
Profit-maximizing Cluster Hires

Behzad Golshan
Boston University

behzad@cs.bu.edu

Theodoros Lappas
Stevens Institute of

Technology
tlappas@stevens.edu

Evimaria Terzi
Boston University

evimaria@cs.bu.edu

ABSTRACT
Team formation has been long recognized as a natural way
to acquire a diverse pool of useful skills, by combining ex-
perts with complementary talents. This allows organizations
to effectively complete beneficial projects from different do-
mains, while also helping individual experts position them-
selves and succeed in highly competitive job markets. Here,
we assume a collection of projects P, where each project re-
quires a certain set of skills, and yields a different benefit
upon completion. We are further presented with a pool of
experts X , where each expert has his own skillset and com-
pensation demands. Then, we study the problem of hiring a
cluster of experts T ⊆ X , so that the overall compensation
(cost) does not exceed a given budget B, and the total ben-
efit of the projects that this team can collectively cover is
maximized. We refer to this as the ClusterHire problem.
Our work presents a detailed analysis of the computational
complexity and hardness of approximation of the problem,
as well as heuristic, yet effective, algorithms for solving it
in practice. We demonstrate the efficacy of our approaches
through experiments on real datasets of experts, and demon-
strate their advantage over intuitive baselines. We also ex-
plore additional variants of the fundamental problem formu-
lation, in order to account for constraints and considerations
that emerge in realistic cluster-hiring scenarios. All variants
considered in this paper have immediate applications in the
cluster hiring process, as it emerges in the context of differ-
ent organizational settings.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

Keywords
Team Formation; Online Marketplaces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623690.

1. INTRODUCTION
When searching for a group of experts to hire, organiza-

tions and decision-makers aim to find the most cost-effective
team that can accomplish their goals. The hiring process in-
cludes allocating an available budget toward the recruitment
of a set of experts from a collection of candidates, in order to
form a team that has all the required expertise to perform
a large number of profitable projects.

As an example, consider the recruitment of a cluster of
college professors by a university. In this setting, the uni-
versity has to hire individuals that allow it to maximize its
academic benefit, given the current opportunities and trends
in terms of research and funding options. Given the avail-
able budget, the goal is to recruit a cluster of professors that
can collectively provide the expertise required to capitalize
on such opportunities and maximize the university’s bene-
fit. The benefit can be measured in terms of the number of
publications or citations, the amount of dollars at grants, or
any other function that the university wants to optimize.

In an industry setting, cluster hiring scenarios are even
more prevalent. Perhaps the most characteristic example is
a typical startup company, where the founders need to se-
lect a team of experts with the combined expertise required
to capitalize on the different opportunities that have been
identified within the market that the company targets.

Another relevant setting comes from the domain of online
labor markets, such as oDesk (www.odesk.com), Freelancer
(www.freelancer.com), and Guru (www.guru.com). In these
online portals, employers hire freelancers with various skills
to work remotely on different types of projects. In the early
stages of this model, freelancers registered and worked inde-
pendently. However, as the competition grew, experts real-
ized that it is in their best interest to form “hives”, known as
agencies, with people of complementary skillsets [11]. This
allows them to diversify their talent pool, and go after a
larger number of more profitable projects. This trend, has
also been recognized by major companies in this area, such
as oDesk.com, which are already offering team-hiring ser-
vices to their enterprise customers1.

In this paper, we formalize the cluster hiring problem as
follows: we assume a pool of n experts X , where each ex-
pert i is associated with the set of skills Xi that he masters.
Additionally, we assume a set of m projects P, where each
project P ∈ P is also associated with a set of skills; these
are the skills that are required for the project to be com-
pleted. Finally, every project is associated with a profit
F (P) and every expert is associated with a cost C(Xi),

1https://www.odesk.com/info/enterprise/

1196

which corresponds to X’s compensation. Given a budget
B, our goal is to form a team of experts T ⊆ X such that∑

X∈T C(X) ≤ B and the sum of the profits of the projects
that T can perform is maximized. In the basic version of
the problem, we assume that T can perform a project P
only if for every required skill in P , there exists at least one
worker in T that has this skill. We call this problem the
ClusterHire problem.

In addition to this fundamental definition, we consider
variants of the ClusterHire problem that take into con-
sideration (i) a probabilistic version of project profits, based
on how likely it is for the team to actually acquire and com-
plete the project, and (ii) constraints on the usage of the
experts with respect to how many projects they are willing
and able o participate in simultaneously.

Contributions: To the best of our knowledge we are the
first to define and study the ClusterHire problem and its
variants. More specifically, we show that this problem is
NP-hard to solve and even approximate. We then proceed
to design effective heuristics and demonstrate their efficacy
in practical settings. For our experiments we use data from
Freelancer and Guru. These are two of the largest players
in the rapidly growing area of online labor, which has been
identified as a clear candidate for the cluster hire setting [11].
In addition to experimentally evaluating our algorithms and
investigating the characteristics of their solutions, we also
provide an extensive data-analytic and visual study of these
datasets that provides a much deeper understanding of the
nature and dynamics of expert communities.

Roadmap: The rest of the paper is organized as follows:
we review the related work in Section 2. In Section 3, we de-
fine the ClusterHire problem and study its computational
complexity. Our algorithms for the problem are described
in Section 4, and in Section 5 we provide a thorough analy-
sis of our datasets. An extensive experimental evaluation of
our methods is given in Section 6. We conclude the paper
in Section 7.

2. RELATED WORK
To the best of our knowledge we are the first to introduce

and study the ClusterHire problem and its variants. How-
ever, our work is clearly related to other recently-studied
team formation problems as well as literature on studying
team dynamics and predicting the performance of teams, as
well as work on inferring the abilities of the team members
based on their team performance. We give an overview of
this body of related work below.

