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ABSTRACT
Topic modeling has been widely used to mine topics from
documents. However, a key weakness of topic modeling is
that it needs a large amount of data (e.g., thousands of doc-
uments) to provide reliable statistics to generate coherent
topics. However, in practice, many document collections
do not have so many documents. Given a small number
of documents, the classic topic model LDA generates very
poor topics. Even with a large volume of data, unsupervised
learning of topic models can still produce unsatisfactory re-
sults. In recently years, knowledge-based topic models have
been proposed, which ask human users to provide some prior
domain knowledge to guide the model to produce better top-
ics. Our research takes a radically different approach. We
propose to learn as humans do, i.e., retaining the results
learned in the past and using them to help future learning.
When faced with a new task, we first mine some reliable
(prior) knowledge from the past learning/modeling results
and then use it to guide the model inference to generate
more coherent topics. This approach is possible because of
the big data readily available on the Web. The proposed al-
gorithm mines two forms of knowledge: must-link (meaning
that two words should be in the same topic) and cannot-link
(meaning that two words should not be in the same topic).
It also deals with two problems of the automatically mined
knowledge, i.e., wrong knowledge and knowledge transitiv-
ity. Experimental results using review documents from 100
product domains show that the proposed approach makes
dramatic improvements over state-of-the-art baselines.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

Keywords
Topic Model; Lifelong Learning; Opinion Aspect Extraction.

1. INTRODUCTION
Topic models, such as LDA [4], pLSA [12] and their ex-

tensions, have been popularly used for topic extraction from
text documents. However, these models typically need a
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large amount of data, e.g., thousands of documents, to pro-
vide reliable statistics for generating coherent topics. This is
a major shortcoming because in practice few document col-
lections have so many documents. For example, in the task
of finding product features or aspects from online reviews
for opinion mining [13, 19], most products do not even have
more than 100 reviews (documents) in a review website. As
we will see in the experiment section, given 100 reviews, the
classic topic model LDA produces very poor results.

To deal with this problem, there are three main approaches:
1. Inventing better topic models: This approach may be ef-

fective if a large number of documents are available. How-
ever, since topic models perform unsupervised learning, if
the data is small, there is simply not enough information
to provide reliable statistics to generate coherent topics.
Some form of supervision or external information beyond
the given documents is necessary.

2. Asking users to provide prior domain knowledge: An ob-
vious form of external information is the prior knowledge
of the domain from the user. For example, the user can
input the knowledge in the form of must-link and cannot-
link. A must-link states that two terms (or words) should
belong to the same topic, e.g., price and cost. A cannot-
link indicates that two terms should not be in the same
topic, e.g., price and picture. Some existing knowledge-
based topic models (e.g., [1, 2, 9, 10, 14, 15, 26, 28]) can
exploit such prior domain knowledge to produce better
topics. However, asking the user to provide prior do-
main knowledge can be problematic in practice because
the user may not know what knowledge to provide and
wants the system to discover for him/her. It also makes
the approach non-automatic.

3. Learning like humans (lifelong learning): We still use the
knowledge-based approach but mine the prior knowledge
automatically from the results of past learning. This ap-
proach works like human learning. We humans always
retain the results learned in the past and use them to
help future learning. That is why whenever we see a new
situation, few things are really new because we have seen
many aspects of it in the past in some other contexts. In
machine learning, this paradigm is called lifelong learn-
ing [30, 31]. The proposed technique takes this approach.
It represents a major step forward as it closes the learning
or modeling loop in the sense that the whole process is
now fully automatic and can learn or model continuously.
However, our approach is very different from existing life-
long learning methods (see Section 2).

Existing research has focused on the first two approaches.
We believe it is high time to create algorithms and build
systems that learn as humans do. Lifelong learning is pos-
sible in our context due to two key observations:
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1. Although every domain is different, there is a fair amount
of topic overlapping across domains. For example, ev-
ery product review domain has the topic of price, most
electronic products share the topic of battery and some
also have the topic of screen. From the topics learned
from these domains, we can mine frequently shared terms
among the topics. For example, we may find price and
cost frequently appear together in some topics, which in-
dicates that they are likely to belong to the same topic
and thus form a must-link. Note that we have the fre-
quency requirement because we want reliable knowledge.

2. From the previously generated topics from many domains,
it is also possible to find that picture and price should not
be in the same topic (a cannot-link). This can be done by
finding a set of topics that have picture as a top topical
term, but the term price almost never appear at the top
of this set of topics, i.e., they are negatively correlated.

Such knowledge can clearly help modeling in a related new
domain. The observations also indicate that we need doc-
ument collections from a large number of domains, which
we call the big data, to mine enough relevant and reliable
must-links and cannot-links to help topic modeling in new
domains.

The proposed lifelong learning approach works as follows:
Phrase 1 (Initialization): Given n prior document collec-

tions D = {D1, . . . , Dn}, a topic model (e.g., LDA) is run
on each collection Di ∈ D to produce a set of topics Si. Let
S = ∪iSi, which we call the prior topics (or p-topics for
short). It then mines must-links M from S using a multiple
minimum supports frequent itemset mining algorithm [20].

Phase 2 (Lifelong learning): Given a new document collec-
tion Dt, a knowledge-based topic model (KBTM) with the
must-links M is run to generate a set of topics At. Based on
At, the algorithm finds a set of cannot-links C. The KBTM
then continues, which is now guided by both must-links M
and cannot-links C, to produce the final topic set At. We
will explain why we mine cannot-links based on At in Sec-
tion 4.2. To enable lifelong learning, At is incorporated into
S, which is used to generate a new set of must-links M .

About knowledge-based topic models, there are two exist-
ing ones, DF-LDA [1] and MC-LDA [10], that can use both
must-links and cannot-links to help generate better topics.
However, both of them assume that the user-provided must-
links and cannot-links are correct and there is no conflict
among them. However, these assumptions are violated in
our case because of the following issues:

(1) The automatically generated must-links and cannot-
links can have errors. Blindly trusting them as in DF-LDA
and MC-LDA generates poor results (see Section 6).

(2) A term may have multiple senses or meanings. This
can cause the transitivity problem. That is, if A and B form
a must-link, and B and C form a must-link, a topic model,
such as DF-LDA, will put all three terms in one topic, which
is clearly not always correct. For example, the term light can
have two distinct meanings and the system may find two
must-links, {light, weight} and {light, bright}. It is clearly
unreasonable to put these three terms together under the
same topic. MC-LDA has difficulty with this problem too
because it only chooses one must-link for each term in each
document and ignores the rest, which is undesirable because
it can miss a lot of good must-link knowledge.

In this paper, we propose a new topic model, called AMC
(topic modeling with Automatically generated Must-links

and Cannot-links), whose inference can exploit the automat-
ically mined knowledge and deal with the issues of wrong
knowledge and transitivity to produce superior topics. Our
experiments, using review collections from 100 domains, show
that the proposed AMC model outperforms state-of-the-art
baseline models significantly.

