a∈A
µ(M−1(a), a). (2)

The overall social welfare of an assignment is thus determined
by the sum of utilities of the assignments made to each event. Our
objective is to find a feasible assignment that maximizes the over-
all social welfare. Our definition of overall social welfare reflects
the following intuition. A user’s personal utility for an assignment
increases with her innate affinity for the event, as well as the so-
cial affinity she has toward other users attending the same event.
Besides, the more such fellow attendees, the higher her utility. The
definition of overall social welfare is a simple extension of this in-
tuition. Note that other definitions of social welfare, using other
aggregate functions, are possible: we prefer to use a simple defini-
tion here that captures the intuition above. We formally define the
Social Event Organization (SEO) problem as follows.

PROBLEM 1 (SOCIAL EVENT ORGANIZATION (SEO)).
Given a set U of users with a social graph G = (U,E), a set A of
events where each a ∈ A has a minimum and maximum cardinality
bound, denoted γa ∈ N and δa ∈ N respectively (γa ≤ δa),
innnate affinity function σ(·, ·), and social affinity function w(·, ·),
produce a feasible assignment M : U → A that has the maximum
overall social welfare ω(M), i.e., find

M∗ = arg max{ω(M) |M is feasible}.

The number of scheduled events (i.e., those have at least one
user assigned and cardinality constraints satisfied) is not fixed in
advance, but rather determined by the solution, in which some
events may receive zero users. However, the cardinality constraints
for each event that has non-zero participants assigned must be re-
spected. It is possible to have multiple groups performing the same
event, e.g., there may be four groups of two participants each that
are suggested the event of playing chess. This is easily handled by

1208

technically treating different instances of a given event as different
events. We can consider weighting the two terms in Eq. (1), cor-
responding to the innate and social contributions to social welfare,
differently. Our results in the next section show that the problem
remains hard regardless of the weights chosen.

3.2 Hardness Results
Not surprisingly, our first result is that Social Event Organization

is NP-hard. Our reduction is from the recently studied Seminar As-
signment Problem (SAP). SAP is obtained by adding lower bound
constraints to a restricted version of GAP where all objects have
the same size, and is formally stated as follows. Given a set of n
students and and a set of m seminars with maximum cardinality
B1, B2, . . . , Bm ∈ N and minimum cardinality q1, q2, . . . , qm ∈
N, qi ≤ Bi, a profit pi,j ∈ N of assigning student i to seminar j,
we want to find an assignment of students to seminars that satisfies
the cardinality constraints and maximizes the total profit. Krumke
and Thielen [12] recently showed that this problem is NP-hard. We
have the following easy result:

THEOREM 1. The decision version of Social Event Organiza-
tion is NP-complete.

PROOF. Clearly, SAP is isomorphic to a restricted version of
SEO where all innate affinities are natural numbers, all social affini-
ties are zero (and α = 0). The NP-hardness of SEO follows from
this. Membership in NP is straightforward: given an assignment,
both checking its feasibility and whether its social welfare exceeds
a given threshold can be done in polynomial time.

Next, we analyze how hard it is to approximate SEO. Our analy-
sis involves two special cases of the problem, one with only innate
affinities (which is isomorphic to the SAP problem) and the other
with only social affinity.

Special Case 1: Innate Utility Only. In this case, we only con-
sider instances of SEO where w(u, v) = 0, for all users u and v
(and α = 0). Thus, the problem is to find a feasible assignment
M : U → A that maximizes the social welfare, which is solely
determined by innate affinities. We call this version SEO-Innate.

THEOREM 2. It is NP-hard to approximate SEO-Innate within
a factor of (1− 1/n+ ε) (∀ε > 0) in polynomial time, where n is
the number of users.

PROOF. We prove the result by showing that if such an algo-
rithm existed, it could solve the SUBSET-SUM problem, an NP-
complete problem, in polynomial time. Since this is impossible
unless P = NP, the theorem follows. Consider an arbitrary in-
stance I of SUBSET-SUM consisting of a set of integers T =
{t1, t2, . . . , tN} and a target number τ . We must find out if there
is a subset of T whose elements sum to exactly τ . Algorithm B
first creates an instance J of the SEO problem with τ users and N
events, and for each event a ∈ [1, N], it sets γa = δa := ta. Also,
σu,a = 1 for all u ∈ U, a ∈ A and w(u, v) = 0 for all u, v ∈ U .
Then B runsA on J , and outputs YES (indicating there is a subset
of T summing to exactly τ) if and only ifA outputs an assignment
with social welfare τ . We next prove that algorithm B can correctly
distinguish between the YES- and NO-instances of SUBSET-SUM.

If I is a YES-instance, then by the above reduction,OPTJ = τ ,
i.e., the maximum possible social welfare of any feasible assing-
ment on instance J is τ . By assumption, A will output an assign-
ment with welfare ≥ (1 − 1/τ + ε)τ > τ − 1. Since all utility
values are 1, the output of A will be exactly τ , and thus B answers
correctly: YES.

If I is a NO-instance, then for J , by construction, not all users
can be fit into an event, implying OPTJ < τ . Since the output of
A is always ≤ OPTJ , it will be surely < τ . Again, algorithm B
answers correctly: NO. This was to be shown.

