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ABSTRACT
In this paper, we study ‘networked bandits’, a new bandit
problem where a set of interrelated arms varies over time
and, given the contextual information that selects one arm,
invokes other correlated arms. This problem remains under-
investigated, in spite of its applicability to many practical
problems. For instance, in social networks, an arm can ob-
tain payoffs from both the selected user and its relations
since they often share the content through the network. We
examine whether it is possible to obtain multiple payoffs
from several correlated arms based on the relationships. In
particular, we formalize the networked bandit problem and
propose an algorithm that considers not only the selected
arm, but also the relationships between arms. Our algorithm
is ‘optimism in face of uncertainty’ style, in that it decides
an arm depending on integrated confidence sets constructed
from historical data. We analyze the performance in sim-
ulation experiments and on two real-world offline datasets.
The experimental results demonstrate our algorithm’s effec-
tiveness in the networked bandit setting.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Social and Information Net-
works; 1.2.6 [Computing Methodologies]: [Learning]

General Terms
Algorithm, Theory

Keywords
Networked bandits; social network; exploration/exploitation
dilemma

1. INTRODUCTION
A multi-armed bandit problem (or bandit problem) is a

sequential decision problem defined by a set of actions (or
arms). The term ‘bandit’ originates from the colloquial term

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623672.

for a casino slot machine (‘a one-armed bandit’), in which a
player (or a forecaster) faces a finite number of slot machines
(or arms). The player sequentially allocates coins (one at
a time) to different machines and earns money (or payoff )
depending on the machine selected. The goal is to earn as
high a payoff as possible.

Robbins formalized this problem in 1952 [20]; in the multi-
armed bandit problem, K arms exist that are associated
with unknown payoff distributions, and a forecaster can se-
lect an arm sequentially. In each round of play, a forecaster
selects one arm and then receives the payoff from the se-
lected arm. The forecaster’s aim is to maximize the total
cumulative payoff, i.e., the sum of the payoffs of the chosen
arms in total. Since the forecaster does not know the process
generating the payoffs but has historical payoffinformation,
the bandit problem highlights the fundamental difficultly of
decision making in the face of uncertainty: balancing the de-
cision of whether to exploit past choices or make new choices
with the hope of discovering a better one.

The bandit problem has been studied for many years, with
works primarily focusing on the theory and designing dif-
ferent algorithms based on different settings, such as the
stochastic setting, adversarial setting, and contextual set-
ting [9]. In real-world applications, the multi-armed bandit
problem is an effective way of solving situations where one
encounters an exploration-exploitation dilemma. It has his-
torically been used to decide which clinical trial is better
when multiple treatments are available for a given disease
and there is a need to decide which treatment to use on the
next patient.

Modern technologies have created many opportunities for
use of the bandit problem, and it has a wide range of applica-
tions including advertising, recommendation systems, online
systems, and games. For example, an advertising task may
be the choice of which advertisement to display to the next
visitor to a web page, where the payoff is associated with
the visitor’s actions. More recently, the bandit algorithm
has been used in personalized recommendation tasks [17],
where a user visits a website and the system collects the
user’s information. The system selectively provides content
from a content pool through the user’s current and past be-
haviors analyzing to best satisfy the user’s needs, and the
payoff is based on user-click feedback.

All the above bandit problems have the major underly-
ing assumption that all the arms are independent, which
is inappropriate for web-based social network applications.
In a network, including social networks, the users are con-
nected by relationships [2, 22]. Contextual information can
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Figure 1: An overview of networked bandits at different rounds. The network is changing over time. An arm (user) can invoke
other arms (relations) and have different relations at different rounds. Given the contextual information an arm is chosen by
the decision algorithm for getting multiple payoffs (feedback). The algorithm improves the selection strategy after collecting
new payoffinformation.

be obtained from other users and can be spread via these
relationships. Content promoted to one user provides feed-
back, not only from that user, but also from his/her rela-
tions. For example, a user of Twitter or Facebook can read a
tweet/message and can re-post someone else’s tweet/message,
allowing the user to quickly share it with his/her follow-
ers. Impact can be assessed by counting the number of ‘fa-
vorites/likes’ from different users’ pages. Therefore, careful
selection of a user for tweet/message posting can maximize
the number of ‘favorites/likes’.

Our study is motivated by the observation that even when
a user is randomly selected for promotion, other users close
to the selected user in the network will be influenced [18,
22]. Specifically, as shown in Figure 1, in a social network,
if we promote a content to a user, the user may share it with
others and the payoffs can be collected from the user and its
relations. The goal is to gain higher payoffs. The process is
similar to share-then-like, which occurs daily in social net-
works and needs to be considered for optimized recommen-
dation and advertising tasks, the important point being that
the context is extended from the selected user to all other
invoked users. There are several challenges to realizing this
problem. First, only partial information is available about
the chosen users when content is posted, and the information
of other users is unknown. Therefore, there is a dilemma of
whether the system should select a user with the best payoff
history or a new user in order to explore more possibilities.
Second, the content may frequently change and few overlap-
ping historical records may exist. Furthermore, relationships
exist between users and these relationships may change over
time. These challenges inspire us to formalize the networked
bandit problem.