2. RELATED WORK
Knowledge-based topic models have been proposed to in-

corporate prior domain knowledge from the user to improve
model performance. Existing works such as [1, 9, 26] consid-
ered only the must-link type of knowledge (e.g., price and
cost) while [1, 10] also used the cannot-link type of knowl-
edge (e.g., price and picture). Most of the above models
also assume the input knowledge to be correct. [9] is the
first work to address the issue of wrong knowledge in topic
models by using the ratio of probabilities of two words under
each topic. However, [9] only assigns one piece of knowledge
(in the form of link or set) to each term, which ignores many
pieces of useful knowledge. As shown in Section 6, AMC out-
performs it significantly. Other types of knowledge, such as
document labels have also been used in [3, 29].

Our work is closely related to transfer learning and life-
long learning. Topic models have been used to help transfer
learning [27, 34]. However, transfer learning in these pa-
pers is for traditional supervised classification, which is very
different from our work of topic extraction. [17] transferred
labeled documents from the source domain to the target do-
main to produce topic models with better fitting. However,
we do not use any labeled data. [35] modeled the language
gap between topics using a user provided parameter indi-
cating the degree of technicality of the domain. In contrast,
our proposed AMC model is fully automatic with no human
intervention. Another key difference is that transfer learn-
ing typically uses the data from one source domain to help
the target domain classification, while we use the knowledge
obtained from a large number of past (source) domains to
help the new (target) domain learning or modeling. In terms
of lifelong learning [31, 30], LTM [7] is the first topic model
that performs lifelong learning or modeling. It also improves
the model in [8], which was not proposed as a lifelong learn-
ing model. However, LTM only considers must-links. AMC
considers both must-links and cannot-links. AMC also has
a more effective must-link mining method and deals with
the transitivity or multiple sense problem, which was not
tackled in [7]. As we will see in Section 6, AMC achieves
dramatic improvements.

Since our experiments are carried out using product re-
views, aspect extraction in opinion mining [19] is related. A
topic is basically an aspect. Topic models have been used
for the task by many researchers [5, 10, 16, 21, 23, 25, 26,
32, 33, 37]. However, none of these models mines must-links
or cannot-links automatically to help modeling.

3. OVERALL ALGORITHM
This section introduces the proposed overall algorithm,

which follows the lifelong learning idea described in the in-
troduction section. The algorithm consists of two phases:

Phase 1 - Initialization: Given a set of prior document
collections D = {D1, . . . , Dn} from n domains, this step first
runs the standard LDA on each domain collection Di ∈ D
to generate a set of topics Si. The resulting topics from all n
domains are unionized to produce the set of all topics S, i.e.,
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Algorithm 1 AMC(Dt, S, M)

1: At ← GibbsSampling(Dt, N , M , ∅); // ∅: no cannot-
links.

2: for r = 1 to R do
3: C ← C ∪ MineCannotLinks(S, At);
4: At ← GibbsSampling(Dt, N , M , C);
5: end for
6: S ← Incorporate(At, S);
7: M ← MiningMustLinks(S);

S = ∪iSi. We call S the prior topic (or p-topic) set. A set
of must-links are then mined from S, which will be detailed
in Section 4.1. Note that this initialization phase is only
applied at the beginning. It will not be used for modeling
of each new document collection.

Phase 2 - Lifelong learning with AMC: Given a
new/test document collection Dt, this phase employs the
proposed AMC model to generate topics from Dt. To dis-
tinguish these topics from p-topics, we call them the current
topics (or c-topics for short). AMC is given in Algorithm 1.
Line 1 runs the proposed Gibbs sampler (introduced in Sec-
tion 5.3) using only the must-links M generated from the
p-topic set (S) so far to produce a set of topics At, where
N is the number of Gibbs sampling iterations. Line 3 mines
cannot-links based on the current topics At and the p-topics
S (see Section 4.2). Then line 4 uses both must-links and
cannot-links to improve the resulting topics. Note that this
process can run iteratively. We call these iterations the
learning iterations, which are different from the Gibbs it-
erations. In each learning iteration, we hope to obtain bet-
ter topic results. We will experiment with the number of
learning iterations in Section 6. Currently, the function In-
corporate(At, S) (line 6 in Algorithm 1) is very simple. If
the domain of At exists in S, replace those topics of the do-
main in S with At; otherwise, At is added to S. With the
updated S, a new set of must-links is mined (line 7), which
will be used in the next new modeling task by calling AMC.

4. MINING KNOWLEDGE
In this section, we present the algorithms for mining must-

links and cannot-links, which form our prior knowledge to
be used to guide future modeling.

4.1 Mining Must-Link Knowledge
A must-link means that two terms w1 and w2 in it should

belong to the same topic. That is, there should be some
semantic correlation between them. We thus expect w1 and
w2 to appear together in a number of p-topics in several
domains due to the correlation. For example, for a must-link
price, cost , we should expect to see price and cost as topical
terms in the same topic across many domains. Note that
they may not appear together in every topic about price due
to the special context of the domain or past topic modeling
errors. Thus, it is natural to use a frequency-based approach
to mine frequent sets of terms (words) as reliable must-links.

Before going further, let us first discuss the representa-
tion of a topic to be used in mining. Recall that each topic
generated from a topic model, such as LDA, is a distribu-
tion over terms (or words), i.e., terms with their associated
probabilities. Terms are commonly ranked based on their
probabilities in a descending order. In practice, top terms
under a topic are expected to represent some similar seman-
tic meaning. The lower ranked terms usually have very low
probabilities due to the smoothing effect of the Dirichlet

hyper-parameters rather than true correlations within the
topic, leading to their unreliability. Thus, in this work, only
top 15 terms are employed to represent a topic. For mining
the must-link and cannot-link knowledge, we use this topic
representation.

Given a set of prior topics (p-topics) S, we find sets of
terms that appear together in multiple topics using the data
mining technique frequent itemset mining (FIM). Each item-
set is simply a set of terms. The resulting frequent itemsets
serve as must-links. However, this technique is insufficient
due to the problem with the single minimum support thresh-
old used in classic FIM algorithms.

A single minimum support is not appropriate because
generic topics, such as price with topic terms like price and
cost, are shared by many (even all) product review domains,
but specific topics such as screen, occur only in product do-
mains having such features. This means that different topics
may have very different frequencies in the data. Thus, us-
ing a single minimum support threshold is unable to extract
both generic and specific topics because if we set this thresh-
old too low, the generic topics will result in numerous spu-
rious frequent itemsets (which results in wrong must-links)
and if we set it too high we will not find any must-link from
less frequent topics. This is called the rare item problem in
data mining and has been well documented in [18].

Due to this problem, we cannot use a traditional frequent
item mining algorithm. We actually experimented with one
such algorithm, but it produced very poor must-links. We
thus use the multiple minimum supports frequent itemset
mining (MS-FIM) algorithm in [20]. MS-FIM is stated as
follows: Given a set of transactions T , where each transac-
tion ti ∈ T is a set of items from a global item set I, i.e.,
ti ⊆ I. In our context, ti is the topic vector comprising the
top terms of a topic (no probability attached). An item is
a term (or word). T is thus the collection of all p-topics
in S and I is the set of all terms in S. In MS-FIM, each
item/term is given a minimum itemset support (MIS). The
minimum support that an itemset (a set of items) must sat-
isfy is not fixed. It depends on the MIS values of all the
items in the itemset. MS-FIM also has another constraint,
called the support difference constraint (SDC), expressing
the requirement that the supports of the items in an itemset
must not be too different. MIS and SDC together can solve
the above rare item problem. For details about MS-FIM,
please refer to [20].