We note that complementarily, Krumke and Thielen [12] show
that it is NP-hard to approximate SAP within a factor of 1 − ε0/3
even when all profits are in {0, 1}, where ε0 > 0 is a constant
associated with the hardness gap of the 3-Bounded 3-Dimensional
Matching problem [16]. As a consequence, they show that SAP
does not admit PTAS (polynomial time approximation scheme).
This hardness is clearly inherited by SEO-Innate as well. Note that
both 1 − ε0/3 and (1 − 1/n) are close to 1 (the latter when n
is large). This raises the question whether coarser approximations
exist for SEO. Our result in the next section suggests it is unlikely.
Special Case 2: Pair-wise Affinity Only. In this case, we restrict
attention to instances of SEO where σu,a = 0 for all users and all
events (and α = 1). We refer to this restricted version of SEO as
SEO-Social. We show that this restricted problem is hard to approx-
imate within any constant factor under hardness assumptions about
certain combinatorial problems. Specifically, our result is achieved
by a reduction from the DENSE k-SUBGRAPH problem. That
problem, given a graph G = (V,E) and a parameter k, asks to
find a subgraph G′ of G induced by k nodes such that average de-
gree of nodes in G′ is maximum. The average degree of a node in
G′ = (V ′, E′) is given by 2|E′|/|V ′|. By assuming the hardness
of a conjecture known as Unique Games with Small Set Expansion
Conjecture [11], Raghavendra and Streurer [18] show that DENSE
k-SUBGRAPH is hard to approximate within any constant factor.
We “lift” this to show a similar hardness of approximation of SEO-
Social. For lack of space, we refer the reader to [18] for details and
history of this conjecture.

THEOREM 3. Assuming the Unique Games with Small Set Ex-
pansion Conjecture, it is NP-hard to approximate SEO-Social
within any constant factor in polynomial time.

PROOF. Given an instance I of DENSE k-SUBGRAPH defined
by G = (V,E) and a positive integer k, create an SEO instance J
by setting A = {a}, γa = δa = k, and U = V . I.e., there is
just one event whose lower and upper bound on cardinality is k and
there is a user corresponding to each node of G. For all u ∈ U ,
set σu,a = 0, and for all u, v ∈ U , w(u, v) = 1. By construction,
OPTI = OPTJ , i.e., the maximum social welfare of a feasible
assignment on instance J is identical to the maximum average de-
gree of a k-vertex induced subgraph of G in instance I. Suppose
there is a PTIME algorithm A approximating SEO within a factor
of c ∈ (0, 1). Then, B can approximate DENSE k-SUBGRAPH
within the same factor by converting I to J as above, running A
on J , and outputting the nodes corresponding to the users chosen
byA to attend event a. This is impossible unless the Unique Games
with Small Set Expansion Conjecture doesn’t hold.

To conclude this section, not only is SEO NP-complete, it is also
made up of two hard subproblems. Our results show that it is un-
likely to be approximable within any constant factor in polynomial
time, unless some hardness assumptions about important combina-
torial problems break down. It should be clear from the proof of
Theorems 2 and 3 that this is true regardless of the choice of α in
Eq. (1).

4. PROPOSED SOLUTIONS
Given that SEO is NP-hard to even approximate, we propose a

variety of heuristics that give emphasis to different aspects of the

1209

problem, such as the social affinity, the innate affinity, and the car-
dinality constraints. Before diving into the details of the algorithms,
it is important to first understand what constitutes a feasible (valid)
solution to the SEO problem.
Characterizing Feasible Solutions. For any event, if the event has
reached its minimum cardinality, we refer to it as a real event; oth-
erwise, we call it a phantom event. For example, a tennis or chess
game with only one player is a phantom event, that will become
real only after one other person is assigned to the event. An event is
open and can accept more participants if the maximum cardinality
has not been reached yet, otherwise it is declared closed. By defini-
tion, all phantom events are open. However, a real event can be ei-
ther open or closed. A user u is available if u has not been assigned
to a real event yet. A user-event assignment is valid if it involves an
available user and an open event. During the assignment process, if
the event to which a user was assigned becomes real, then the user’s
assignment is fixed, and she is marked unavailable. Consequently,
all other previous and future assignments involving that particular
user are deemed invalid. Recall that the final solution must be fea-
sible, i.e., respect cardinality constraints. As shown in §3, in some
instances it is not possible to find an assignment for every user, so
the assignment function may be partial. In practice, we can deal
with this by supposing that there are sufficiently many events with
large capacity such as movies or theatrical shows to which users
left unassigned by the algorithm may be assigned.

Notice that each assignment decision impacts the utility received
from future assignments, due to the coupling effect with other users
in the form of social affinity. Therefore, it is non-trivial to achieve
a (feasible) solution to SEO that achieves a high social welfare.
Solution Template. In the remainder of this section we discuss a
variety of algorithms. At a high level, each algorithm (except Ran-
dom and NRMP+) follows the following template. First, a sorted
list L of potential assignments of users to events is generated. The
additional contents of the list may vary depending on the algorithm.
This list may be updated and re-ordered several times during a run
of the algorithm. Second, users are assigned to events by mak-
ing one pass on this list, and the “state” of users (available, un-
available), and events (phantom, real open, real closed) is updated
appropriately. In particular, it marks an event a as “real” when it
reaches its minimum cardinality γa, and “closed” when it reaches
its maximum cardinality δa. These assignments are tentative and
are recorded by membership in the “S” sets, e.g., u ∈ Sa means
u is tentatively assigned to event a, and possibly to other events.
All events are “open” and “phantom” to start with. Once an event a
becomes real, the users in the set Sa are marked “unavailable” for
future assignments and we set M(u) = a, ∀u ∈ Sa. Additionally,
the algorithm invalidates any previous and future assignments of
each user u ∈ M−1(a), by cleaning up other “S” sets as needed.
Finally, the algorithm performs post-processing to ensure that the
output is a feasible solution, i.e., no phantom events are left behind.