Our previous work [14] was the first to introduce the prob-
lem of team formation in the context of social networks.
Given a pool of experts and a set of skills that needed to
be covered, the goal was to select a team of experts that
can collectively cover all required skills, while ensuring ef-
ficient communication between the team’s members. Over
the last years, this work has been extended in multiple di-
rections. For example, there exists recent work that focuses
on incorporating different definitions of communication costs
between experts [1, 6, 8, 13, 15, 19]. Others take into con-
sideration different levels of users’ abilities and capacity to
participate in different projects [18]. Finally, more recently,
the online version of the problem was introduced where the
goal is to create multiple teams that can address multiple
projects that arrive in an online fashion [3]. The common

characteristic of all the above works is that they assume a
network of experts and therefore, all these formulations have
a graph-theoretic component. Our work does not assume the
existence of a graph and therefore our setting raises differ-
ent computational questions than the ones addressed in the
above papers.

Probably the most related to ours is the recent work by
Anagnostopoulos et al. [2]. This paper considers a pool of
experts, with each expert associated with a set of skills, and
a collection of projects arriving one at a time in an online
fashion. Each project is characterized by the set of skills
required for its completion. In the version of their problem
that is most related to ours, Anagnostopoulos et al. aim
to create one team for each project, such that over time,
the maximum number of teams that each expert partici-
pates in is minimized. There are two significant differences
between their setting and ours. First, our goal is to cre-
ate a single team that can address many projects, while the
goal of Anagnostopoulos et. al. is to choose a single team
per project. Second, we do not assume that projects arrive
online: in our setting the set of projects is known apriori.
Therefore, again, the computational issues we face and ad-
dress here are distinct.

In the area of online gaming and robot team formation,
the problem of inferring the performance of a teams of play-
ers has been investigated at length [17, 16]. Most recently
Liemhetcharat and Velose [17] explore a version of the prob-
lem in which each expert has a non-deterministic capability
with respect to each project. The expected performance of
the team is then evaluated based on the synergy of the par-
ticipating experts, rather than their coverage of skills. Other
relevant works [5, 7] evaluate team performance from an
anthropological/sociological perspective. We consider these
complementary to our computational approach.

Recently Gionis et al. [10] have proposed a combinato-
rial method for computing the skillset of individual experts,
based on their participation in successful teams. Their prob-
lem setting can be thought as inverse to ours, since our goal
is to compute teams based on the skillsets of experts.

3. PROBLEM DEFINITIONS
In this section, we provide the notation we will use through-

out the paper, and present the formal definitions and com-
plexity results for different versions of our problem.

3.1 Preliminaries
Throughout the discussion we will assume that there is

a set of ` skills S, a set of n experts X and a set of m
projects P. Each expert X ∈ X , is represented by a subset
of skills, i.e., X ⊆ S; these are the skills that the expert
possesses. Similarly, every project P ∈ P is characterized
by the set of skills that are required in order for the project
to be completed (i.e., P ⊆ S).

In addition to the above, we have a profit function (F),
such that for every P ∈ P, F (P) gives the (expected) profit
that completing P with incur. Similarly, for every expert X,
function C(X) gives the cost of hiring a particular expert.

For a team of experts T ⊆ X , we say that team T has a
skill s if there exist at least one expert X ∈ T , such that X
has skill s, i.e., s ∈ X. For a project P ∈ P, we say that
team T covers P if T (as a team) has all the skills required
for P . Clearly, a team of experts may cover more than one
projects; in fact the more such projects being covered by

1197

a single team the better the team. That is, we define the
coverage of team T to be the set of distinct projects that
the team can cover. That is,

Cov(T) = {P ∈ P | T covers P} . (1)

Given the projects that a team T can cover, we define the
profit of the team to be the summation of the profits of the
projects that T covers. That is,

F (Cov(T)) =
∑

P∈Cov(T)

F (P). (2)

In addition, every team incurs a certain cost, computed
as the sum of the costs of its members. That is,

C(T) =
∑
X∈T

C(X). (3)

Dollar profit: In real applications, there is typically a pre-
specified gain (in terms of dollars) that the completion of a
project will yield for the team (or for the organization that
has hired the team). This dollar amount can thus naturally
serve as the profit of that project, which we refer to as Fd.

Competition-based profit: The above dollar-based as-
signment of profits to projects does not consider the uncer-
tainty that is involved in the process of trying to acquire and
complete a project. Consider the following example: we are
presented with two projects P1 and P2 that are worth the
same dollar amount. However, assume that P1 requires a set
of “mundane” skills, i.e., skills that are very popular among
the pool experts, while P2 requires a rare skill s∗. Clearly,
there is larger competition for project P1, since there are
many possible teams that can contribute the required skills.
On the other hand, the competition for P2 is smaller due to
the rare skill that it requires. Therefore, a team that has
s∗ in its combined skillset has a higher probability of being
assigned project P2, if it chooses to pursue it.

This competitive setting is simply one of the alternative
instantiations of uncertainty, which is present in all the ap-
plications we consider. Alternatively, one could consider the
probability of completing a project even after it has been
secured, given the deadlines and other constraints placed
by the employer. Our framework is compatible with any
method that computes the probability of success for each
project. For our own experiments, we compute the dollar-
based profit of a project P as follows:

Fc(P) =
1

freq(s∗(P))
Fd(P),

where s∗(P) is the rarest skill among the skills required for
P and freq(s∗(P)) is the number of experts that actually
possess this skill. While we experimented with other alter-
natives, including the median and average frequency of the
skills required by a project, we found that using the mini-
mum frequency yielded the most intuitive results.

Throughout the paper, we use the generic notation (F) to
refer to projects’ profits and only use Fd and Fc when we
need to explicitly compare them.