The goal of MS-FIM is to find all itemsets that satisfy
the user-specified MIS thresholds. Such itemsets are called
frequent itemsets. In our context, a frequent itemset is a set
of terms which have appeared multiple times in the p-topics.
The frequent itemsets of length two are used as our learned
must-link knowledge, e.g.,

{battery, life}, {battery, power}, {battery, charge},
{price, expensive}, {price, pricy}, {cheap, expensive}
Note that we use must-links with only two terms in each as

they are sufficient to cover the semantic relationship of terms
belonging to the same topic. Larger sets tend to contain
more errors, i.e., the terms in a set may not belong to the
same topic. Such errors are also harder to deal with than
those in pairs. The same rationale applies to cannot-links.

4.2 Mining Cannot-Link Knowledge
Following the same intuition as must-link knowledge min-

ing, we also utilize a frequency based approach to mine the
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cannot-link knowledge. However, there is a major difference.
It is prohibitive to find all cannot-links based on the prior
document collectionsD. For a term w, there are usually only
a few terms wm that share must-links with w while there are
a huge number of terms wc that can form cannot-links with
w. For example, only the terms related with price or money
share must-links with expensive, but the rest of the terms in
the vocabulary of D can form potential cannot-links. Thus,
in general, if there are V terms in the vocabulary, there are
O(V 2) potential cannot-links. However, for a new or test do-
main Dt, most of these cannot-links are not useful because
the vocabulary size of Dt is much smaller than V . Thus, we
focus only on those terms that are relevant to Dt.

Formally, given p-topics S from all domain collections D
and the current c-topics At from the test domain Dt, we
extract cannot-links from each pair of top terms w1 and w2

in each c-topic At
j ∈ At. Based on this formulation, to mine

cannot-links, we enumerate every pair of top terms w1 and
w2 and check whether they form a cannot-link or not. Thus,
our cannot-link mining is targeted to each c-topic with the
aim to improve the c-topic using the discovered cannot-links.

To determine whether two terms form a cannot-link, if the
terms seldom appear together in p-topics, they are likely to
have distinct semantic meanings. Let the number of prior
domains that w1 and w2 appear in different p-topics be
Ndiff and the number of prior domains that w1 and w2

share the same topic be Nshare. Ndiff should be much larger
than Nshare. We need to use two conditions or thresholds
to control the formation of a cannot-link:
1. The ratio Ndiff/(Nshare +Ndiff ) (called the support ra-

tio) is equal to or larger than a threshold πc. This condi-
tion is intuitive because p-topics may contain noise due
to errors of topic models.

2. Ndiff is greater than a support threshold πdiff . This
condition is needed because the above ratio can be 0,
but Ndiff can be very small, which may not give reliable
cannot-links.

Some extracted cannot-link examples are listed below:

{battery, money}, {life, movie}, {battery, line}
{price, digital}, {money, slow}, {expensive, simple}

5. AMC MODEL
We now present the proposed AMC model. As noted ear-

lier, due to errors in the results of topic models, some of
the automatically mined must-links and cannot-links may
be wrong. AMC is capable of handling such incorrect knowl-
edge. The idea is that the semantic relationships reflected by
correct must-links and cannot-links should also be reason-
ably induced by the statistical information underlying the
domain collection. If a piece of knowledge (a must-link or
a cannot-link) is inconsistent with a domain collection, this
piece of knowledge is likely to be either incorrect in general
or incorrect in this particular test domain. In either case,
the model should not trust or utilize such knowledge.

AMC still uses the graphical model of LDA and its gen-
erative process. Thus, we do not give the graphical model.
However, the inference mechanism of AMC is entirely dif-
ferent from that of LDA. The inference mechanism cannot
be reflected in the graphical model using the plate notation.

Below we first discuss how to handle issues with must-
links and cannot-links and then put everything together to
present the proposed Gibbs sampler extending the Pólya

urn model, which we call the multi-generalized Pólya urn
(M-GPU) model.

5.1 Dealing with Issues of Must-Links
There are two major challenges in incorporating the must-

link knowledge:
1. A term can have multiple meanings or senses. For exam-

ple, light may mean “something that makes things vis-
ible” or “of little weight.” Different senses may lead to
distinct must-links. For example, with the first sense of
light, the must-links can be {light, bright}, {light, lumi-
nance}. In contrast, {light, weight}, {light, heavy} indi-
cate the second sense of light. The existing knowledge-
based topic model DF-LDA [1] cannot distinguish multi-
ple senses because its definition of must-link is transitive.
That is, if terms w1 and w2 form a must-link, and terms
w2 and w3 form a must-link, it implies a must-link be-
tween w1 and w3, i.e., w1, w2, and w3 should be in the
same topic. We call it the transitivity problem. DF-LDA
would incorrectly assume that light, bright, and weight are
in the same topic. MC-LDA [10] assumes each must-link
represents a distinct sense, and thus assigns each term
only one relevant must-link and ignores the rest. This
misses a lot of good must-links. We propose a method in
Section 5.1.1 to distinguish multiple senses embedded in
must-links and deal with the transitivity problem.

2. Not every must-link is suitable for a domain. First, a
must-link may not be correct in general due to errors
in topic modeling and knowledge mining, e.g., {battery,
beautiful} is not a correct must-link generally. Second,
a must-link may be correct in some domains but wrong
in others. For example, {card, bill} is a correct must-
link in the domain of restaurant (the card here refers to
credit cards), but unsuitable in the domain of camera. We
will introduce a method to deal with such inappropriate
knowledge in Section 5.1.2.

To deal with the first issue, we construct a must-link graph
to distinguish multiple senses in must-links to deal with the
transitivity problem. To tackle the second problem, we uti-
lize Pointwise Mutual Information (PMI) to estimate the
word correlations of must-link terms in the domain collec-
tion. These techniques will be introduced in the next two
sub-sections and incorporated in the proposed Gibbs sam-
pler in Section 5.3.

5.1.1 Recognizing Multiple Senses
In order to handle the transitivity problem, we need to

distinguish multiple senses of terms in must-links. As our
must-links are automatically mined from a set of p-topics,
the p-topics may also give us some guidance on whether
the mined must-links share the same word sense or not.
Given two must-links m1 and m2, if they share the same
word sense, the p-topics that cover m1 should have some
overlapping with the p-topics that cover m2. For example,
must-links {light, bright} and {light, luminance} should be
mostly coming from the same set of p-topics related to the
semantic meaning “something that makes things visible” of
light. On the other hand, little topic overlapping indicates
likely different word senses. For example, must-links {light,
bright} and {light, weight}may come from two different sets
of p-topics as they usually refer to different topics.