4.1 Baselines
In this section, we present a set of intuitive baseline solutions, in

increasing level of sophistication. We build on these baselines and
present our proposed algorithms in §4.2.
Random. Our first baseline is called Random, which randomly as-
signs users to events while respecting the cardinality constraints.
Specifically, the algorithm first randomly shuffles the list L con-
taining user-event pairs 〈u, a〉. It then traverses the list and at each
tuple 〈u, a〉 assigns user u to event a if u is available and a is open.
It appropriately marks an event as real when it reaches its mini-
mum cardinality constraint. Clearly, this is a “straw man” approach,
which does not take into account the “utility” of any assignment.

Algorithm 1 Dynamic Greedy (U,A, σ,w, α)
1: M(u)← ⊥,∀u ∈ U ; Sa ← ∅, ∀a ∈ A
2: for all (u, a) ∈ U ×A s.t. σu,a > 0 do
3: g(u, a | Sa)← (1− α)σu,a

4: L.insert(〈u, a, g(u, a | Sa)〉)
5: while 〈u, a, g(u, a | Sa)〉 ← L.pop() do
6: if M(u) = ⊥ and |Sa| < δa then
7: Sa ← Sa ∪ {u}
8: if |Sa| > γa then
9: M(u)← a

10: for all a′ ∈ A s.t. a′ 6= a ∧ u ∈ Sa′ do
11: Sa′ ← Sa′ − {u}
12: if |Sa| = γa then
13: for all v ∈ Sa do
14: M(v)← a
15: for all a′ ∈ A s.t. a′ 6= a ∧ v ∈ Sa′ do
16: Sa′ ← Sa′ − {v}
17: for all v : (w(u, v) > 0 ∧M(v) = ⊥) do
18: L.update(〈v, a, g(v, a | Sa)〉) // Using Eq. (3)
19: Reassign available users {u|M(u) = ⊥}
20: return M

NRMP+. Given the connection between SEO and NRMP, a natu-
ral question is whether we can leverage algorithms developed for
NRMP. We next describe an adaptation of the NRMP algorithm [8]
for handling the lower bound constraints present in SEO. In this
adaptation, called NRMP+, we cast SEO in the NRMP framework
by associating a preference list of events for each user, ordered by
the innate affinity, and a preference list of users for each event, or-
dered by the innate affinity.3

NRMP+ repeats the following procedure until each user is either
“accepted” by an event or is “rejected” by all events she applied
to. Initially, all users are unassigned and no acceptance or rejection
has been made yet. In each round, each unassigned user “applies” to
the most preferred event that has not rejected her. Each event a then
picks the δa most preferred users who applied to it, or all applicants
if there are fewer than δa of them, and puts them on a waiting list.
Users who failed to get on the waiting list are rejected and are thus
unassigned after this round. After this iterative process stops, we
check if there exists any phantom event. If yes, redistribute users
assigned to phantom events to existing real open events in a greedy
manner, based on innate affinity. After that, either no user is left
unassigned or there are no real events to which unassigned users
can be assigned, and we stop.

It is unclear how NRMP can be directly adapted to take social
affinity into account in deciding acceptances. In Section 5, we em-
pirically compare NRMP+ with the more sophisticated baselines
we develop next, as well as with our main algorithm.

Static Pairwise Greedy. Our next baseline, called Static Pair-
wise Greedy (SG), assigns pairs of users to events, taking into ac-
count both innate event and pairwise social affinities. Specifically,
a sorted list L containing tuples 〈u, v, a〉 representing potential as-
signment of pairs of users to events is generated. The list is ordered
by non-increasing potential gain (of “utility”), defined as

g((u, v), a) = (1− α)(σu,a + σv,a) + 2αw(u, v).

The list is traversed and at each tuple 〈u, v, a〉 users u and v are
assigned to event a if both users are available, and a is open with
at least two spots. User and event states are appropriately updated.

3Events don’t have independent preference lists: we induce them
from user-event affinities for the sake of simulation of NRMP.

1210

Finally, any users that are in phantom events at the end of one pass
over the list L are redistributed greedily among remaining open
events. We call this a static approach as the function g is computed
only once. Therefore, the partial ordering of the L is static, and it
only incurs deletions (with some assignments being invalidated).
Therefore, the assignment of a pair of users to an event is oblivious
to which users are already assigned to that event.

Dynamic Greedy. Our next algorithm, called Dynamic Greedy
(DG), is more sophisticated. It updates its estimation of the “util-
ity” a user will attain from an assignment, based on the current set
of assignments. To achieve this, the algorithm updates the list L at
each assignment, whereL is composed of tuples 〈u, a, g(u, a|Sa)〉,
Sa = ∅ initially, and the potential gain g is

g(u, a | Sa) = (1− α)σu,a + α
∑

v∈Sa

w(u, v). (3)

Clearly, when no users are assigned to an event a, g(u, a | ∅) =
(1 − α)σu,a. Algorithm 1 presents the pseudocode for the DG
method. At each step, the assignment that gives the largest poten-
tial gain g(.) is performed. Let Nu be the set of users v: wu,v > 0.
Now, whenever a user u is assigned to an event a, we need to re-
compute the potential gain g(v, a | Sa) for all neighbors v ∈ Nu

of user u in the network, since their utility for event a increases
after the assignment of u to that event. In practice, the algorithm
maintains the list L as a priority queue of tuples in non-increasing
order of g(u, a | Sa). We use the notation M(u) = ⊥ to denote
that the user u is available. We remark that the update operation
(line 18) is in charge of not only updating the existing entries in the
priority queue but also checking whether the pair (v, a) is already
in the heap and if not, adding it.