3.2 The ClusterHire problem
Given the above notation, we can now define the main

problem addressed in this paper as follows:

Problem 1 (ClusterHire). Given a set of projects P,
a pool of experts X , cost and profit functions C() and F (),

respectively, and a budget B ∈ R+ find T ⊆ X such that
F (Cov(T)) is maximized and C(T) ≤ B.

From the computational point of view, we have the fol-
lowing results for the ClusterHire problem.

Lemma 1. The decision version of the ClusterHire prob-
lem is NP-complete.

Proof. For our proof, we will consider a simplified ver-
sion of the problem where P consists of a single project
P and F (P) = 1. Moreover, C(X) = 1 for every expert
X ∈ X . In the decision version of this simplified instance
of the ClusterHire problem the question is if there exist
a team of K experts that covers project P .

Now, we will reduce the decision version of the SetCover
problem [9] to this simplified version of the ClusterHire
problem. In the classical SetCover problem there is a uni-
verse of items U and a set of sets Q such that for every
Q ∈ Q, Q ⊆ U . The question in the decision version of the
problem is whether there exist L sets from Q, forming Q′
such that ∪Q∈Q′Qi = U .

Clearly, if we map every set Qi ∈ Q from SetCover
into an expert Xi ∈ X of ClusterHire, the two problems
become identical. That is, there exists a solution of size L in
the SetCover problem if and only if there exists a solution
of cost L in the ClusterHire problem.

Lemma 2. The ClusterHire problem is NP-hard to ap-
proximate.

Proof. The proof of the above lemma uses the same sim-
plified decision version of the ClusterHire problem used
in the proof of Lemma 1, as well as some intuition we gained
from that proof.

More specifically, we will prove the lemma by contradic-
tion. That is, assume that there exists an α-factor approx-
imation algorithm for this simplified version of the Clus-
terHire problem such that if T A is the solution of this
algorithm and T ∗ is the optimal solution, we have that:
F (T A) ≥ αF (T ∗).

Now observe that such an algorithm can be used to de-
cide whether there exists a solution consisting of K ex-
perts that could perform the project P of the Cluster-
Hire problem. However, as we showed above, the decision
version of this problem is NP-complete. Therefore, such an
α-approximation algorithm cannot exist.

The t-ClusterHire problem: Observe that the Clus-
terHire problem as defined in Problem 1 allows for solu-
tions where a single expert X ∈ T can use a particular skill
in multiple projects in Cov(T). In practice, however, this
setting can lead to an expert being overworked, especially if
he is one of the few members (or even the sole member) in
the team who possesses a frequently required skill.

In order to avoid such shortcomings, we propose a vari-
ant of ClusterHire that places an upper bound t(X, s)
on the number of projects for which an expert X can uti-
lize a skill s. By allowing for a different threshold for each
expert-skill combination, this formulation is a natural fit for
scenarios where certain skills are much easier to apply than
others, especially for specific experts. For example, while
it is very difficult for a software engineer to be the “devel-
opment leader” for more than one project, the same person
can use his “software consulting” expertise to assist in nu-
merous ongoing efforts. In the same consulting setting, it

1198

is easier for a more experienced engineer to participate in
more projects.

Computing Covt(T): In practice, such a threshold corre-
sponds to a different definition of the coverage of projects by
teams. We refer to this alternative definition as t-coverage
and we define it below. If use Covt(T) to denote the set
projects that are t-covered by team T , then this set has the
following characteristic:

F (Covt(T)) is maximized (4)

such that for all s ∈ S,

|{P ∈ Covt(T)|s ∈ P}| ≤
∑

X∈T
∑

s∈X t(X, s). (5)

The constraints encoded by the inequalities in Equation (5)
are essentially the threshold constraints imposed by the ex-
perts.

We observe that given a team T , computing Covt(T) as
described by Equations 4 and 5 is also an NP-hard problem.
In fact, in the special case where t(X, s) = 1 for all skills
s and experts X, then the problem described by the above
equation is identical to the SetPacking problem [9].

4. ALGORITHMS
In this section, we describe our algorithms for the basic

version of the ClusterHire problem. We then demonstrate
how to adapt these algorithms to solve t-ClusterHire.

The ExpertGreedy algorithm: The ExpertGreedy algo-
rithm is a greedy algorithm on the space of experts. That
is, it greedily picks experts — one at a time — so that the
budget constraint is satisfied while at the same time the F
objective is maximized. Specifically, the algorithm starts
with an empty team and at iteration i, it forms T i. The
expert X, picked at iteration (i+ 1) needs to be among the
qualified candidates Q, where:

Q = {X | X /∈ T i and C(T i ∪ {X}) ≤ B},

while X maximizes:

F (Cov(T i ∪ {X}))− F (Cov(T i))

C(X)
.

Note that that the set of qualified candidatesQ is different at
every iteration. The set consists of all the remaining experts
that can be added to the current solution without violating
the budget constraint B. In case of a tie between candidate
experts, the algorithm picks an expert at random.

Algorithm 1 The ExpertGreedy algorithm.

Input: Experts X , projects P, budget B.
Output: T ⊆ X

1: T = ∅, b = 0, Q = X
2: while b < B and Q 6= ∅ do
3: Q = {X |/∈ T and C(T ∪ {X}) ≤ B}
4: X = arg maxX′∈Q

F (Cov(T ∪{X′}))−F (Cov(T))
C(X′)

5: T = T ∪ {X}
6: b = b+ C(X)

7: return T

The pseudocode of ExpertGreedy is shown in Algorithm 1.
The worst-case running time of each iteration of Expert-

Greedy is O(nm`). However, careful implementation and

bookkeeping that takes into consideration the sparsity of
the data allow for much better running times in practice.

The ProjectGreedy algorithm: In contrast to Expert-

Greedy, which picks experts greedily, ProjectGreedy oper-
ates by greedily selecting the projects to be covered – one a
a time – and then finding the best set of experts that can
cover the selected project.

Algorithm 2 The ProjectGreedy algorithm.