The above problem can be considered a balance of the
trade-off between exploration (discovering a new user) and
exploitation (using the current best user) when network topol-
ogy is known.

We formalize a well-defined but simple setting for the net-
worked bandit problem, in which there exist K arms con-
nected by network topology G. We propose an approach
in which a learning algorithm optimally selects an arm at
each round based on contextual information and the net-
work topology information of arms. The networked bandit
problem can be considered an extension of the contextual
multi-armed bandit problem, the difference being that in

our problem the arm can be connected to other arms and
the payoffs come from the multiple arms.

Our contribution is three-fold: first, we formalize a new
networked bandit problem motivated by real network ap-
plications; second, we provide an algorithm based on con-
fidence sets to solve it along with theoretical analysis; and
third, we design a set of experiments to test and evaluate the
algorithm. To the best of our knowledge, we define and solve
this problem for the first time and answer the fundamental
question of how to define regret when payoffs come from in-
terrelated multiple arms. We design an effective strategy to
select arms in order to increase payoffs over time, known as
NetBandits, which provides a solution to this problem. Our
approach is an ‘optimism in the face of uncertainty’-style
algorithm that considers the integrated confidence sets and
we prove a regret bound for it. Finally, we analyze empir-
ically the performance, which shows that our algorithm is
effective in the networked bandit setting.

2. RELATED WORK
The traditional multi-armed bandit problem does not as-

sume that side information is observed. The forecaster’s
goal is to maximize the sum of payoffs over time based on
the historical payoff information. There are two basic set-
tings. In the first, the stochastic setting, the payoffs are
i.i.d. drawn from an unknown distribution. The upper con-
fidence bound (UCB) strategy has been used to explore the
exploration-exploitation trade-off [4, 6, 16], in which an up-
per bound estimate is constructed on the mean of each arm
at a fixed confidence level, and then the arm with the best
estimate is selected. In the second, the adversarial setting,
the i.i.d. assumption does not exist. Auer et al. [7] proposed
the EXP3 algorithm for the adversarial setting, which was
later improved by Bubeck and Audibert [3].

The contextual multi-armed bandit problem is a natural
extension of the original bandit problem. Our setting ad-
dresses bandit problem with contextual information. Com-
pared to the traditional K-armed bandit problem, the fore-
caster may use action features to infer the payoff in the con-
textual setting. This problem largely considers the linear
model assumption about payoff of action [1, 5, 12, 14, 21].
Auer [5] proposed the LinRel algorithm, a UCB-style algo-
rithm that has a regret of Õ(

√
Td). Dani et al. [14] stud-
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ied the LinRel and provided an Õ(d
√
T ) regret bound and

proved this upper bound is tight. Chu et al. [12] provided
the LinUCB and SupLinUCB algorithms, and proved an
O(
√

Td log3 (KT log(T )/δ)) regret bound for SupLinUCB
that holds with probability 1− δ. Abbasi-Yadkori et al. [1]
proposed an algorithm that modified the UCB-style algo-
rithm based on the confidence sets, and showed a regret of
O(d log(1/δ)/∆).
Recently, the bandit problem has been used in real-life

problems, such as recommendation systems and advertising.
Li et al. [17] first introduced the bandit problem to recom-
mendation systems by considering a personalized recommen-
dation as a feature-based exploration-exploitation problem.
This problem was formalized as a contextual bandit problem
with disjoint linear payoffs and by focusing on the article-
selection strategy based on user-click feedback, maximizing
the total number of clicks. The features of the users and
articles were defined as contextual information, and the ex-
pected payoff of an arm was assumed to be a linear function
of its contextual features, including the user and article in-
formation. Finally, the LinUCB algorithm was proposed
to solve this problem and attained a good empirical regret.
They further extended the algorithm as SupLinUCB and
provided the theoretical analysis [12].

There are limited studies that consider the networked ban-
dit problem or that combine bandit problem and network.
Buccapatnam et al. [10] considered the bandit problem in
social networks, and assumed that the forecaster can take
advantage of side observations of neighbors, except for the
selected user (arm). The side observations were used to up-
date the sample mean of other related users and the payoff
of the selected arm was collected each time, the goal once
again being to maximize the total cumulative payoff of se-
lected arms. Bnaya et al. [8] considered a bandit view for
network exploration and proposed VUCB1 to handle the
dynamic changes in arms when crawling the network. More
recently, Cesa-Bianchi et al. [11] considered the recommen-
dation problem by taking advantage of the relationships be-
tween users in the network. They proposed GOB.Lin, which
models the similarity between users and used this similarity
to help predict the behavior of other users.