The post-processing in Line 19 is done in a greedy manner. Let
A′ be the set of currently open real events, i.e., A′ = {a | γa ≤
|Sa| < δa} and U ′ be the set of users assigned to phantom events.
The list L is re-constructed with users from U ′ and events from
A′, and we rerun the DG algorithm over this list. This process can
be repeated as needed. The post-processing stops when either all
users are assigned or there are not enough real events (i.e., all real
events are closed). In the latter case, from a practical perspective,
the remaining users may be assigned to new events with a large
capacity, e.g., watching a movie or a theatrical show.

Implementation Notes and Time and Space Complexity. We re-
mark that in our implementation, we optimize the algorithm for bet-
ter performance. In particular, we tune our implementation to suit
a Fibonacci heap based realization of the priority queue. Specifi-
cally, we commit to making an assignment for new users right after
line 7. This allows us to avoid assigning users to multiple phantom
events. Thus, when the priority queue is updated, “decrease key”
operation will not be needed, permitting us to implement the prior-
ity queue using a Fibonacci heap. We note, however, in this case the
assignment function M no longer corresponds to only real events
since some phantom events may be left behind by the algorithm at
termination. For ease of exposition, we have chosen to present our
algorithm in a conceptually simpler way.

When the priority queue L is implemented using a Fibonacci
heap, then for each assignment (u, a), the algorithms performs
O(|Nu|) update operations (Line 18), each of which is constant
time. Summing over all users, the total running time of all update
operations is O(|E|), where E is the edge set of the social network
of users, or more precisely the set of pairs (u, v) with w(u, v) > 0.
Next, since the number of all possible (u, a) pairs is bounded by
|L|, we need at most that many pop operations, which in total takes
O(|L| log(|L|)) time. In addition, insertion is constant time for Fi-
bonacci heaps so the initialization step takes O(|L|). Hence, the to-

Algorithm 2 PCADG (U,A, σ,w, α)
1: M(u)← ⊥,∀u ∈ U ; Sa ← ∅, ∀a ∈ A; P ← ∅
2: deficit← 0; V ← U
3: for each (u, a) ∈ U ×A s.t. σu,a > 0 do
4: g(u, a | Sa)← (1− α)σu,a

5: L.insert(〈u, a, g(u, a | Sa)〉)
6: while 〈u, a, g(u, a | Sa)〉 ← L.pop() do
7: if M(u) = ⊥ and |Sa| < δa then
8: if |Sa| = 0 then
9: if deficit + γa ≤ |V | then

10: deficit← deficit + γa − 1
11: P ← P ∪ {a}
12: else
13: continue
14: else
15: if a ∈ P then
16: deficit← deficit− 1
17: Sa ← Sa ∪ {u}
18: V ← V \ {u}
19: if |Sa| > γa then
20: M(u)← a
21: for all a′ ∈ A s.t. a′ 6= a ∧ u ∈ Sa′ do
22: Sa′ ← Sa′ − {u}
23: if |Sa| = γa then
24: P ← P \ {a};
25: for all v ∈ Sa do
26: M(v)← a
27: for all a′ ∈ A s.t. a′ 6= a ∧ v ∈ Sa′ do
28: Sa′ ← Sa′ − {v}
29: for all v : (w(u, v) > 0 ∧M(v) = ⊥) do
30: L.update(〈v, a, g(v, a | Sa)〉) // Using Eq. (4)
31: return M

tal time complexity for Dynamic Greedy is O(|L| log(|L|) + |E|).
Finally, the space complexity is Ω(|L|+ |E|).

4.2 Greedy with Look Ahead Estimation
The Dynamic Greedy algorithm is intuitive: it tries to make as-

signments based on the largest estimated gain, given the current
state of the assignment. However, it has its limitations: (i) it is obliv-
ious to which events a user’s friends are likely to be assigned; (ii)
the first pass may result in a large number of phantom events as
it is ignorant of which events are likely to materialize. To address
these limitations, we propose the Phantom- and Community-Aware
Dynamic Greedy or PCADG (pseudocode in Algorithm 2). A key
feature of this algorithm is that it looks ahead at the forthcoming
assignments to inform the decision at each step.

Community Awareness. The earlier algorithms do not take into
account the potential gain that future assignments of friends to an
event may bring to a user. In our Phantom- and Community-Aware
Dynamic Greedy algorithm, the awareness of friends’ potential as-
signments is incorporated into the decision making process. More
specifically, here, the potential gain g is defined as

g(u, a|Sa) =(1− α)σu,a + α
∑

v∈Sa

w(u, v)

+ α(δa − |Sa|)
∑

v∈V
w(u, v)/(|V | − 1), (4)

where V is the set of users that have not yet been assigned to any
event, phantom or real: V = {u | u ∈ U ∧M(u) = ⊥ ∧ u 6∈⋃

a∈A Sa}.

1211

Notice that the first two terms in this equation are identical to the
two terms in Equation 3 of the Dynamic Greedy method. The third
term corresponds to the “look-ahead” whereby it is optimistically
assumed that the remaining spots in the event a will be filled with
friends of u, with an average social affinity toward u. The average
is computed over users in V . While the first two terms are based
on the current membership of Sa, the third term is based on antic-
ipation. Thus, this algorithm gives equal importance to both innate
affinity and social affinity in gauging the potential gain that could
come from an assignment. Other variants can be easily designed to
weigh the importance of the innate and social affinities differently.