Input: Experts X , projects P, budget B.
Output: T ⊆ X

1: T = ∅, b = 0
2: while b < B and P 6= ∅ do
3: P: set of projects not covered by T
4: for P ∈ P do
5: XP : experts from X required to cover P
6: if C(XP) + b ≥ B then
7: P = P \ {P}
8: P = arg maxP∈P

F (Cov(T i∪XP))−F (Cov(T i))
C(XP)

9: T = T ∪ XP

10: b = b+ C(XP)

11: return T

Assume that, at iteration i, ProjectGreedy has formed a
team T i. Then, at iteration (i + 1), the algorithm picks a
project P that is not covered by the skills in team T i. The
selection of P is done so that, if XP is the set of additional
experts required to cover P , the ratio

F (Cov(T i ∪ XP))− F (Cov(T i))

C(XP)

is maximized and the budget constraint, i.e., C(T i ∪XP) ≤
B is satisfied. Similar to ExpertGreedy, any ties are broken
arbitrarily.

The pseudocode of ProjectGreedy is shown in Algorithm 2.
We draw attention to line 5 of this pseudocode. This step
finds a subset of experts, XP , who together with the current
members of T can collectively cover the skills of project P .
Clearly, the formation of XP needs to be budget-efficient.
Thus, this step involves solving an instance of the weighted
set-cover problem for the skills of P which are not currently
covered by T . For this, we use the standard greedy approx-
imation algorithm for weighted set cover. Thus, a different
set-cover problem needs to be solved for each one of the
candidate projects.

If I is the number of iterations of the outer while loop
and TG the running time required for finding XP (i.e., the
running time of the greedy algorithm for weighted-set cover
on the space of experts), the worst-case running time of
ProjectGreedy is O(ImTG). Next, we introduce a method
that reduces the number of candidate projects m and con-
sequently leads, in practice, to smaller running times.

The CliqueGreedy algorithm: By greedily selecting a sin-
gle project at every iteration, the ProjectGreedy algorithm
is forced to repeatedly solve an instance of the weighted set
cover problem. At the same time, by evaluating the profit-
cost ratio of each project independently, the algorithm fails
to identify sets of projects that require similar or even near-
identical skillsets, which could lead to even higher ratios if
selected together.

Motivated by these observations, we design the Clique-

Greedy algorithm. CliqueGreedy can be thought of as an

1199

extension of ProjectGreedy, which operates on groups of
projects, rather than individual projects. Essentially, a group
can be viewed as a larger project that requires the union of
the skills required by the projects in the group. Next, we
describe a 2-step method for grouping projects.

In the first step, we consider the grouping benefit for each
pair of projects. Given two project P1 and P2, we consider
them compatible if the profit-to-cost ratio for both projects
increases by at least a factor of (1 + α) if they are merged.
Formally, if

Ri =
F (Pi)

C(Pi)
,

for i = 1, 2, and

R =
F (P1 ∪ P2)

C (P1 ∪ P2)
(6)

then P1 and P2 are in the same group if the following com-
patibility condition holds:

R > (1 + α)Ri for both i = 1, 2. (7)

In the second step, we compute the maximal cliques in the
graph that has a node for every project and edges between
every two compatible projects. The computed cliques then
serve as the groups that are considered by CliqueGreedy.

Note that a clique is maximal if it is not included in any
other possible clique. This allows to avoid trivial candidates
and limit the number of cliques that need to be considered.
In practice, even the enumeration of all maximal cliques is
possible. In our experiments, we use the efficient implemen-
tation of the algorithm proposed by Bron and Kerbosch [4]
that is included in the NetworkX library [12].

As we saw in our experiments, the computational time
of the grouping phase is dominated by the first step, since
checking the compatibility condition for a pair of projects
requires solving yet another set-cover problem. Therefore,
checking the compatibility between all

(
m
2

)
pairs of projects

requires solving as many set-cover problems. In order to
address this, we effectively eliminate a large number of such
pair-wise checks by making the following observations:

Observation 1. Any two projects P1 and P2 are not com-
patible if P1 ∩ P2 = ∅.

Observation 2. Any two projects P1 and P2 are not com-
patible if

F (Pi)

C(Pi)
≤ (1 + α)

F (P1) + F (P2)

max{C(P1), C(P2)} .

Both these observations are direct consequences of the com-
patibility condition and can be evaluated in constant time
given that C(Pi) is computed for every project – which is re-
quired anyway even in the simple version of ProjectGreedy.
In practice, we have observed that these two pruning mech-
anisms are extremely effective, as they promptly dismiss
many project pairs as incompatible.

Another factor that affects the running time of the group-
ing phase is the value of the parameter α. This has a direct
effect on the applicability of the second pruning criterion,
as well as on the density (and thus the clique computation)
of the resulting project graph. Larger values of α lead to
sparser graphs and reduce the number of cliques.

In our experiments, we found that the value of α is dataset
dependent, but tuning this parameter is easy if the dataset
characteristics are studied appropriately.

Algorithms for t-ClusterHire: All three algorithms we
designed for t-ClusterHire, i.e., ExpertGreedy, Project-
Greedy and CliqueGreedy can be modified to take into con-
sideration the threshold on the number of times every expert
can use each skill, as stipulated by the definition of the t-
ClusterHire problem. In all cases, the greedy heuristic is
modified to maximize the marginal gain at the profit level,
while satisfying the threshold constraints. Considering the
pseudocode for ExpertGreedy given by Algorithm 1, the only
required modification is to alter line 4 so that it computes
the t-coverage of the teams, and thus use Covt instead of
simple Cov. Finally, the ProjectGreedy for this version
is similarly obtained by modifying line 8 of Algorithm 2 to
compute the t-coverages instead of the simple coverages.