Our work belongs to the contextual bandit setting. How-
ever, in contrast to these previous studies we assume that
the arms (actions) are correlated in the network. The se-
lected arm can invoke other related arms and the forecaster
obtains multiple payoffs from these arms. It is a more gen-
eral setting in networked bandit problem.

3. NETWORKED BANDITS
We consider a network G. Let V indicate the nodes in

the network and E indicate the edges of the network. We
can then use G = (V, E) to represent the networked bandits
where v ∈ V can be considered as an arm and e ∈ E indicates
the relationship between arms; nodes here are correlated.
Thus, given the network G and a node v, it is possible to
obtain the information for the node v and its relations N(v).
In our formulation, we consider a sequential decision prob-

lem with contextual information. At round t, except for con-
textual information xt, we have a network topology of arms
denoted by Gt. Given v we let Nt(v) be its relations and
Nt(v) may change over time. If v is selected then Nt(v) will
also be invoked. We define this setting as networked ban-
dits. Formally, a networked bandit algorithm A proceeds as

follows: at each round t, the algorithm observes a set of arms
Kt = {1, 2, · · · , k}t, contextual information xt, and the net-
work topology Gt of arms associated with the relationships
of arms. The set of relations of arm a is denoted by Nt(a).
If we also consider the information of arms, we can redefine
the context as a set Ct = {x1,t, · · · , xk,t} by adding arms’ in-
formation. When the algorithm selects an arm at, the at will
invoke other related arms Nt(at). Nt(at) can be observed
based on the network topology of arms. Before the decision
algorithm selects the arm, it observes Gt, Ct, and Kt. Based
on historical payoff records, the algorithm selects an arm at

and receives a set of payoffs {yat} ∪ {ya|a ∈ Nt(at)}. The
algorithm will improve the selection strategy after collect-
ing new payoff information. It then proceeds to the next
round t + 1. Note that traditional contextual bandit prob-
lems usually assume that the arms are independent. How-
ever, in our problem, we assume that the correlation exists
between the chosen arm and its relations. After a total T
rounds the cumulative payoff is defined as

∑T
t=1 gat,t, where

gat,t =
∑

a∈Nt(at)
ya + yat and ya is the payoff from arm

a. For simplicity, we use Nt(a) to indicate both a and its
relations. We rewrite gat,t as gat,t =

∑
a∈Nt(at)

ya.
For this networked bandit problem, the algorithm A se-

lects an arm at at each round t = 1, 2, · · · and receives the
associate payoff gat,t. After n selections a1, a2, · · · , an we
define the regret as follows:

Rn = max
a=1,··· ,k

n∑

t=1

ga,t −
n∑

t=1

gat,t. (1)

The regret can now be used to compare the best decision
with the algorithm A. In this problem, Rn is a random
variable; therefore, the goal is to calculate the expectation
of Rn with high probability, and it is not easy to obtain
expectation directly since its search space is large. Normally
we try to bound the pseudo-regret, i.e.,

Rn = max
a=1,··· ,k

E
n∑

t=1

ga,t − E
n∑

t=1

gat,t, (2)

where the pseudo-regret competes against the optimal action
in the expectation.

There are two important issues in the networked bandit
problem: arms and their network topology. In the context
of a social network, the users in the pool may be viewed
as arms, the provided message or article as context, and
the user’s information as additional contextual information.
The new context vector then summarizes information of
both user and context. A payoff of 1 is incurred when
a provided message is ‘favorited’ or ‘liked’; otherwise, the
payoff is 0. The network topology of a social network nat-
urally constructs the relationships between users. When a
message is posted to a user, the message can be seen by
relations (followers). The payoff can be collected from the
user’s page (selected arm). Furthermore, any ‘like’, ‘share’,
or ‘comment’ action by a follower will allow the message to
be reposted on the follower’s page and to be seen by the
follower’s friends. The payoff can then be collected from the
followers’ pages (invoked arms). In the special case that the
follower does not repost the message, the payoff can be con-
sidered as 0 or the arm is not invoked. For simplicity, we
only consider the selected arm and its relations. With these
definitions of payoff, arm, and invoked arms, the collected
payoff after selecting an arm involves the selected user and
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his/her relations. Thus, the payoff at round t is defined as
gat,t =

∑
a∈Nt(at)

ya.
It is assumed that algorithm A can observe the network

topology prior to make a decision. This is intuitive, since
network structure information between users can easily be
collected or the network structure information can be ob-
tained in advance. In practice, given an arm, we only need
concern itself with the invoked arms, and therefore knowl-
edge of full network topology is unnecessary. The invoked
arms depend on how we define Nt(a). The worst case sce-
nario is that the whole network needs to be searched to find
the invoked arms and feedback; however, we do not concern
how to constrict Nt(a) using such a network propagation
model since, as stated above, we only focus on the selection
strategy and we simplify the problem by only observing the
invoked arms.