Phantom Awareness. Another observation about Dynamic Greedy
is that it tends to be somewhat indiscriminate in the creation of
phantom events: it never restricts the creation of new events as the
condition |Sa| < δa (line 6 of Algorithm 1) will always be true for
new events, for which |Sa| = 0 by definition. All phantom events
that are left behind after a pass over the list L have to be cleaned up
later. PCADG tries to limit the creation of phantom events, by em-
ploying a stronger condition for phantom event creation. Intuitively,
it keeps track of phantom events as it proceeds, and procrastinates
on creating new events if the number of unassigned users is less
than the currently unfilled spots in existing phantom events that
need to be filled in order for the events to materialize.

To achieve this, PCADG maintains a variable called deficit,
defined to be

deficit =
∑
a∈P

(γa − |Sa|),

where P is the set of phantom events and Sa is the set of users
assigned to event a. If, at any point of the execution of PCADG,
it happens that deficit > |V |, then there must be at least one
phantom event at the end of one pass over L, thus requiring reas-
signment. Therefore, the algorithm performs an assignment based
on a tuple 〈u, a, g(.)〉 only if it does not push deficit over |V |
(Line 9). Otherwise, it will skip that tuple and continue to the next
one in L. As can be seen, by using deficit and V , the algorithm
does limit the creation of new phantom events.

We now give more details about the PCADG algorithm. At the
beginning, when P = ∅, deficit = 0 and V = U . The size of
V is non-increasing throughout the algorithm. For any assignment
〈u, a, g(u, a | Sa)〉 that consists of an available user u and open
event a, if a is a new event with no users, i.e., |Sa| = 0, we in-
crement deficit by γa − 1 (because a is a phantom event and it
would take γa − 1 more users to make a real). Otherwise, we de-
crease deficit by 1 (since u removes one “unit” of deficit).
Furthermore, u is removed from V , if u ∈ V before this assign-
ment was made.

It is worth noting that PCADG may consider user-event combi-
nations for which the innate affinity may be zero, as this assignment
may potentially result in a large gain owing to the social affinity
with other users assigned to this event, as per Equation 4. This is
in keeping with our stated objective of maximizing social welfare.
Therefore, it is possible that some users may be assigned to low
innate affinity events as a result. We measure this tradeoff empir-
ically in §5 by measuring the “regret ratio” (defined in §5) of the
assignment returned by the various algorithms.

In order to explicitly study the impact of community and phan-
tom awareness, we will compare PCADG with a lesser variant
called Phantom-Aware Dynamic Greedy (PADG) that only takes
into account phantom awareness. As such, the PADG algorithm is
identical to Algorithm 2, with the one change that the potential gain
is defined using Eq. (3) instead of Equation 4. In §5, we compare

the running times and scalability of different proposed algorithms,
in addition to comparing them on their quality.

We close this section by noting that the time and space com-
plexity of the PCADG algorithm is the same as that of DG (and
PADG) except that the size of the list L may potentially become
O(|U | × |A|) in the worst case.

5. EXPERIMENTAL ANALYSIS
We evaluate our Phantom- and Community-Aware Dynamic

Greedy (PCADG) method against the Phantom-Aware variant
(PADG) and the baselines described in §4.1, i.e., Random,
NRMP+, Static Greedy (SG) and Dynamic Greedy (DG).

Evaluation Metrics. The most natural evaluation metric is the to-
tal social welfare, ω(M) defined in Eq. ((2)). In addition, since
optimal or near-optimal solution cannot be found in polynomial
time, we measure the effectiveness of each algorithm “indirectly”
by comparing the utility a user gets against a coarse upper bound,
which is the maximum utility she could have enjoyed by going to
her favorite event with her best friends. Formally, we define the
regret ratio for a user u, denoted ρ(u), to be

ρ(u) = 1−
(1− α)σu,M(u) + α

∑
v∈SM(u)

w(u, v)

maxa∈A((1− α)σu,a + α
∑

v∈Bu
w(u, v))

, (5)

whereM is the assignment made by an algorithm, andBu ⊆ Nu is
the set of top-Ku,a friends of u in terms of social affinity w(u, v),
and Ku,a = min{|Nu|, δa − 1}.

Ideally an algorithm that performs well w.r.t. this metric should
assign users to events in such a way that many users experience low
regret in the assignment made. Note that

∑
u∈U maxa∈A(σu,a +∑

v∈Bu
w(u, v)) is guaranteed to be greater than the optimal social

welfare, except when the favorite event of all users is the same, in
which case the optimal welfare may reach this quantity. Moreover,
ρ is a very pessimistic ratio, as the denominator is an upper bound
on the maximum possible utility that the user can achieve. Also, it is
worth pointing out that our algorithms are not designed to directly
minimize individual regrets of users, but rather social welfare that
is the overall utility enjoyed by all users. The purpose here is to
gain some insights about to what extent our algorithms would lead
to a compromise w.r.t. regret.

We set α to 0.5 in Eq. (1) and (5) for all experiments unless oth-
erwise mentioned. We also conduct a detailed experiment on real
data, where we vary α and study its effect, illustrated in Figure 5.

5.1 Experiments on Synthetic Datasets
To better understand the impact of various parameters on our

proposed algorithms, we first perform rigorous evaluations on syn-
thetically generated data. We also conduct scalability tests on large
synthetic data to show that our algorithms are scalable and efficient.