5. EXPERTISE DATASETS
In our experiments, we used data collected from two large

online labor markets: guru.com and freelancer.com. We
refer to these datasets as Guru and Freelancer respectively.

The business model for labor markets: Both websites
follow the same business model: employer post a description
of a project that needs to be completed, including the re-
quired skills and the monetary reward that they are willing
to pay. Experts with various skillsets and salary demands
apply for each project, and are evaluated by the employer.

Data analytics: From each website, we collect the follow-
ing artifacts: (i) the set of skills and the salary demands (in
dollars per hour) for each expert, and (ii) the set of required
skills and the monetary reward (in dollars) for each posted
project. For the Guru dataset, we collected data on 6 473
experts and 1 764 projects. For the Freelancer dataset, we
collected data on 1 763 experts and 721 projects.

Project analytics: Figures 1 and 2 provide some descrip-
tive analytics on the projects from Freelancer and Guru
datasets, respectively.

Figures 1(a) and 2(a) display the distribution of the size
of the skillset required for the projects in Freelancer and
Guru respectively. From Figure 2(a), we observe that while
the majority of projects in Guru require up to 10 skills,
larger projects of 30 skills or more are also posted. For
Freelancer the distribution is different. This is due to the
fact in freelancer.com employers are only allowed to spec-
ify at most 5 skills per project; this fact clearly manifests
itself in Figure 1(a).

Figures 1(b) and 2(b) show the distribution of project
profits for Freelancer and Guru, respectively, under the Fd

profit function (amount of dollars). Similarly, figures 1(c)
and 2(c) show the distribution of project profits under the
Fc (expected amount of dollars, based on competition). The
x-axis holds the profits, sorted from lowest to highest, and
the y-axis the number of projects associated with each profit
value. For both figures, both axes are in a logarithmic scale.

For the Fd scheme, we observe only 9 distinct profit values
for Guru (due to the quantization of profits made by the
website), which also follow a distribution that resembles a
power law (given the almost straight line and the log-log
scale). On the other hand, for Freelancer, we observe a
much higher variance in the distribution of profits.

As anticipated, the Fc scheme introduces much larger vari-
ance in the profit distribution for both datasets, with no
clearly identifiable distribution shape. This is reasonable,

1200

 0

 50

 100

 150

 200

1 2 3 4 5

N
u

m
b
e
r

o
f

P
ro

je
ct

s

Number of Skills

Freelancer

(a) Project skillset size distr.

 1

 10

 100

 1000

 10 100 1000

N
u

m
b
e
r

o
f

P
ro

je
ct

s

Amount of Dollars

Freelancer

(b) Project Fd distr.

 1

 10

 100

 0.01 0.1 1 10 100 1000 10000

N
u

m
b
e
r

o
f

P
ro

je
ct

s

Expected Amount of Dollars

Freelancer

(c) Project Fc distr.

Figure 1: Project analytics for the Freelancer dataset.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

N
u

m
b
e
r

o
f

P
ro

je
ct

s

Number of Skills

Guru

(a) Project skillset size distr.

 10

 100

 1000

 100 1000 10000 100000

N
u

m
b
e
r

o
f

P
ro

je
ct

s

Amount of Dollars

Guru

(b) Project Fd distr.

 1

 10

 100

 1000

 0.1 1 10 100 1000 10000 100000

N
u

m
b
e
r

o
f

P
ro

je
ct

s

Expected Amount of Dollars

Guru

(c) Project Fc distr.

Figure 2: Project analytics for the Guru dataset.

since this function is based on the rarity of the required
skills. which can vary a lot more across projects.

Expert analytics: Figure 3 shows different analytics for
the experts from Freelancer and Guru. Figures 3(a) and
3(b) show the distribution of the skillset size (i.e., number
of skills) of the experts in each dataset: the x-axis corre-
sponds to the size of skillset and the y-axis to the number
of experts that have skillsets of that size. For Guru, Fig-
ure 3(b), this distribution is a power-law distribution, with
most users having less than 20 skills. On the other hand,
the majority of experts on Freelancer have five skills, while
the remaining skillsets are almost uniformly distributed over
1,2,3, and 4 skills. This difference is explained by the skill
verification mechanism that is in place by freelancer.com

where an expert can declare any number of skills, however
on each expert’s only at most 6 most verified skills are dis-
played; a skill of an expert gets a verification every time the
expert participates in a project that utilizes this skill. Such
a mechanism is absent from guru.com (at least at the time
the data was collected), and thus the distribution of skillset
sizes is different.

Finally, Figures 3(c) and 3(d) show the distribution of
salaries for Freelancer and Guru experts respectively. The
x-axis holds the salaries, sorted from lowest to highest, and
the y-axis the number of experts with a given salary. Both
figures display a “power law”-like distribution, with the ma-
jority of experts asking for an hourly salary of at most 50.

Visualization: In an attempt to gain a deeper understand-
ing of the two datasets in the context of our problem, we
display the similarity graphs for experts in Figures 4 and 6.

Expert graph: In the graphs in Figure 4, nodes corre-
spond to experts. There is an edge between two experts
if their Jaccard similarity, computed on their skillsets, is
higher than 0.7. For the graph we removed all nodes with

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5

N
u

m
b
e
r

o
f

E
x
p
e
rt

s

Number of Skills

Freelancer

(a) Expert skillset size distr.
for Freelancer

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140

N
u

m
b
e
r

o
f

E
x
p
e
rt

s

Number of Skills

Guru

(b) Expert skillset size distr.
for Guru

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

N
u

m
b
e
r

o
f

E
x
p
e
rt

s

Salary (Dollars/Hour)

Freelancer

(c) Expert salary distr. for
Freelancer

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

N
u

m
b
e
r

o
f

E
x
p
e
rt

s

Salary (Dollars/Hour)

Guru

(d) Expert salary distr. for
Guru

Figure 3: Expert analytics for Freelancer and Guru datasets.

degree less than 2.2 The figure demonstrates that the la-
tent similarity structure among experts differs dramatically
in the two datasets For Freelancer (Figure 4(a)) we observe
a number of dense neighborhoods of different sizes, repre-
senting clusters of similar experts. At the same time, the
graph is well-connected, with several edges often bridging
the observed neighborhoods. On the other hand, for Guru,
(Figure 4(b)), we observe a single large dense component, as
well as several smaller components that are not connected
to each other. This difference stems from the different na-

2Experimenting with lower and higher values of the thresh-
olds had the expected results of producing larger and smaller
cliques, respectively, for both datasets.