Following this idea, we construct a must-link graph G
where a must-link is a vertex. An edge is formed between
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two vertices if the two must-links m1 and m2 have a shared
term. For each edge, we check how much their original p-
topics overlap to decide whether the two must-links share
the same sense or not. Given two must-links m1 and m2, we
denote the p-topics in S covering each of them as T1 and T2

respectively. m1 and m2 share the same sense if

#T1 ∩ T2
Max(#T1,#T2)

> πoverlap (1)

where πoverlap is the overlap threshold for distinguishing
senses. This threshold is necessary due to errors of topic
models. The edges that do not satisfy the above inequality
(Equation 1) are deleted.

The final must-link graph G gives us some guidance in
selecting the right must-links sharing the same word sense
in the Gibbs sampler in Section 5.3 for dealing with the
transitivity problem.

5.1.2 Detecting Possible Wrong Knowledge
To measure the correctness of a must-link in a particu-

lar domain, we apply Pointwise Mutual Information (PMI),
which is a popular measure of word associations in text.
In our case, it measures the extent to which two terms
tend to co-occur, which corresponds to “the higher-order co-
occurrence” on which topic models are based [11]. PMI of
two words (or terms) is defined as follows:

PMI(w1, w2) = log
P (w1, w2)

P (w1)P (w2)
(2)

where P (w) denotes the probability of seeing term w in
a random document, and P (w1, w2) denotes the probability
of seeing both terms co-occurring in a random document.
These probabilities are empirically estimated from the cur-
rent document collection Dt:

P (w) =
#Dt(w)

#Dt
(3)

P (w1, w2) =
#Dt(w1, w2)

#Dt
(4)

where #Dt(w) is the number of documents in Dt that
contain the term w and #Dt(w1, w2) is the number of docu-
ments that contain both terms w1 and w2. #Dt is the total
number of documents in Dt. A positive PMI value implies
a semantic correlation of terms, while a non-positive PMI
value indicates little or no semantic correlation. Thus, we
only consider the positive PMI values, which will be used in
the proposed Gibbs sampler in Section 5.3.

5.2 Dealing with Issues of Cannot-Links
The main issue here is incorrect cannot-links. Similar to

must-links, there are also two cases: a) A cannot-link con-
tains terms that have semantic correlations. For example,
{battery, charger} is not a correct cannot-link. b) A cannot-
link does not fit for a particular domain. For example, {card,
bill} is a correct cannot-link in the camera domain, but not
appropriate for restaurants.

Wrong cannot-links can also cause conflicts with must-
links. For example, the system may find two must-links
{price, cost} and {price, pricy} and a cannot-link {pricy,
cost}. Existing knowledge-based models, such as DF-LDA [1]
and MC-LDA [10], cannot solve these problems. A further
challenge for these systems is that the number of automati-
cally mined cannot-links is large (more than 400 cannot-links

on average). Both DF-LDA and MC-LDA are incapable of
using so many cannot-links. As we will see in Section 6,
DF-LDA crashed and MC-LDA generated a large number
of additional (wrong) topics with very poor results.

Wrong cannot-links are usually harder to detect and to
verify than wrong must-links. Due to the power-law dis-
tribution of natural language words [38], most words are
rare and will not co-occur with most other words. The low
co-occurrences of two words do not necessarily mean a nega-
tive correlation (cannot-link). Thus, we detect and balance
cannot-links inside the sampling process. More specifically,
we extend Pólya urn model to incorporate the cannot-link
knowledge, and also to deal with the issues above.

5.3 Proposed Gibbs Sampler
This section introduces the Gibbs sampler for the pro-

posed AMC model, which differs from LDA as AMC needs
the additional mechanism to leverage the prior knowledge
and to also deal with the problems with the prior knowledge
during sampling. We propose the multi-generalized Pólya
urn (M-GPU) model for the task. Below, we first introduce
the Pólya urn model which serves as the basic framework to
incorporate knowledge, and then enhance it to address the
challenges mentioned in the above sub-sections.

5.3.1 Pólya Urn Model
Traditionally, the Pólya urn model works on colored balls

and urns. In the topic model context, a term can be seen as a
ball of a certain color and a topic as an urn. The distribution
of a topic is reflected by the color proportions of balls in the
urn. LDA follows the simple Pólya urn (SPU) model in the
sense that when a ball of a particular color is drawn from an
urn, the ball is put back to the urn along with a new ball of
the same color. The content of the urn changes over time,
which gives a self-reinforcing property known as “the rich
get richer”. This process corresponds to assigning a topic to
a term in Gibbs sampling.

The generalized Pólya urn (GPU) model [22, 24] differs
from SPU in that, when a ball of a certain color is drawn, two
balls of that color are put back along with a certain number
of balls of some other colors. These additional balls of some
other colors added to the urn increase their proportions in
the urn. This is the key technique for incorporating must-
links as we will see below.

Instead of involving only one urn at a time as in the SPU
and GPU model, the proposed multi-generalized Pólya urn
(M-GPU) model considers a set of urns in the sampling pro-
cess simultaneously. M-GPU allows a ball to be transferred
from one urn to another, enabling multi-urn interactions.
Thus, during sampling, the populations of several urns will
evolve even if only one ball is drawn from one urn. This ca-
pability makes the M-GPU model more powerful and suit-
able for solving our complex problems.

5.3.2 Proposed M-GPU Model
In M-GPU, when a ball is randomly drawn, certain num-

bers of additional balls of each color are returned to the urn,
rather than just two balls of the same color as in SPU. This
is inherited from GPU. As a result, the proportions of these
colored balls are increased, making them more likely to be
drawn in this urn in the future. We call this the promo-
tion of these colored balls. Applying the idea to our case,
when a term w is assigned to a topic k, each term w′ that
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shares a must-link with w is also assigned to topic k by a
certain amount, which is decided by the matrix λw′,w (see
Equation 5). w′ is thus promoted by w. As a result, the
probability of w′ under topic k is also increased.

To deal with multiple senses problem in M-GPU, we ex-
ploit the fact that each term usually has only one correct
sense or meaning under one topic. Since the semantic con-
cept of a topic is usually represented by some top terms
under it, we refer the word sense that is the most related to
the concept as the correct sense. If a term w does not have
must-links, then we do not have the multiple sense problem
caused by must-links. If w has must-links, the rationale here
is to sample a must-link (say m) that contains w to be used
to represent the likely word sense from the must-link graph
G (built in Section 5.1.1). The sampling distribution will be
given in Section 5.3.3. Then, the must-links that share the
same word sense with m, including m, are used to promote
the related terms of w.

To deal with possible wrong must-links, we leverage the
PMI measure (in Section 5.1.2) to estimate knowledge cor-
rectness in the M-GPU model. More specifically, we add a
parameter factor µ to control how much the M-GPU model
should trust the word relationship indicated by PMI. For-
mally, the amount of promotion for term w′ when seen w is
defined as follows:

λw′,w =


1 w = w′

µ× PMI(w,w′) (w,w′) is a must-link

0 otherwise

(5)

To deal with cannot-links, M-GPU defines two sets of urns
which will be used in sampling in the AMC model. The first
set is the set of topic urns UK

d∈{1...Dt}, where each urn is for

one document and contains balls of K colors (topics) and
each ball inside has a color k ∈ {1 . . .K}. This corresponds
to the document-topic distribution in AMC. The second set
of urns is the set of term urns UW

k∈{1...K} corresponding to
the topic-term distributions, with balls of colors (terms) w ∈
{1 . . . V } in each term urn.