For all events a ∈ A, δa is sampled from a normal distribu-
tion with mean 20 and variance 10, and given that, γa is sampled
uniformly at random from the interval [1, δa]. The social network
G = (U,E) is generated by a random power-law graph model
with a power-law exponent of 1.5 [1]. The data generated has 500
users and 50 events. A user is interested in an event with proba-
bility 0.05, and thus the average number of events he is interested
is 2.5. For each (u, v) ∈ E, the social affinity value is sampled
from a normal distribution with mean 1.5 and variance 3, as is in-
nate affinity σu,a, for each (u, a) pair in the user-event relation.
All values less than 10−5 are set to be zero: all affinity values are
thus non-negative. This gives the default setting for the parameters
used to generate the data, however, throughout this section, we vary
these parameters to understand their effect on the performance of

1212

low med high
(a) γ

0

1000

2000

3000

4000

5000

6000
S

oc
ia

lW
el

fa
re

(ω
)

10 25 35
(b) #Events

0

2000

4000

6000

8000

10000

1 0.1 0.01 0.001
(c) Graph density

0

10000

20000

30000

40000

50000

DG
PADG
PCADG

Figure 1: Effects of parameter choices on the performance of PADG and PCADG

Algorithm |U | Number of Events
50 100 150 200 500

PADG 1K 0.085 0.085 0.108 0.152 0.187
10K 0.343 0.435 0.572 1.54 1.6
100K 2.75 4.61 6.63 15.0 27.1
1K 0.315 0.759 1.46 3.17 9.05

PCADG 10K 2.09 10.07 14.47 32.1 77.2
100K 22.10 64.50 166 207 1085

Table 1: Running time (in seconds) of PADG and PCADG

Random NRMP+ SG DG PADG PCADG
Time (s) 0.98 0.14 12.7 0.31 0.43 10.1

Table 2: Running time (in seconds) of all algorithms with 10K
users and 100 events

our three dynamic greedy methods, DG, PADG and PCADG. Fig-
ure 1 shows the social welfare achieved by these algorithms with
three types of comparisons: minimum cardinality constraints, total
number of events, and density of the social network graph.

Effect of Minimum Cardinality. We alter minimum cardinality
constraint (γ) and evaluate its effect on PADG and PCADG. We
keep the maximum cardinality constraint δa’s unchanged from the
basic setting for each event a ∈ A, and vary their γas. We gen-
erate three groups of data, by sampling the minimum cardinality
constraint γa uniformly at random from [δa/2, δa] (low mean),
[δa − δa/4, δa] (medium mean), and [δa − δa/8, δa] (high mean)
respectively. As seen in Figure 1(a), there is a noticeable improve-
ment in social welfare for PADG and PCADG over DG (which
does not account for phantom events). As γ increases, more phan-
tom events may be created, which increases the gain of PADG.

Effect of the Number of Events. We vary the number of events as
10, 25 and 35, for a 500-user dataset. From Figure 1(b), as the num-
ber of events increases, each event needs to accommodate fewer
users and thus the effect of social affinity decreases. With fewer
events, PCADG is at an advantage over PADG and DG, as it is
community aware and takes into account social affinity values by
looking ahead.

Effect of Graph Density. Next, we test various graph densities of
the underlying social network graph by generating four different
graphs using Erdős-Rényi model G(500, p) where the edge exis-
tence probability being p = 0.001, 0.01, 0.1, and 1 respectively.
For denser graphs, more social affinity values are present and hence
we observe that the margin between PCADG and the other two is
higher in comparison with sparse graphs (Figure 1(c)).

Running Time. Finally, we evaluate the scalability of the algo-
rithms by varying the number of users (1K, 10K and 100K) and
events (50, 100, 150, 200, and 500). We maintain the default set-
tings for all other parameters. Table 1 shows the running time of
PADG and PCADG. Overall, both algorithms achieve good effi-
ciency, finishing within seconds or minutes in all cases, and PADG

always runs faster than PCADG. As the trend is similar, we show
the running time comparison with Random, NRMP+, SG, and DG
for one case of 10K users and 100 events. Random, DG, and SG
take 0.98, 0.31, and 12.7 seconds to finish, while PADG takes 0.43
and PCADG takes 10.07 seconds respectively (see Table 2). SG
was consistently the slowest algorithm in all cases that we tested.
For our largest simulation of 100K users and 500 events, PCADG
takes 20 mins. This is a reasonable for large scale event organiza-
tion, where real-time response is not critical.

5.2 Experiments on Real Event Datasets

5.2.1 Data Description and Preprocessing
We evaluate our algorithms on the following three real datasets.

Plancast and Meetup are local event organization websites that al-
low groups of users to interact and plan events. We use the data4

released by [15]. Since in Plancast and Meetup users and events
are from all over the world, we select several big cities and project
the data to such locations. The third dataset is SIGCOMM2009 (re-
ferred to as SIG), collected by Pietilainen et al. [17] (details later).
The following pre-processing was performed on the datasets to
match our problem setting.

Plancast. We extract two subsets from the Plancast dataset in [15]
corresponding to users and events in the vicinity of Chicago (CHI)
and Vancouver (VAN). The two datasets CHI and VAN have 2338
and 2327 users, and 339 and 360 events, respectively. For comput-
ing the innate affinity, we set σu,a to 1 for events located within
0.01 units of Euclidian distance from the user’s geolocation. Plan-
cast allows users to subscribe to each other and receive updates on
friends’ activities, which gives us a ground-truth social network.
We compute the Katz distance [10] for each adjacent pair of users
in the subscription graph to learn social affinities w(u, v). By defi-
nition of Katz, we havew(u, v) :=

∑∞
`=1 β

` ·|P (`)
u,v|, where P (`)

u,v is
the set of paths of length ` between u and v in the graph, and β is a
damping factor so that the measure counts short path more heavily,
and is set to 0.01 in our case. Higher Katz score intuitively implies
that two nodes are more connected, and hence gives a higher social
affinity value.