1201

(a) Freelancer (b) Guru

Figure 4: Expert graphs: Similarity graphs for Guru and
Freelancer experts.

ture of the two websites; guru.com hosts a diverse spec-
trum of experts with skillsets in different domains ranging
from IT to legal services, financial consulting etc. On the
other hand, the majority of the experts in freelancer.com

are technology-oriented professionals who are more likely to
have overlapping skillsets.

Project graphs: In the graphs in Figure 6, nodes corre-
spond to projects. The graphs were constructed as follows:
there is an edge between two projects if the compatibility
condition described in Equation (7) is satisfied. We visual-
ize the compatibility graphs for both the F functions: Fd

(the dollar amount attached to each project) and Fc (the
expected dollar amount, given the competition a team has
to face in the process of acquiring the project). Figures 6(a)
and 6(b) display the graphs for both functions for the Free-
lancer dataset for α = 0.2. Figures 6(c) and 6(d) display
the same graphs for Guru and α = 0.7.

Comparing the graphs across datasets, we observe the
same trends found in the expert graphs: Freelancer includes
a number of distinct (but still connected) neighborhoods.
On the other hand, the Guru graphs are dominated by 1-2
large components which correspond to experts from disci-
plines with more dominant representation on the website.

The figures also reveal some interesting facts when con-
sidered in the contexts of the two different profit functions.
For Guru, introducing the competition factor in the prof-
itability of a project leads to a sparser graph. As we saw in
Figures 2(a) and 1(a), the average project on Guru requires
a significantly higher number of skills than the average Free-
lancer project. This makes the occurrence of rare skills more
likely, which has a direct effect on the competitive-driven Fc

function: as these competitive projects emerge, they are less
likely to improve their profit-to-cost ratio by being grouped
with other projects, leading to less edges in the graph. On
the other hand, the effects of competition on the Freelancer
project-graph are less prevalent, which is likely to be due
to the lower diversity of skillsets required by each project
(limited to at most 5).

6. EXPERIMENTS
In our experiments we study the relative performance of

our algorithms for the Freelancer and the Guru datasets,
which we extensively analyzed in the previous section.

100,000

200,000

300,000

0 250 500 750 1000
Budget (B)

F
d

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(a) Dollar profit (Fd)

0

10,000

20,000

30,000

0 250 500 750 1000
Budget (B)

F
c

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(b) Competition-based profit (Fc)

Figure 5: Performance of different algorithms for the Clus-
terHire problem (Freelancer dataset).

6.1 Evaluating algorithms for ClusterHire

First, we focus on the evaluation of our algorithms for
the ClusterHire problem, i.e., ExpertGreedy, Project-

Greedy and CliqueGreedy. To do so, we report the overall
profit achieved by each algorithm, for increasing values of the
available budget, i.e., B ∈ {10, 20, 50, 100, 200, 500, 1000}.
The SmartRandom baseline: As an additional baseline, we
also evaluate an iterative randomized algorithm, which we
refer to as SmartRandom. SmartRandom is essentially a ran-
dom version of ProjectGreedy and at each iteration it se-
lects a random project, and then proceeds to hire the cheap-
est set of experts who can fully cover this project. This set
of experts is again identified by the greedy algorithm for set
cover. In order to ensure that SmartRandom exhausts the
available budget, only projects that can be covered using
the current budget are considered on every iteration. The
algorithm then terminates when no such projects exist. Al-
though we use SmartRandom as our baseline, it really makes
much more educated guesses than a naive random algorithm
that forms random teams of experts.

Results for the Freelancer dataset: Figures 5(a) and 5(b)
show the performance of different algorithms on the Free-
lancer dataset, in terms of the dollar (Fd) and competition-
based (Fc) profit functions respectively. The y-axis shows

1202

(a) (Fd); Freelancer (b) (Fc); Freelancer (c) (Fd); Guru (d) (Fc); Guru

Figure 6: Project graphs: Compatibility graphs for Guru and Freelancer projects.

the profit achieved by each algorithm, and the x-axis holds
the budget that was used to hire experts.

Starting with the results for the dollar profit model, shown
in Figure 5(a), we observe that, given a budget of 500$, ev-
ery algorithm except SmartRandom achieves a profit around
32K$, while SmartRandom reaches a value of 29K$. The fact
that all algorithms perform well implies that the dataset con-
tains many profitable projects and many low-cost experts
who can accomplish these projects. We also observe that
SmartRandom performs similar to other algorithms under a
limited budget (i.e., 0 ≤ B ≤ 200), which is reasonable since
all algorithms are restricted to a limited set of projects that
can actually be covered given the budget.

Under the competition-based profit model the results are
different, as illustrated by Figure 5(b). What we observe
in this case is that both ProjectGreedy and CliqueGreedy

start to diverge and outperform other methods for budgets
above 200$. To understand why ExpertGreedy is not as ef-
ficient as before, one has to remember that many projects
with high dollar profit values will no longer be profitable
once the competition of the market is taken into considera-
tion in the evaluation of the profit. The effect of this func-
tion is that it changes the space of projects so that there
are less projects that are both profitable and cost-effective.
This gives ProjectGreedy and CliqueGreedy an advantage
over ExpertGreedy. This is because the former evaluate and
search for profitable projects (or groups of projects) as op-
posed to ExpertGreedy that searches for individual workers
who alone can only do projects with small profits.