Based on the definition of cannot-link, two terms in a
cannot-link cannot both have large probabilities under the
same topic. As M-GPU allows multi-urn interactions, when
sampling a ball representing term w from a term urn UW

k ,
we want to transfer the balls representing the cannot-terms
of w, say wc (sharing cannot-links with w) to other urns
(see Step 5 below), i.e., decreasing the probabilities of those
cannot-terms under this topic while increasing their corre-
sponding probabilities under some other topic. In order to
correctly transfer a ball that represents term wc, it should
be transferred to an urn which has a higher proportion of
wc. That is, we randomly sample an urn that has a higher
proportion of wc to transfer wc to (Step 5b below). How-
ever, there is a situation when there is no other urn that
has a higher proportion of wc. [10] proposed to create a new
urn to move wc to under the assumption that the cannot-
link knowledge is correct. As discussed in Section 5.2, the
cannot-link knowledge may not be correct. For example,
consider that the model puts battery and life in the same
topic k where both battery and life have the highest proba-
bility (or proportion), a cannot-link {battery, life} wants to
separate them after seeing them in the same topic. In such
a case, we should not trust the cannot-link as it may split
the correlated terms into different topics.

Based on all the above ideas, we now present the M-GPU
sampling scheme as follows:
1. Sample a topic k from UK

d and a term w from UW
k se-

quentially, where d is the dth document in Dt.
2. Record k and w, put back two balls of color k into urn
UK

d , and two balls of color w into urn UW
k .

3. Sample a must-link m that contains w from the prior
knowledge base. Get a set of must-links {m′} where m′

is either m or a neighbor of m in the must-link graph G.
4. For each must-link {w,w′} in {m′}, we put back λw′,w

number of balls of color w′ into urn UW
k based on matrix

λw′,w (in Equation 5).
5. For each term wc that shares a cannot-link with w:

(a) Draw a ball qc of color wc (to be transferred) from
UW

k and remove it from UW
k . The document of ball

qc is denoted by dc. If no ball of color wc can be
drawn (i.e., there is no ball of color wc in UW

k ), skip
steps b) and c).

(b) Produce an urn set {UW
k′ } such that each urn in it

satisfies the following conditions:
i) k′ 6= k
ii) The proportion of balls of color wc in UW

k′ is higher
than that of balls of color wc in UW

k .
(c) If {UW

k′ } is not empty, randomly select one urn UW
k′

from it. Put the ball qc drawn from Step a) into UW
k′ .

Also, remove a ball of color k from urn UK
dc and put

back a ball of k′ into urn UK
dc . If {UW

k′ } is empty,

put the ball qc back to UW
k .

5.3.3 Sampling Distributions
Based on the above sampling scheme of M-GPU, this sub-

section gives the final Gibbs sampler with the conditional
distributions and algorithms for the AMC model. Inference
of topics can be computationally expensive due to the non-
exchangeability of words under the M-GPU models. We thus
take the same approach as that for GPU in [24] which ap-
proximates the true Gibbs sampling distribution by treating
each word as if it were the last.

For each term wi in each document d, there are two phases
corresponding to the M-GPU sampling process (Section 5.3.2):

Phase 1 (Steps 1-4 in M-GPU): calculate the conditional
probability of sampling a topic for term wi. We enumer-
ate each topic k and calculate its corresponding probability,
which is decided by three sub-steps:
a) Sample a must-link mi that contains wi, which is likely

to have the word sense consistent with topic k, which is
based on the following conditional distribution:

P (mi = m|k) ∝ P (w1|k)× P (w2|k) (6)

where w1 and w2 are the terms in must-link m and one
of them is the same as wi. P (w|k) is the probability
of term w under topic k given the current status of the
Markov chain in the Gibbs sampler, which is defined as:

P (w|k) ∝
∑V

w′=1 λw′,w × nk,w′ + β∑V
v=1(

∑V
w′=1 λw′,v × nk,w′ + β)

(7)

where λw′,w is the promotion matrix in Equation 5. nk,w

refers to the number of times that term w appears under
topic k. β is the predefined Dirichlet hyper-parameter.

b) After getting the sampled must-link mi, we create a set
of must-links {m′} where m′ is either mi or a neighbor
of mi in the must-link graph G. The must-links in this
set {m′} are likely to share the same word sense of term
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wi according to the corresponding edges in the must-link
graph G.

c) The conditional probability of assigning topic k to term
wi is defined as below:

p(zi = k|z−i,w, α, β, λ)

∝
n−i
d,k + α∑K

k′=1(n
−i
d,k′ + α)

×
∑
{w′,wi}∈{m′} λw′,wi

× n−i
k,w′ + β∑V

v=1(
∑
{w′,v}∈{m′

v}
λw′,v × n−i

k,w′ + β)

(8)

where n−i is the count excluding the current assignment
of zi, i.e., z−i. w refers to all the terms in all documents
in the document collection Dt and wi is the current term
to be sampled with a topic denoted by zi. nd,k denotes
the number of times that topic k is assigned to terms
in document d. nk,w refers to the number of times that
term w appears under topic k. α and β are predefined
Dirichlet hyper-parameters. K is the number of topics,
and V is the vocabulary size. {m′v} is the set of must-
links sampled for each term v following Phase 1 a) and
b), which is recorded during the iterations. λw′,w is the
promotion matrix in Equation 5.

Phase 2 (Step 5 in M-GPU): this sampling phase deals
with cannot-links. There are two sub-steps:
a) For every cannot-term (say wc) of wi, we sample one

instance (say qc) of wc from topic zi, where zi denotes
the topic assigned to term wi in Phase 1, based on the
following conditional distribution:

P (q = qc|z,w, α) ∝
ndc,k + α∑K

k′=1(ndc,k′ + α)
(9)

where dc denotes the document of the instance qc. If
there is no instance of wc in zi, skip step b).

b) For each drawn instance qc from Phase 2 a), resample a
topic k (not equal to zi) based on the conditional distri-
bution below:

P (zqc = k|z−qc ,w, α, β, λ, q = qc)

∝ I[0,p(wc|k)](P (wc|zc))

×
n−qc
d,k + α∑K

k′=1(n
−qc
d,k′ + α)

×

∑
{w′,wi}∈{m′

c}
λw′,wi

× n−qc
k,w′ + β∑V

v=1(
∑
{w′,v}∈{m′

v}
λw′,v × n

−qc
k,w′ + β)

(10)

where zc (the same as zi sampled from Equation 8) is
the original topic assignment. {m′c} is the set of must-
links sampled for term wc. Superscript −qc denotes the
counts excluding the original assignments. I() is an indi-
cator function, which restricts the ball to be transferred
only to an urn that contains a higher proportion of term
wc. If there is no topic k has a higher proportion of wc

than zc, then keep the original topic assignment, i.e.,
assign zc to wc.