Meetup. Similarly, we project Meetup data from [15] on events and
users located in San Francisco and New York City and refer to these
datasets as SFO and NYC. SFO contains 6438 users and 59 events,
while NYC contains 10328 users and 127 events. Meetup allows
users to create and participate in groups, which in turn organize
events. For both locations, we consider the labeled heterogeneous
tripartite graph between users, groups, and events, with edges la-
beled by the relation that connects the pairs of nodes: e.g., if user
u is a member of group g that organized event a which the user
attended, we draw edges (u, g) and (g, a). We then define σu,a

as the Katz distance between the user node u and event node a in

4http://www.largenetwork.org/ebsn

1213

0.5 1.0 1.5 2.0 2.5 3.0
NYC

10− 1
100
101
102
103
104
105
106

#
E
dg
es

0.8 1.6 2.4 3.2
SFO

10− 1
100
101
102
103
104
105
106

0.5 1.0 1.5 2.0 2.5
CHI

10− 1
100
101
102
103
104
105

0.8 1.6 2.4 3.2
VAN

10− 1
100
101
102
103
104
105

1.00 1.04 1.08 1.12 1.16
SIG

10− 1

100

101

102

Figure 2: Distributions of social affinity values

NRMP+ SG DG
PADG

PCADG

NYC

0

4

8

12

16

ω
(M

al
go
)/
ω
(M

R
an
do
m
)

NRMP+ SG DG
PADG

PCADG

SFO
NRMP+ SG DG

PADG
PCADG

CHI
NRMP+ SG DG

PADG
PCADG

VAN
NRMP+ SG DG

PADG
PCADG

SIG

Figure 3: Improvement of social welfare yielded by various algorithms over Random

0.0 0.2 0.4 0.6 0.8 1.0
NYC

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

PCADG
DG
Random
NRMP+
SG

0.0 0.2 0.4 0.6 0.8 1.0
SFO

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
CHI

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
VAN

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
SIG

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: CDF showing regret ratio ρ for different algorithms

NRMP+ SG DG
PADG

PCADG

α = 0.1

0

2500

5000

7500

10000

ω
(M

a
lg
o
)

Social
Innate

NRMP+ SG DG
PADG

PCADG

α = 0.3
NRMP+ SG DG

PADG
PCADG

α = 0.5
NRMP+ SG DG

PADG
PCADG

α = 0.7
NRMP+ SG DG

PADG
PCADG

α = 0.9

Figure 5: Dominance of PCADG is preserved on varying contributions of social and innate affinities (VAN)

the heterogeneous graph, with higher Katz score indicating higher
affinity. For social affinity between users, we utilize tags provided
in the data. More specifically, users on Meetup can attach tags in
their profiles to indicate preferences and interests. Intuitively, users
sharing common interests may enjoy being with each other in activ-
ities they both like. Thus, for each (u, v) ∈ E, we computew(u, v)
as the Jaccard similarity coefficient of u’s tag sets and v’s tag sets:
w(u, v) := |Tu∩Tv|

|Tu∪Tv| , where Tu and Tv is are sets of tags of u and
v respectively. Note that users without any tags in their profile are
filtered out.

SIGCOMM2009. This is a small dataset with 76 users, and 11
events, collected by a mobile application that records bluetooth de-
vice discovery information. Users’ innate utility for events is 1 if
a user attends an event as indicated by the data, and 0 otherwise.
The data includes ground-truth Facebook friendship information,
and thus as in the case of Plancast, we take this underlying social
network and compute the Katz scores for social affinities.

Finally, for all five datasets described above, the user-event in-
nate affinity is set to 1 if the user attends the event as indicated by
the data, and to 0 otherwise. Also due to lack of ground-truth data,
we generate the maximum and minimum cardinality constraints on
the events as in the basic synthetic case, i.e., let r be the ratio be-
tween the number of users and the number of events; then for all
a ∈ A, maximum cardinality constraint δa is sampled from a nor-
mal distribution with mean 2r and variance r, while minimum car-
dinality γa is sampled uniformly at random from [1, δa]. Figure 2
shows the distributions of social affinity values for all datasets.

5.2.2 Evaluations and Analysis

Social Welfare. Figure 3 shows the social welfare (Eq. (2)) ob-
tained by the various methods considered relative to the welfare
obtained using a Random assignment. It shows the ratio between
the social welfare yielded by assignments made by NRMP+, SG,
DG, PADG, PCADG and that by Random. PCADG consistently

1214

has the highest social welfare, followed by PADG, DG, SG and
NRMP+. The margin between PCADG and the rest of the algo-
rithms is significant in all cases, indicting its overall effectiveness.
The biggest lead of PCADG is observed in NYC, 17 times better
than Random, while the smallest happens in SIG, in which it is still
4 times better. On all datasets PADG and DG have similar values,
with PADG outperforming only slightly. This is because the gener-
ated minimum cardinality constraints for events are much smaller
than maximum cardinality constraints. Recall from Figure 1(a) that
when γs are high, the gap between PADG and DG is also high.

Regret Ratio. Figure 4 shows the cumulative distribution function
(CDF) of the regret ratio ρ(u) (see Eq. (5)) achieved by the vari-
ous methods (PADG skipped for clarity) on the five datasets. The
general trend is similar to that of social welfare, where PCADG
outperforms all baselines. For instance, in NYC, 20% of the users
have a regret below 0.8 using PCADG, while only 8% have that
regret with NRMP+. This gap is even more pronounced in CHI and
VAN, with the largest difference in SIG. In particular, 70% of users
have a regret ratio below 0.7 using PCADG, while only 18% have
that regret using NRMP+.