4. ALGORITHM
In this work, we propose an algorithm to solve the net-

worked bandit problem and show that an integrated confi-
dence bound can efficiently be computed in a closed form
when the payoff model of an arm is linear. As with previous
contextual bandit work [17], we assume that the expected
payoff of an arm a is linear in context xt and coefficient wa.
At round t, for arm a given context xa,t, we assume that the
expected payoff of the arm a is a linear function:

E [ya,t|xa,t] = x⊤
a,twa + ϵa, (3)

where different arms have different wa and ϵa is conditionally
R-sub-Gaussian when R ≤ 0 is a fixed constant. Formally,
this means that ∀λ and we have

E
[
eλϵa,t |xa,1:t, ϵa,1:t−1

]
≤ exp

(
λ2R2

2

)
, (4)

where xa,1:t denotes the sequence xa,1, xa,2, · · · , xa,t and,
similarly ϵa,1:t−1 denotes the sequence ϵa,1, · · · , ϵa,t−1. The
arms therefore have disjoint linear payoffs. The decision of
the algorithm lies on w with distribution ϵ. Based on our R-
sub-Gaussian assumption of the noise, we can obtain mean-
ingful upper bound on the regret. According to this sub-
Gaussian condition, we know that E [ϵa,t|xa,1:t, ϵa,1:t−1] = 0
and VAR[ϵa,t|xa,1:t, ϵa,1:t−1] ≤ R2. The conditions therefore
show that ϵa,t is bounded by a zero-mean noise lying in an
interval of length of at most 2R.

As the networked bandit problem, the algorithm faces a
set of uncertainties of arms which involve Nt(a). We design
a new algorithm which is the ‘optimism in the face of uncer-
tainty’ principle, by maintaining confidence of parameter w
for each arm. The basic idea is to construct the confidence
sets for parameters of each disjoint payoff function and then
provide an integrated upper bound.

We use technology from the ‘self-normalized bound for
vector-valued martingales’ [19] and confidence sets [1]. For
each arm ŵa is defined as the L2-regularized least-squares
estimate of w∗

a with regularization parameter λ > 0:

ŵa = (X⊤
a Xa + λ)−1X⊤

a Ya, (5)

where Xa is the matrix whose rows are x1, · · · , xna(t) corre-

sponding to historical contexts of an arm a and Ya ∈ Rna(t)

is the corresponding historical payoff vector. For a positive
definite self-adjoint operator V , we define ∥x∥V =

√
⟨x, V x⟩

as the weighted norm of vector x. It can be proved that ŵ

lies with high probability in an ellipsoid centered at w∗ as
follows:

Theorem 1. [1, 19] According to the ‘self-normalized bound
for vector-valued martingales’, let V = λI,λ> 0, and V t =
V +

∑t−1
n=1 xn ⊗ xn be the regularized design matrix underly-

ing the covariates. Define yt = x⊤
t w

∗ + ϵt and assume that
∥w∗∥2 ≤ S. Then, for any 0 < δ < 1, with probability at
least 1−δ, for all t ≥ 1 we can bound w∗ in such a confidence
set:

Ct =

{
w∗ ∈ Rd :

∥ŵt − w∗∥V t
≤ R

√

2 log

(
|V t|1/2|λI|−1/2

δ

)
+ λ1/2S

}
.

(6)

In addition, if ∥xt∥ ≤ L then with probability at least 1− δ,
for all t ≥ 1, we can bound w∗ in a new confidence set:

C
′
t =

{
w∗ ∈ Rd :

∥ŵt − w∗∥V t
≤ R

√

d log

(
1 + tL2/λ

δ

)
+ λ1/2S

}
. (7)

The above bound provides the confidence region at time
t. It shows that with good choice of the right parts of the
equation, w∗ always remains inside this ellipsoid for all times
t with probability 1 − δ. Next, we show the bound of the
arm with a single linear payoff.

Theorem 2. Let (x1, y1), · · · , (xt−1, yt−1), xi ∈ Rd, yi ∈
R satisfy the linear model assumption. Furthermore, we have
the same assumption as Theorem 1. Then, for any 0 < δ <
1, with probability at least 1− δ, for all t ≥ 1 we can have:

∥x⊤ŵ − x⊤w∗∥ ≤

∥x∥
V −1

t

⎛

⎝R

√

2 log

(
|V t|1/2|λI|−1/2

δ

)
+ λ1/2S

⎞

⎠ .

(8)

In addition, if ∥xt∥ ≤ L then for all t ≥ 1, with probability
1− δ we can have:

∥x⊤ŵ − x⊤w∗∥ ≤

∥x∥
V −1

t

(
R

√

d log

(
1 + tL2/λ

δ

)
+ λ1/2S

)
. (9)

Proof.