6. EVALUATION
This section evaluates the proposed AMC model and com-

pares it with five state-of-the-art baseline models:
LDA [4]: The classic unsupervised topic model.

DF-LDA [1]: A knowledge-based topic model that can
use both must-links and cannot-links, but it assumes all the
knowledge is correct.

MC-LDA [10]: A knowledge-based topic model that also
use both the must-link and the cannot-link knowledge. It
assumes that all knowledge is correct as well.

GK-LDA [9]: A knowledge-based topic model that uses
the ratio of word probabilities under each topic to reduce
the effect of wrong knowledge. However, it can only use the
must-link type of knowledge.

LTM [7]: A lifelong learning topic model that learns only
the must-link type of knowledge automatically. It outper-
formed [8].

Note that although DF-LDA, MC-LDA and GK-LDA can
take prior knowledge from the user, they cannot mine any
prior knowledge, which make them not directly comparable
with the proposed AMC model. We have to feed them the
knowledge produced using the proposed knowledge mining
algorithm. This enables us to assess the knowledge handling
capability of each model. LTM uses its own way to mine and
incorporate must-links.

6.1 Experimental Settings
Datasets. We have created two large datasets for our ex-

periments. The first dataset contains reviews from 50 types
of electronic products or domains (given in the first row
of Table 1). The second dataset contains reviews from 50
mixed types of non-electronic products or domains (given in
the second row of Table 1). Each domain has 1000 reviews.
Using the first dataset, we want to show the performance of
AMC when there is a reasonably large topic overlapping. Us-
ing the second dataset, we want to show AMC’s performance
when there is not much topic overlapping. We followed [9] to
pre-process the dataset. The datasets are publicly available
at the authors’ websites.

Parameter Setting. All models were trained using 2000
iterations with an initial burn-in of 200 iterations. The pa-
rameters of all topic models are set to α = 1, α = 0.1,
K = 15 (#Topics). The other parameters for the baselines
were set as suggested in their original papers. For parame-
ters of AMC, we estimated its parameters using a develop-
ment set from the domain, Calculator, which was not used in
the evaluation. The minimum item support count (MIS) for
each term is set to Max(4, 35% of its actual support count
in the data) and the support difference is 8% [18]. The sup-
port ratio threshold (πc) and support threshold (πdiff ) for
cannot-link mining is 80% and 10 respectively. The overlap
ratio threshold πoverlap for forming a must-link graph edge
is 17%. The parameter µ in Equation 5 is set to 0.5, which
determines the extent of promotion of words in must-links
using the M-GPU model.

6.2 Topic Coherence
This sub-section evaluates the topics generated by each

model based on the Topic Coherence measure in [24]. Tra-
ditionally, topic models are evaluated using perplexity. How-
ever, as shown in [6], perplexity does not reflect the semantic
coherence of individual topics. It can sometimes be contrary
to human judgments. The Topic Coherence measure [24] was
proposed as a better alternative for assessing topic quality.
It was shown in [24] that Topic Coherence correlates well
with human expert labeling. A higher Topic Coherence in-
dicates a higher quality of topics.
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Alarm Clock, Amplifier, Battery, Blu-Ray Player, Cable Modem, Camcorder, Camera, Car Stereo, CD Player, Cell Phone, Computer,
DVD Player, Fan, GPS, Graphics Card, Hard Drive, Headphone, Home Theater System, Iron, Keyboard, Kindle, Lamp, Laptop, Media
Player, Memory Card, Microphone, Microwave, Monitor, Mouse, MP3Player, Network Adapter, Printer, Projector, Radar Detector, Remote
Control, Rice Cooker, Scanner, Speaker, Subwoofer, Tablet, Telephone, TV, Vacuum, Video Player, Video Recorder, Voice Recorder, Watch,
Webcam, Wireless Router, Xbox
Android Appstore, Appliances, Arts Crafts Sewing, Automotive, Baby, Bag, Beauty, Bike, Books, Cable, Care, Clothing, Conditioner,
Diaper, Dining, Dumbbell, Flashlight, Food, Gloves, Golf, Home Improvement, Industrial Scientific, Jewelry, Kindle Store, Kitchen, Knife,
Luggage, Magazine Subscriptions, Mat, Mattress, Movies TV, Music, Musical Instruments, Office Products, Patio Lawn Garden, Pet
Supplies, Pillow, Sandal, Scooter, Shoes, Software, Sports, Table Chair, Tent, Tire, Toys, Video Games, Vitamin Supplement, Wall Clock,
Water Filter

Table 1: List of 100 domain names: electronic products (1st row) and non-electronic products (2nd row).

AMC AMC-M LTM GK-LDA LDA DF-LDA MC-LDA
−910

−890

−870

−850

−830

To
pi

c
C

oh
er

en
ce

Figure 1: Average Topic Coherence of each model.

In this and the next two sub-sections, we experiment with
the 50 Electronics domains, which have a large amount of
topic overlapping. We treat each domain as a test set (Dt)
while the knowledge is mined from the rest 49 domains.
Since our main aim is to improve topic modeling with small
datasets, each test set consists of 100 reviews randomly sam-
pled from the 1000 reviews of the domain. We extract knowl-
edge from topics generated from the full data (1000 reviews)
of all other 49 domains. Since we have 50 domains, we have
50 small test sets. Figure 1 shows the average Topic Co-
herence value of each model over the 50 test sets. From
Figure 1, we can observe the following:
1. AMC performs the best with the highest Topic Coher-

ence value. In the Figure, “AMC” refers to the AMC
model with both must-links and cannot-links and “AMC-
M” refers to the AMC model with must-links only. We
can see that AMC-M is already better than all baseline
models, showing the effectiveness of must-links. AMC
is much better than AMC-M which demonstrates that
cannot-links are very helpful. These results show that
AMC finds higher quality topics than the baselines.

Note that in our experiments, we found DF-LDA and
MC-LDA cannot deal with a large number of cannot-
links. We have more than 400 automatically mined cannot-
links on average for each test set. For DF-LDA, the num-
ber of maximum cliques grows exponentially with the
number of cannot-links. The program thus crashed on
our data. This issue was also noted in [36]. For MC-
LDA, it increases the number of topics whenever there
is not a good topic to put a cannot-link term in. This
results in a large number of topics (more than 50), which
are unreasonable and give very poor results. Thus, for
both DF-LDA and MC-LDA, we can only show their re-
sults with must-links,

2. LTM is better than LDA while clearly worse than AMC.
The additional information from the cannot-links is shown
to help produce much more coherent topics. GK-LDA is
slightly better than LDA. The wrong knowledge handling
method in GK-LDA can cope with some wrong knowl-
edge, but not as effective as AMC.

3. We also notice that both DF-LDA and MC-LDA are
worse than LDA. This is because they assume the knowl-
edge to be correct and lack the necessary mechanism to
deal with wrong knowledge. Also, for MC-LDA, it as-

sumes each must-link (or must-set in [10]) represents a
distinct sense or meaning. Thus, it assigns only one must-
link to each word and ignores the rest. Then most must-
links are not used. This explains also why MC-LDA is
worse than DF-LDA.
Iterative improvement (lines 2-5 in Algorithm 1): We

found that accumulating cannot-links iteratively is beneficial
to AMC. The Topic Coherence value increases slightly from
r = 1 to 3 and stabilizes at r = 3 (Algorithm 1). Figure 1
shows the AMC’s result for r = 3.