Varying Contribution of Social and Innate Affinities. A possi-
ble concern about our definition of social welfare (Eq. (1)) is that
it may be dominated by social affinity. However, Eq. (1) allows
the organizer to control the relative importance of social and innate
affinities and not let the overall objective be undesirably dominated
by either. To analyze this, in this final experiment, we first boost
the innate affinities such that at α = 0.5, innate and social affini-
ties (found by PADG) are nearly equal, and stress-test the various
algorithms on VAN by varying α. This allows us to vary the rela-
tive contribution of social and innate affinities to the overall welfare
achieved and study its impact on the algorithms. Figure 5 shows
the absolute value of the total welfare and the individual contribu-
tion of the two affinities for α = 0.1, 0.3, 0.5, 0.7 and 0.9. As can
be seen, the dominance of PCADG over other algorithms is main-
tained across all values of α, with higher overall welfare for larger
α. We also measured regret ratios in all cases. The trend was found
to be the same as in Figure 4 and the plot is omitted for brevity.

In summary, through extensive experiments on both synthetic
and real world data, we have demonstrated the effectiveness (in
terms of social welfare and regret) and efficiency (in terms of run-
ning time) of our proposed solutions to the SEO problem.

6. DISCUSSION AND CONCLUSIONS
While there has been considerable work on detecting emerging

events from social media, the related, equally important area of or-
ganizing events has received much less research attention. In this
paper, motivated by popular social event organization platforms
like Meetup and Plancast and by applications such as organizing
events using these platforms over a wide local area, and organizing
events co-located with large conferences and conventions, we study
the novel research direction of Social Event Organization (SEO).

Our focus in this work has been on the assignment problem,
where we consider two critical factors: innate affinity, which cap-
tures a user’s intrinsic preferences for the events being offered, and
social affinity, which captures the social connections among the
users themselves. We formally define the overall measure of social
welfare in event organization and formalize the SEO problem as the
problem of maximizing social welfare subject to constraints on the
participation cardinality of the events. We show that this problem
is not only NP-hard, but also hard to approximate. We propose a
set of heuristic solutions that leverage the notion of phantom events
and the technique of looking ahead the potential gain that may ac-

crue as a result of future assignments to the current event for which
a user is being assigned. Using an extensive set of experiments over
synthetic datasets and three real datasets including those from the
platforms Meetup and Plancast, we demonstrate that our heuristic
algorithms are scalable and furthermore outperform the baseline
algorithms significantly in terms of social welfare and regret ratio.

Several interesting questions remain. Innate and social affini-
ties may be interdependent. E.g., Al and Ed are close friends but
don’t like to play poker together since they know each other’s tells,
while Al may like going to a hockey game (for which she has
low innate affinity) with Bo who is knowledgeable and keeps her
engaged. Handling such interdependency is important. Predicting
which events a user will attend in the future is also an interest-
ing problem. It is also worth comparing the assignments made by
SEO to ground-truth from event participations, which may be chal-
lenging to obtain. Also, a systematic study of alternative ways of
aggregating innate and social affinities for defining social welfare
is worthwhile.

7. REFERENCES
[1] W. Aiello, F. R. K. Chung, and L. Lu. A random graph model for

massive graphs. In STOC, pages 171–180, 2000.
[2] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu. Group

recommendation: Semantics and efficiency. PVLDB, 2(1), 2009.
[3] A. Anagnostopoulos et al. Online team formation in social networks.

In WWW, 2012.
[4] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general

framework for geo-social query processing. PVLDB, 6(10), 2013.
[5] P. Biró et al. The college admissions problem with lower and

common quotas. Theor. Comput. Sci, 411(34-36):3136–3153, 2010.
[6] C. Chekuri and S. Khanna. A ptas for the multiple knapsack

problem. In SODA, 2000.
[7] L. Fleischer et al. Tight approximation algorithms for maximum

general assignment problems. In SODA, 2006.
[8] D. Gale and L. S. Shapley. College admissions and the stability of

marriage. Amer. Math. Monthly, 69, 1962.
[9] K. Hamada, K. Iwama, and S.Miyazaki. The hospitals/ residents

problem with quota lower bounds. In MATCH-UP: Matching Under
Preferences Workshop at ICALP, 2008.

[10] L. Katz. A new status index derived from sociometric analysis.
Psychometrika, 18(1), 1953.

[11] S. Khot. On the power of unique 2-prover 1-round games. STOC,
2002.

[12] S. O. Krumke and C. Thielen. The generalized assignment problem
with minimum quantities. European Journal of Operational
Research, 2013.

[13] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In KDD, 2009.

[14] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for
social networks. Journal of the American society for information
science and technology, 58(7), 2007.

[15] X. Liu et al. Event-based social networks: linking the online and
offline social worlds. In KDD, 2012.

[16] E. Petrank. The hardness of approximations : Gap location.
Computational Complexity, 4:133–157, 1994.

[17] A.-K. Pietilainen and C. Diot. CRAWDAD data set
thlab/sigcomm2009 (v. 2012-07-15). Downloaded from
http://crawdad.cs.dartmouth.edu/thlab/sigcomm2009, 2012.

[18] P. Raghavendra and D. Steurer. Graph expansion and the unique
games conjecture. In STOC, 2010.

[19] A. E. Roth. The evolution of the labor market for medical interns
and residents: a case study in game theory. Journal of Political
Economy, 6(4):991–1016, 1984.

[20] D. B. Shmoys et al. An approximation algorithm for the generalized
assignment problem. Math. Program., 62:461–474, 1993.

[21] M. Sozio and A. Gionis. The community-search problem and how to
plan a successful cocktail party. In KDD, pages 939–948, 2010.

1215