Results for the Guru dataset: To check the consistency of
our results, we repeated the same experiment for both profit
functions for the Guru dataset. The results are shown in Fig-
ure 7. Similar to our observations for Freelancer dataset, we
observe that, while all algorithms perform well in the dollar-
based setting, ExpertGreedy falls short once the notion of
competition is introduced. In fact, the gap between Expert-

Greedy and the two algorithms based on project selection,
i.e., ProjectGreedy and CliqueGreedy, is even greater than
the one observed for Freelancer. A similar trend can be ob-
served for SmartRandom: the algorithm is again consistently
outperformed for both profit functions, with the difference
in profit being significantly greater for this dataset, espe-
cially under the competition-based profit scheme. As re-

0

250,000

500,000

750,000

1,000,000

1,250,000

0 250 500 750 1000
Budget (B)

F
d

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(a) Dollar profit (Fd)

0

25,000

50,000

75,000

100,000

125,000

0 250 500 750 1000
Budget (B)

F
c

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(b) Competition-based profit (Fc)

Figure 7: Performance of different algorithms for Cluster-
Hire problem (Guru dataset).

1203

vealed in the project analytics presented in Figures 1 and
2, the competitive-based profit function results in a much
higher variance in the profits of the available projects. This
has a negative effect on SmartRandom and ExpertGreedy,
which do not take into consideration the profitability of the
projects when they make their selections. This negative ef-
fect is even stronger for the Guru dataset, since the competi-
tive profit function dramatically increases the number of less
profitable projects. In fact, as can be seen by Figures 2(b)
and 2(c), the Fc function introduces very large number of
projects with a profit less than 100$, while no such projects
existed for the simple dollar Fd function.

The characteristics of the solutions: In order to gain a
deeper understanding of the results, we compute the average
profit of the projects covered by the teams reported by the
different algorithms for fixed budget B = 500$. The results
are summarized in Table 1. The main message of this table
is that the average profit of the projects that can be cov-
ered by the solutions of ProjectGreedy and CliqueGreedy

is higher than the corresponding average profit achieved by
ExpertGreedy only in the case where profit is computed by
the competition-based profit function. This observation is
true for both our datasets. As we have already explained,
the reason for that is that ProjectGreedy and CliqueGreedy

are able to identify profitable projects and pick them even
if these projects cannot be performed by a single worker.
On the other hand, even in the presence of competition, Ex-
pertGreedy cannot ignore projects that can be performed by
single workers, which are also projects that typically require
common skills.

Table 1: Average profit of covered projects for B = 500$

Freelancer Guru
Fd Fc Fd Fc

ExpertGreedy 569.0 40.3 1528.3 110.4

ProjectGreedy 594.9 47.7 1701.9 186.0

CliqueGreedy 594.0 47.5 1667.3 186.0

Performance of CliqueGreedy: Figures 5 and 7 show that
the CliqueGreedy algorithm performs only slightly better in
terms of profit, when compared to ProjectGreedy. There-
fore, a natural question to ask is whether there are any bene-
fits that this algorithm has to offer. Our answer to this ques-
tion is the following: although CliqueGreedy offers smalls
gains in terms of profit, there are datasets for which it offers
significant computational speedups. We provide evidence
for this statement in Table 2.

The table reports the number of candidates that need to
be evaluated by CliqueGreedy and ProjectGreedy for both
datasets. The number of candidates per iteration that an
algorithm has to evaluate is an important measure of its
running time. This is because for every candidate project
(or group of projects) the algorithm picks, it needs to solve
a set cover problem for this candidate.

The results in Table 2 show that CliqueGreedy consis-
tently evaluates less candidates during its computation, es-
pecially for the Freelancer dataset. This essentially means
that for this dataset about 1/3 of the candidates are elimi-
nated and thus 1/3 less set cover computations need to be
made by CliqueGreedy. Therefore, from the computational
point of view for the Freelancer CliqueGreedy is beneficial

Table 2: Number of candidate (groups) of projects.

Freelancer Guru
Fd Fc Fd Fc

ProjectGreedy 721 721 1764 1764

CliqueGreedy 520 570 1732 1660

since it offers a significant speedup while giving solutions
with (approximately) the same profit. On the other hand,
for the Guru dataset CliqueGreedy does not appear to of-
fer significant computational savings. All these results were
computed for α = 0.2 for Freelancer and α = 0.7 for Guru.

A visual analysis of the available projects in a dataset,
such as the one we presented in Figure 6, can be used prior to
running the algorithms, to evaluate if the underlying graph
structures justifies the use of CliqueGreedy. For example,
if multiple dense neighborhoods (which are likely to include
cliques) can be identified, then the algorithm can indeed lead
to significant computational savings. This is indeed the case
for the Freelancer dataset and thus the savings.

6.2 Evaluating algorithms for t-ClusterHire

In this section, we evaluate the performance of for our
methods for the t-ClusterHire problem. For this we use
the same experimental setup and evaluation methodology as
in the previous section. For t-ClusterHire, we need to set
the value of the threshold on the number of times that a user
is willing to utilize each one of his skills. We set this value
to t = 3 for all users and all skills. However, our experi-
ments suggest that despite the fact that the actual profits
change for different thresholds, the relative performance of
algorithms is independent of this threshold.