Comparing with LTM using 1000 reviews: To fur-
ther compare with LTM, we also conducted experiments in
the same setting as [7], i.e., each test document collection
contains also 1,000 reviews (not 100 as in Figure 1). AMC
still improves LTM by 47 points in Topic Coherence, show-
ing that AMC can also produce more coherent topics with
a large number of test documents.

In summary, we can say that the proposed AMC model
generates more coherent topics than all baseline models.
Even though DF-LDA, GK-LDA and MC-LDA used our
method for knowledge mining, without an effective wrong
knowledge handling method, they gave poorer results. The
improvements of AMC over all baselines are significant (p <
0.0001) based on paired t-tests.

6.3 Human Evaluation
Here we want to evaluate the topics based on human judg-

ment. Two human judges who are familiar with Amazon
products and reviews were asked to label the generated top-
ics. Since we have a large number of domains (50), we se-
lected 10 domains for labeling. The selection was based
on the knowledge of the products of the two human judges.
Without enough knowledge, labeling will not be reliable. We
labeled the topics generated by AMC, LTM and LDA. LDA
is the basic knowledge-free topic model and LTM is our ear-
lier lifelong learning model that achieves the highest Topic
Coherence among the baselines in Figure 1. For labeling, we
followed the instructions in [24].

Topic Labeling. We first asked the judges to label each
topic as coherent or incoherent. The models that generated
the topics for labeling were obscure to the judges. In general,
a topic was labeled as coherent if its topical words/terms
are semantically coherent and together represent a semantic
concept; otherwise incoherent.

Word Labeling. The topics that were labeled as coher-
ent by both judges were used for word labeling. Each topical
word was labeled as correct if it was coherently related to
the concept represented by the topic (identified in the topic
labeling step); otherwise incorrect.

The Cohen’s Kappa agreement scores for topic labeling
and word labeling are 0.873 and 0.860 respectively.

Evaluation Measures. Since topics are rankings of words
based on their probabilities, without knowing the exact num-
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Figure 2: Top & Middle: Topical words Precision@5
& Precision@10 of coherent topics of each model re-
spectively; Bottom: number of coherent (#Coher-
ent) topics found by each model. The bars from left
to right in each group are for AMC, LTM, and LDA.

Price Size & Weight

AMC LTM LDA AMC LTM LDA
money shot image size small easy

buy money price small big small
price review movie smaller size canon
range price stabilization weight pocket pocket
cheap cheap picture compact lcd feature

expensive camcorder technical hand place shot
deal condition photo big screen lens
point con dslr pocket kid dslr

performance sony move heavy exposure compact
extra trip short case case reduction

Table 2: Example topics of AMC, LTM and LDA
from the Camera domain. Errors are italicized and
marked in red.

ber of correct topical words/terms, a natural way to evaluate
these rankings is to use Precision@n (or p@n) which was
also used by other researchers, e.g., [9, 37], where n is a
rank position. Apart from p@n, we also report the number
of coherent topics found by each model.

Results. Figure 2 gives the average Precision@5 (top
chart) and Precision@10 (middle chart) of topical words of
only coherent topics (incoherent topics are not considered)
for each model in each domain. It is clear that AMC achieves
the highest p@5 and p@10 values for all 10 domains. LTM
is also better than LDA in general but clearly inferior to
AMC. This is consistent with the Topic Coherence results
in Section 6.2. LDA’s results are very poor without a large
amount of data. On average, for p@5 and p@10, AMC im-
proves LTM by 8% and 14%, and LDA by 33% and 25%
respectively. Significance testing using paired t-tests shows
that the improvements of AMC are significant over LTM
(p < 0.0002) and LDA (p < 0.0001) on p@5 and p@10.

The bottom chart of Figure 2 shows that AMC also dis-
covers many more coherent topics than LTM and LDA. On
average, AMC discovers 2.4 more coherent topics than LTM
and 4.7 more coherent topics than LDA over the 10 domains.
These results are remarkable. In many domains, LDA only
finds 2-4 coherent topics and never more than 5 (out of 15),
which again shows that with a small number of documents
(reviews), LDA’s results are very poor.

6.4 Example Topics
This section shows some example topics produced by AMC,

LTM, and LDA in the Camera domain to give a flavor of the
kind of improvements made by AMC. Each topic is shown
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Test on 50 Non-Electronics Domains with 100 Reviews
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Test on 50 Non-Electronics Domains with 1000 Reviews

Figure 3: Average Topic Coherence of AMC com-
pared to LDA in different settings (see Section 6.5).
ALL means Electronics (E) + Non-Electronics (NE)
and LDA is equivalent to no knowledge.

with its top 10 terms. Errors are italicized and marked in
red. From Table 2, we can see that AMC discovers many
more correct and meaningful topical terms at the top than
the baselines. Note that for AMC’s topics that were not
discovered by the baseline models, we tried to find the best
possible matches from the topics of the baseline models. The
topic we show for LDA under “Price” is the only one that
contains a “Price” related word. Here, the term price is
mixed with other terms related to the topic “Picture Qual-
ity”. From the table, we can clearly see that AMC discovers
more coherent topics than LTM and LDA. In fact, the co-
herent topics of AMC are all better than their corresponding
topics of LTM and LDA.

6.5 Experiments Using Both Datasets
The above experiments focused on 50 Electronics domains,

which have a great deal of topic overlapping. Now we also
want to see how AMC performs when the test domain does
not have a lot of topic overlapping with the past/prior do-
mains. We use two test data settings: the test set is from (1)
an Electronics domain or (2) an non-Electronics domain. For
each test set setting, we mine knowledge from topics of (a)
50 Electronics domains (E), (b) 50 non-Electronics domains
(NE), and (c) all 100 domains (ALL). For each test set, we
use both 100 and 1000 reviews. Figure 3 shows the perfor-
mance of AMC in each of these settings compared to LDA
in terms of Topic Coherence. We can clearly see that AMC
performs the best with the knowledge mined from topics of
all 100 domains. 50 non-Electronics domains are helpful too
because they also share some topics such as price and size.
The improvement of AMC in each setting is significant over
LDA using paired t-test (p < 0.0001). This clearly shows
that AMC is able to leverage the useful knowledge from dif-
ferent domains even if the domains are not so related.

7. CONCLUSIONS
This paper proposed an advanced topic model AMC that

is able to perform lifelong learning. For such learning, it
mines prior knowledge from the results of past modeling
and uses the knowledge to help future modeling. Our sys-
tem mines two forms of prior knowledge, i.e., must-links
and cannot-links, automatically from topics generated from
a large number of prior document collections (the big data).
The system also identifies some issues with the automatically
mined knowledge. The proposed model AMC not only can
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exploit the learned knowledge but also can deal with the
issues of the mined knowledge to generate more accurate
topics. Experimental results using review collections from
100 domains showed that the proposed AMC model outper-
forms existing state-of-the-art models significantly. In our
future work, we plan to study other aspects of lifelong learn-
ing in the topic modeling context, e.g., how to maintain the
prior topics and how to incrementally update the must-links
knowledge when new topics are added to the prior topic set.