∥x⊤ŵ − x⊤w∗∥ = ∥x⊤(ŵ − w∗)∥
≤ ∥x∥∥ŵ − w∗∥ = ∥x∥

V −1
t

∥ŵ − w∗∥V t
.

According to (6), with probability at least 1−δ, for all t ≥ 1,
we have:

∥x⊤ŵ − x⊤w∗∥ ≤

∥x∥
V −1

t

⎛

⎝R

√

2 log

(
|V t|1/2|λI|−1/2

δ

)
+ λ1/2S

⎞

⎠ .
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According to (7), with probability at least 1−δ, for all t ≥ 1
we have:

∥x⊤ŵ − x⊤w∗∥ ≤

∥x∥
V −1

t

(
R

√

d log

(
1 + tL2/λ

δ

)
+ λ1/2S

)
.

Lemma 1. Given an arm a ∈ Kt with the context feature
x, let (xa,1, ya,1), (xa,2, ya,2), · · · , (xa,na(t−1), ya,na(t−1)) be
history records of arm a before t and xa ∈ Xa and ya ∈ Ya,
and let ŵa = (X⊤

a Xa + λI)−1X⊤
a Ya. We have

x⊤w∗
a ≤ x⊤ŵa+

∥x∥
V −1

t

⎛

⎝R

√

2 log

(
|V t|1/2|λI|−1/2

δ

)
+ λ1/2S

⎞

⎠ . (10)

As shown in (10), we have a possible upper bound of x⊤w∗
a,

which has two parts. The first term can be deemed as em-
pirical expected estimation of payoff of the arm, and the
second term can be considered as a penalty. This penalty is
typically a high probability upper confidence bound on the
payoff of the arm.

Thus, given an arm a and its relations Nt(a), we face
the exploitation-exploration problem. We use the integrated
confidence bound on the payoffs of these invoked arms.

Lemma 2. In the networked bandits, given an arm a ∈ Kt

and the network relationship Nt(a), we obtain:
∑

a∈Nt(a)

x⊤
a w

∗
a ≤

∑

a∈Nt(a)

x⊤
a ŵa+

∑

a∈Nt(a)

∥xa∥V −1
t

⎛

⎝R

√

2 log

(
|V t|1/2|λI|−1/2

δ

)
+ λ1/2S

⎞

⎠ .

(11)

We believe that the confidence bound can be successfully
applied to this situation with the exploitation-exploration
trade-off. We use the confidence bound generated by the
confidence sets of parameters, defined by:

Ba,t = νa,t + ξa(t), (12)

νa,t =
∑

a∈Nt(a)
x⊤ŵa,t indicates the expected value, and

ξa(t) is the last term of (11) and indicates the penalty of the
estimation. Figure 2 shows the upper bound of arms from
our illustrative example. Each arm has the empirical payoff
and a potential value. Thus, in each round, our algorithm
selects an arm based on the estimation from the confidence
bound, such that the predicted payoff is maximized. Our
algorithm is shown in Algorithm 1.

5. REGRET ANALYSIS
We next provide a bound on the regret of our algorithm

when run through the confidence sets constructed in Theo-
rem 1. We assume that the expected estimation of payoffis
bounded. We can view this as a bound on parameters and
the bound on the arms set. We state a bound on the regret
of the algorithm as follows:

Figure 2: An example of the upper bound B in 10-arm
networked bandits when t = 120. Bar denotes the payo ff
estimation and vertical line denotes the penalty of the esti-
mation.

Algorithm 1 NetBandits

Input: Kt, Gt, Ct, t = 1, · · · , T
1: for round t = 1, 2, · · · , T do
2: For each arm we can observe the features xa,t, a ∈ Kt,

and the invoked arms Nt(a) based on Gt

3: for each a ∈ Kt do
4: Compute ŵa according to (5)
5: Compute the quality

Ba,t =
∑

a∈Nt(a)

x⊤
a,tŵa+

∑

a∈Nt(a)

∥xa,t∥V −1
t

⎛

⎝R

√√√√2 log

(
|V t|1/2|λI|−1/2

δ

)
+ λ1/2S

⎞

⎠

6: end for
7: Choose arm at = argmaxa∈Kt

Ba,t

8: Observe the multiple payoffs {ya,t|a ∈ Nt(at)}
9: for each node a ∈ Nt(at) do
10: Update Xa, Ya

11: end for
12: end for

Theorem 3. On the networked bandits, assume that each
arm’s payoff function satisfies the linear model, and assume
that the contextual vector is xa,t for each arm a ∈ Kt, |Kt| ≤
K and t = 1, · · · , T . Then, for any 0 < δ < 1, with proba-
bility at least 1− δ, the cumulative regret satisfies

RT ≤ 2K
√

2βT (δ)T log |I +XX⊤/λ|, (13)

where

βT (δ) =

(
R

√

2 log

(
|I +XX⊤/λ|1/2

δ

)
+ λ1/2S

)2

.