Figure 8 shows the profit achieved by the different algo-
rithms for both datasets and for both our profit models,
i.e., dollar profit and competition-based profit. Most of the
observations we made in the previous section are true here
as well. More specifically, Figures 8(a) and 8(c) show how
different algorithms perform under the dollar-based profit
model for Freelancer and Guru datasets respectively. Simi-
lar to our previous results for ClusterHire , we can see that
all algorithms perform significantly better than SmartRan-

dom. However, unlike our previous results, we can see that
the performance of ExpertGreedy is significantly lower than
the performance of both ProjectGreedy and CliqueGreedy

algorithms. This is due to the utilization constraint which
limits the number of cost-effective projects. That is, a set of
projects with many overlapping skills are profitable in the
ClusterHire problem since few cheap experts can cover
all of the at once, while in the ClusterHire the profit one
can get from this overlapping projects is bounded due to the
utility constraint. Therefore, ExpertGreedy, that essentially
prefers cheap experts looses its power because these experts
cannot be used over and over again for multiple projects.

Figures 8(b) and 8(d) show how different algorithms per-
form under the competition-based profit model. As dis-
cussed in the previous section, adjusting the profits based on
the competition in the market leads to significantly smaller
number of cost-effective jobs. This gives both Project-

Greedy and CliqueGreedy an advantage as they effectively
search for good projects. On the other hand, ExpertGreedy
does not perform well because due to its myopic nature se-
lects cheap experts that can only do “trivial” projects.

1204

0

100,000

200,000

300,000

0 250 500 750 1000
Budget (B)

F
d

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(a) Fd (Freelancer)

0

10,000

20,000

0 250 500 750 1000
Budget (B)

F
c

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(b) Fc (Freelancer)

0

250,000

500,000

750,000

1,000,000

0 250 500 750 1000
Budget (B)

F
d

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(c) Fd (Guru)

0

30,000

60,000

90,000

0 250 500 750 1000
Budget (B)

F
c

Algorithm
CliqueGreedy
ProjectGreedy
ExpertGreedy
SmartRandom

(d) Fc (Guru)

Figure 8: Performance of different algorithms for the t-ClusterHire problem (Guru and Freelancer datasets)

Overall, for the t-ClusterHire problem ProjectGreedy

and CliqueGreedy are consistently and significantly better
than ExpertGreedy. Despite the computational speedups
achieved by CliqueGreedy for this problem, the profit it ob-
tained in this case is slightly less than the profit achieved
by ProjectGreedy. The reason for the slight degradation of
the profit achieved by CliqueGreedy can be explained as fol-
lows: once projects are grouped into clusters, they need to be
picked together. However, given the utilization constraints,
the set of workers that can satisfy a group of projects may
end up being expensive and hence less profitable. In this
case, one has to find the balance between computational ef-
ficiency and profit that one wants to achieve.

7. CONCLUSIONS
In this paper, we proposed formalizations and algorithmic

solutions for the ClusterHire problem, where the goal is
to hire a profit-maximizing team of experts with the ability
to complete multiple projects, given a fixed budget. This
problem repeatedly emerges in organizational settings, and
it has become prevalent due to the establishment of the col-
laboration paradigm in online labor markets. We provided a
detailed analysis of the computational complexity and hard-
ness of approximation of the problem, and presented algo-
rithms that take into consideration the unique nature of ex-
pertise data. Our methodology was evaluated on data from
two of large players in the domain of online labor.

8. ACKNOWLEDGMENTS
This research was supported by: NSF CAREER #1253393,

NSF grants: CNS #1017529, III #1218437, IIS #1320542
and gifts from Microsoft and Hariri Institute of Computing.

9. REFERENCES
[1] A. An, M. Kargar, and M. ZiHayat. Finding affordable

and collaborative teams from a network of experts. In
SDM, pages 587–595, 2013.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo,
A. Gionis, and S. Leonardi. Power in unity: forming
teams in large-scale community systems. In CIKM,
pages 599–608, 2010.

[3] A. Anagnostopoulos, L. Becchetti, C. Castillo,
A. Gionis, and S. Leonardi. Online team formation in
social networks. In WWW, pages 839–848, 2012.

[4] C. Bron and J. Kerbosch. Algorithm 457: Finding all
cliques of an undirected graph. Commun. ACM,
16(9):575–577, 1973.

[5] S.-J. Chen and L. Lin. Modeling team member
characteristics for the formation of a multifunctional
team in concurrent engineering. IEEE Transactions on
Engineering Management, 2004.

[6] C. Dorn and S. Dustdar. Composing near-optimal
expert teams: A trade-off between skills and
connectivity. In OTM Conferences (1), pages 472–489,
2010.

[7] E. L. Fitzpatrick and R. G. Askin. Forming effective
worker teams with multi-functional skill requirements.
Ind. Eng., 2005.

[8] A. Gajewar and A. D. Sarma. Multi-skill collaborative
teams based on densest subgraphs. In SDM, pages
165–176, 2012.

[9] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. 1979.

[10] A. Gionis, T. Lappas, and E. Terzi. Estimating entity
importance via counting set covers. In KDD, pages
687–695, 2012.

[11] R. Greenwald. Freelancers find it pays to team up.
The Wall Street Journal, 2014.

[12] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), pages 11–15, 2008.

[13] M. Kargar and A. An. Discovering top-k teams of
experts with/without a leader in social networks. In
CIKM, pages 985–994, 2011.

[14] T. Lappas, K. Liu, and E. Terzi. Finding a team of
experts in social networks. In ACM SIGKDD, pages
467–476, 2009.

[15] C.-T. Li and M.-K. Shan. Team formation for
generalized tasks in expertise social networks. In
SocialCom/PASSAT, pages 9–16, 2010.

[16] S. Liemhetcharat and M. Veloso. Forming an effective
multi-robot team robust to failures. In IROS, 2013.

[17] S. Liemhetcharat and M. Veloso. Weighted synergy
graphs for effective team formation with heterogeneous
ad hoc agents. Artif. Intell., 208:41–65, 2014.

[18] A. Majumder, S. Datta, and K. V. M. Naidu.
Capacitated team formation problem on social
networks. In KDD, pages 1005–1013, 2012.

[19] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In ACM SIGKDD, pages 939–948, 2010.

1205