8. ACKNOWLEDGMENTS
This work was supported in part by a grant from National

Science Foundation (NSF) under grant no. IIS-1111092.

References
[1] D. Andrzejewski, X. Zhu, and M. Craven. Incorporat-

ing domain knowledge into topic modeling via Dirichlet
Forest priors. In ICML, pages 25–32, 2009.

[2] D. Andrzejewski, X. Zhu, M. Craven, and B. Recht. A
framework for incorporating general domain knowledge
into latent Dirichlet allocation using first-order logic. In
IJCAI, pages 1171–1177, 2011.

[3] D. M. Blei and J. D. McAuliffe. Supervised Topic Mod-
els. In NIPS, pages 121–128, 2007.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirich-
let Allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[5] S. R. K. Branavan, H. Chen, J. Eisenstein, and
R. Barzilay. Learning Document-Level Semantic Prop-
erties from Free-Text Annotations. In ACL, pages 263–
271, 2008.

[6] J. Chang, J. Boyd-Graber, W. Chong, S. Gerrish, and
D. M. Blei. Reading Tea Leaves: How Humans Inter-
pret Topic Models. In NIPS, pages 288–296, 2009.

[7] Z. Chen and B. Liu. Topic Modeling using Topics from
Many Domains, Lifelong Learning and Big Data. In
ICML, 2014.

[8] Z. Chen, A. Mukherjee, and B. Liu. Aspect Extraction
with Automated Prior Knowledge Learning. In ACL,
pages 347–358, 2014.

[9] Z. Chen, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos,
and R. Ghosh. Discovering Coherent Topics Using Gen-
eral Knowledge. In CIKM, pages 209–218, 2013.

[10] Z. Chen, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos,
and R. Ghosh. Exploiting Domain Knowledge in Aspect
Extraction. In EMNLP, pages 1655–1667, 2013.

[11] G. Heinrich. A Generic Approach to Topic Models. In
ECML PKDD, pages 517 – 532, 2009.

[12] T. Hofmann. Probabilistic Latent Semantic Analysis.
In UAI, pages 289–296, 1999.

[13] M. Hu and B. Liu. Mining and Summarizing Customer
Reviews. In KDD, pages 168–177, 2004.

[14] Y. Hu, J. Boyd-Graber, and B. Satinoff. Interactive
Topic Modeling. In ACL, pages 248–257, 2011.

[15] J. Jagarlamudi, H. D. III, and R. Udupa. Incorporating
Lexical Priors into Topic Models. In EACL, pages 204–
213, 2012.

[16] Y. Jo and A. H. Oh. Aspect and sentiment unification
model for online review analysis. In WSDM, pages 815–
824, Feb. 2011.

[17] J.-h. Kang, J. Ma, and Y. Liu. Transfer Topic Model-
ing with Ease and Scalability. In SDM, pages 564–575,
2012.

[18] B. Liu. Web data mining. Springer, 2007.
[19] B. Liu. Sentiment Analysis and Opinion Mining. Mor-

gan & Claypool Publishers, 2012.
[20] B. Liu, W. Hsu, and Y. Ma. Mining association rules

with multiple minimum supports. In KDD, pages 337–
341. ACM, 1999.

[21] Y. Lu and C. Zhai. Opinion integration through semi-
supervised topic modeling. In WWW, pages 121–130,
2008.

[22] H. Mahmoud. Polya Urn Models. Chapman &
Hall/CRC Texts in Statistical Science, 2008.

[23] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic
sentiment mixture: modeling facets and opinions in we-
blogs. In WWW, pages 171–180, 2007.

[24] D. Mimno, H. M. Wallach, E. Talley, M. Leenders, and
A. McCallum. Optimizing semantic coherence in topic
models. In EMNLP, pages 262–272, 2011.

[25] S. Moghaddam and M. Ester. The FLDA Model for
Aspect-based Opinion Mining: Addressing the Cold
Start Problem. In WWW, pages 909–918, 2013.

[26] A. Mukherjee and B. Liu. Aspect Extraction through
Semi-Supervised Modeling. In ACL, pages 339–348,
2012.

[27] S. J. Pan and Q. Yang. A Survey on Transfer Learn-
ing. IEEE Trans. Knowl. Data Eng., 22(10):1345–1359,
2010.

[28] J. Petterson, A. Smola, T. Caetano, W. Buntine, and
S. Narayanamurthy. Word Features for Latent Dirichlet
Allocation. In NIPS, pages 1921–1929, 2010.

[29] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning.
Labeled LDA: a supervised topic model for credit at-
tribution in multi-labeled corpora. In EMNLP, pages
248–256, 2009.

[30] D. L. Silver, Q. Yang, and L. Li. Lifelong Machine
Learning Systems: Beyond Learning Algorithms. In
AAAI Spring Symposium: Lifelong Machine Learning,
2013.

[31] S. Thrun. Lifelong Learning Algorithms. In S. Thrun
and L. Pratt, editors, Learning To Learn. Kluwer Aca-
demic Publishers, 1998.

[32] I. Titov and R. McDonald. Modeling online reviews
with multi-grain topic models. In WWW, pages 111–
120, 2008.

[33] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating anal-
ysis on review text data: a rating regression approach.
In KDD, pages 783–792, 2010.

[34] G. Xue, W. Dai, Q. Yang, and Y. Yu. Topic-bridged
PLSA for cross-domain text classification. In SIGIR,
pages 627–634, 2008.

[35] S. H. Yang, S. P. Crain, and H. Zha. Bridging the
Language Gap: Topic Adaptation for Documents with
Different Technicality. In AISTATS, volume 15, pages
823–831, 2011.

[36] Z. Zhai, B. Liu, H. Xu, and P. Jia. Constrained LDA
for grouping product features in opinion mining. In
PAKDD, pages 448–459, May 2011.

[37] W. X. Zhao, J. Jiang, H. Yan, and X. Li. Jointly Model-
ing Aspects and Opinions with a MaxEnt-LDA Hybrid.
In EMNLP, pages 56–65, 2010.

[38] G. K. Zipf. Selective Studies and the Principle of Rela-
tive Frequency in Language. Harvard University Press,
1932.

1125


	Introduction
	Related Work
	Overall Algorithm
	Mining Knowledge
	Mining Must-Link Knowledge
	Mining Cannot-Link Knowledge

	AMC Model
	Dealing with Issues of Must-Links
	Recognizing Multiple Senses
	Detecting Possible Wrong Knowledge

	Dealing with Issues of Cannot-Links
	Proposed Gibbs Sampler
	Pólya Urn Model
	Proposed M-GPU Model
	Sampling Distributions


	Evaluation
	Experimental Settings
	Topic Coherence
	Human Evaluation
	Example Topics
	Experiments Using Both Datasets

	Conclusions
	Acknowledgments