Proof. Considering the instantaneous regret at round t,
we select an optimal arm according to our algorithm. Thus,
we have optimistic (at, w̃a) and ŵa for the N(at). For round
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t, we rely on [1] to have:

rt =
∑

a∈N(at)

x⊤
a,tw

∗
a −

∑

a∈N(a∗)

x⊤
a,tw

∗
a

≤
∑

a∈N(at)

x⊤
a,tw

∗
a −

∑

a∈N(at)

x⊤
a,tw̃a

=
∑

a∈N(at)

x⊤
a,tw

∗
a −

∑

a∈N(at)

x⊤
a,tŵa

+
∑

a∈N(at)

x⊤
a,tŵa −

∑

a∈N(at)

x⊤
a,tw̃a

=
∑

a∈N(at)

x⊤
a,t(w

∗
a − ŵa) +

∑

a∈N(at)

x⊤
a,t(ŵa − w̃a)

=
∑

a∈N(at)

∥xt∥V −1
t

∥w∗ − ŵt∥V −1
t

+
∑

a∈N(at)

∥xt∥V −1
t

∥ŵt − w̃t∥V −1
t

≤
∑

a∈N(at)

2
√

βt(δ)∥xt∥V −1
t

. (14)

For each arm a ∈ Nt(a), we define

ra,t = x⊤
a,tw

∗
a − x⊤

a,tŵa + x⊤
a,tŵa − x⊤

a,tw̃a, (15)

and we have

ra,t ≤ 2
√

βt(δ)∥xa,t∥V −1
t

. (16)

We then rewrite the instantaneous regret (14) as

rt ≤
∑

a∈N(at)

ra,t. (17)

Regarding to the fact that ra,t ≤ 2, we have

ra,t ≤ 2min
(√

βt(δ)∥xa,t∥2V −1
t

, 1
)

≤ 2
√

βt(δ)min
(
∥xa,t∥2V −1

t
, 1
)
. (18)

Given arms Nt(a), we define a
′
= argmaxa ∥xa,t∥2V −1

t
. Then

we have

rt ≤ |Nt(a)|2
√

βt(δ)∥xa
′
,t∥V −1

t

≤ |Nt(a)|2
√

βt(δ)min
(
∥xa

′
,t∥

2
V −1

t
, 1
)
. (19)

Thus, with probability at least 1− δ, for any T ≥ 1,

RT =
T∑

t=1

rt ≤
T∑

t=1

|Nt(a)|2
√

βt(δ)
(
∥xa

′
,t∥V −1

t
∧ 1
)

≤ 2K
T∑

t=1

√
βt(δ)

(
∥xa

′
,t∥V −1

t
∧ 1
)

≤ 2K

√√√√T
T∑

t=1

(√
βt(δ)

(
∥xa

′
,t∥V −1

t
∧ 1
))2

≤ 2K

√√√√TβT (δ)
T∑

t=1

(
∥xa,t∥2

V −1
t

∧ 1

)
. (20)

According to log (1 + z) ≤ z, we have:

log |I +XV −1X| ≤
t−1∑

k=1

∥xk∥2V −1
k

. (21)

Then according to z ≤ 2 log (1 + z), z ∈ [0, 1], we have

t−1∑

k=1

(
∥xk∥2V −1

k
∧ 1
)
≤ 2 log |I +XV −1X|. (22)

We choose V = λI, then we rewrite RT as

RT ≤ 2K
√

2TβT (δ) log |I +XX⊤/λ|. (23)

Lemma 3. Assume that x ∈ Rd and V = λI. Then, for
any 0 < δ < 1, with probability at least 1− δ, the bound is

RT ≤ 2K

√

2Td log

(
λ+

(T − 1)L
d

)

·
(
λ1/2S +R

√

2 log

(
1
δ

)
+ d log

(
1 +

(T − 1)L
λd

))
. (24)

We are mainly interested in the interrelated arms. Our re-
gret bound depends on the number of invoked arms |Nt(a)|
or loose K. Figure 3 shows experimentation of our bound
applied to the networked bandit problem. Our algorithm
keeps the regret as low as possible, and can reach Rt/t → 0
with high probability when t is large enough.

Figure 3: An example of the regret value in 10-arm net-
worked bandits. The experiments are repeated 100 times
and the average regrets are shown. y = x is provided for
comparison.

6. PRACTICAL ISSUES
In real-world applications, according to different assump-

tions about the network topology of arms, we can consider
special cases of the networked bandit problem. We focus on
Nt(a). In our algorithm, we make the very loose assumption
that Nt(a) varies over time. However, the network topology
is sometimes stable over a fixed duration. For example, a
school social network is stable for the duration of a semester.
This means that Nt(a) = N0(a), which is a special case of
network bandits. In other cases, for example when inquiring
users in the same company, we only need to consider their
colleagues or a group of interest.

6.1 Dynamic network
In the networked bandit problem the network topology of

arms is usually dynamic over time, which means for each
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round t we have different Nt(a). Although we assume that
Nt(a) will be active after the forecaster selects a, we omit
how to generate Nt(a) and how arm a invokes Nt(a), which
are not our primary concerns. Instead, we simplify our prob-
lem using the simple setting of selecting an arm and then
receiving payoffs from invoked arms. We assume that we
can observe invoked arms Nt(a). In practice, we can di-
rectly obtain Nt(a) by predefining the arms, for example as
neighbors or groups, or by observing feedback and collect-
ing arms which provide feedback. We focus on how to select
arms in order to maximize the total payoff, and therefore we
concern the arms of Nt(a) and the forecaster can obtain the
invoked bandits over the course of collecting the payoffs from
the network. In particular, at each round the algorithm ob-
serves the network topology of arms; it then decides which
arm to select using the knowledge of the network topology
and historical payoffinformation.

In Algorithm 2, we provide a pseudo-code for the selection
at each round in a dynamic network.

Algorithm 2 Selection at round t in dynamic network

1: For each arm we have ŵa and observer the context xa,t

2: For each arm we collect Nt(a)
3: for each a ∈ Kt do
4: Compute Ba,t

5: end for
6: Select arm at = argmaxa∈Kt

Ba,t

7: Observe the payoffs {ya,t|a ∈ Nt(at)} from the network
8: For each arm a ∈ Nt(at) update Xa, Ya and ŵa

6.2 Static network
We make the simple assumption that the network topol-

ogy is fixed. In other words, the relationships between arms
do not change. For all t, we have Gt = G0, Kt = K0 and
Nt(a) = N0(a). For example, DBLP, Last.FM, and many
offline social network datasets are of fixed duration. This is
a degenerate version of our problem and can be solved using
our algorithm.

In Algorithm 3, we provide a pseudo-code for the selection
at each round in a static network.

Algorithm 3 Selection at round t in static network

1: For each arm we have ŵa and N0(a), and observer the
context xa,t

2: for a ∈ K0 do
3: Compute Ba,t

4: end for
5: Select arm at = argmaxa∈K0

Ba,t

6: Observe the payoffs {ya,t|a ∈ N0(at)} from the network
7: For each arm a ∈ N0(at) update Xa, Ya and ŵa

6.3 Neighborhood or group
In networks, especially in social networks, a simple yet

common assumption is that the node largely influences its
neighborhoods or community [13, 15]. Moreover, some ap-
plications only focus on people who have the same interest
or are in a group. This makes it possible to assume that the
selected arm only invokes its neighbors or a group; that is,
Nt(a) = Neigt(a), where Neigt(a) indicates the neighbors
of a. We can only collect the payoffs of neighbors of an arm,

and therefore Nt(a) is appropriate. Although there are also
two cases in this situation - static and dynamic - here we
focus only on the neighborhood.

In Algorithm 4, we provide a pseudo-code for the selection
at each round with specific Nt(a).

Algorithm 4 Selection at round t with neighborhood

1: For each arm we have ŵa and observer the context xa,t

2: For each arm we collect Neigt(a)
3: for a ∈ Kt do
4: Compute Ba,t

5: end for
6: Select arm at = argmaxa∈Kt

Ba,t

7: Observe the payoffs {ya,t|a ∈ Neigt(at)} from the net-
work

8: For each arm a ∈ Neigt(at) update Xa, Ya and ŵa

7. EXPERIMENTS

7.1 Illustrative Example
We first illustrate our model by a synthetic example (Fig-

ure 4), which contains 10 arms (A0-A9) randomly connected
at each round. At different rounds, the networks are differ-
ent. At rounds t = 11 and t = 20, the upper bound B (the
second row, blue) is large; however, the expected estimation
is small (the third row, red) because the variance is large.
Our algorithm selects the arm with maximal upper bound.
We also show the real payoffs of all the arms, which are not
known to the algorithm. At an early stage, the selection is
poor compared to the real payoff (the fourth row, green). At
round t = 20, our algorithm chooses A0 however, the best
is A1, illustrating that the expected estimation is small and
the algorithm can try another arm that has potential, but
with uncertainty. Later, selection becomes efficient and at
t = 120 the algorithm chooses A1 since more information
has been learned and the upper bound becomes more stable
with lower penalty. This is close to the real situation and
provides a good estimation.

7.2 Baselines and Performance Metric
In this section we evaluate the proposed NetBandits strat-

egy on four synthetic datasets and two public real-world
datasets. We perform two types of experiments: simulation
experiments and offline evaluation of two real applications.

We compare our proposed method against two baselines:
a state-of-art algorithm for the contextual bandit problem,
referred to as TraBandits, and the random strategy. Since
there is no existing method for the networked bandit prob-
lem, these methods are little altered for networked bandits.
The details are follows:

• TraBandits: a state-of-art method for contextual ban-
dits with linear payoff models [17]. The algorithm is a
UCB style method with the linear payoff assumption
that always selects the arm using highest UCB at each
round.

• Random: a simple strategy that just randomly selects
an arm.

We use two methods to assess the performance of our al-
gorithm. We first analyze the average payoff at each round,
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Figure 4: Illustrative synthetic example of exploration-exploitation trade-off. Bottom, arms with networked topology. Second
row: the upper bound B for each arm computed using NetBandits. Third row: the expected estimation ν, where bar denotes
the estimation and vertical line denotes the penalty of estimation. Fourth row: the real payoff of each arm.

and then we analyze the cumulative payoff at each round,
which ignores the performance of the algorithm at each fixed
round but gives an overall view of the lifetime performance
of the algorithm.

7.3 Simulation Experiments
We test our algorithm on a series of synthetic datasets.

In contrast to previous work, we need to construct the net-
work topology, which can be either static or dynamic. Static
network is a special case of dynamic situation and static net-
work is generated in advance and remains unchanged. We
therefore construct the networked bandits based on the dy-
namic network as follows: we first construct a fixed number
of nodes k, which are considered as arms. We then randomly
create edges between them, which are used to generate the
relations for each arm. Neighborhood is considered as rela-
tionship. For every node, we assign different norm random
vector ui, ui ∈ R10 and we use the following stochastic model
to generate its payoffs: ya(x) = x⊤ua + ϵa, where ϵa is uni-
formly distributed in a bounded interval centered around
zero and ua and ϵa are not known to the decision algorithm.
For contextual information, at each round t we randomly
create a set of context vectors {x1,t, · · · , xk,t}, xk,t ∈ R10.
The network topology does not have strict assumptions and
is created simply: in the dynamic situation, we generate
the network topology at each round (relationships between
the nodes change at each round). We randomly create k2/3
edges between the nodes, and therefore for most nodes the
relations will be no greater than k/3.

We present the results from k =10, 100, 1000, and 10000
arms with dynamic network topology. In Figure 5 and Fig-
ure 6 we present the results of average payoff and cumula-
tive payoff; our NetBandits outperforms the other baselines.
TraBandits does not work well, indicating that best single
arm does not always have the best payoff in a network but
also depends on its relations. As per the network construc-
tion, the average payoff for each node is around k/3 if the
node and its relations provide feedback, and the average pay-
off of TraBandits and Random is around k/3. For example,
as shown in Figure 5, when k = 10 the payoff ranges from 3.2
to 3.6; when k = 100 the payoff ranges from 34 to 35; when
k = 1000 the payoff ranges from 340 to 350; when k = 10000
the payoff ranges from 3450 to 3550. However, NetBandits
usually performs better except the earliest time points, and
its value is greater than 4.2 when k = 10, 40 when k = 100,
400 when k = 1000, and 4500 when k = 10000. This is be-
cause NetBandits performs more exploration than exploita-
tion to begin with. Figure 6 shows that our algorithm ob-
tains the best cumulative payoff over all rounds. As average
payoff improves, NetBandits also exhibits higher cumulative
payoff. This indicates that more early exploration improves
later selections, leading to a fairer assessment of the perfor-
mance of the different algorithms.

The running time of NetBandits according to different
numbers of arms and network topology is also shown in Ta-
ble 1, and demonstrates the running time increases rapidly
as the number of the scale of the networks increase. For
example k = 100 is slower than k = 10 by more than k2 but
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(a) k=10 (b) k=100 (c) k=1000 (d) k=10000

Figure 5: The average payoff at each round in dynamic networks.

(a) k=10 (b) k=100 (c) k=1000 (d) k=10000

Figure 6: The cumulative payoff at each round in dynamic networks.

(a) Average payoff(Del) (b) Cumulative payoff(Del) (c) Average payoff(LFM) (d) Cumulative payoff(LFM)

Figure 7: The average payoff and cumulative payoff for two real-world datasets.

Arms 10 100 1,000 10,000
Avg of invoked arms 3 33 333 3333
Total round 100 1,000 10,000 100,000
Time (second) 0.1 23.4 2034.2 173,628.3

Table 1: Running time results of NetBandits on four syn-
thetic datasets.
less than k3. The time taken depends on the size of the net-
work, including the number of nodes and edges. The time
complexity of NetBandits is O(TKNΩ), where T is the to-
tal number of rounds, K is the number of arms, N indicates
the average number of invoked arms, and Ω indicates the
time taken to compute the parameters; it is no more than
O(TK2Ω) where N = K. It can be improved by calculating
each arm in parallel for a large number of arms.

7.4 Real-world Datasets Experiments
We also test our algorithm on two publicly available real-

world datasets1: Delicious Bookmarks, a dynamic dataset,
denoted by Del; and Last.FM, a static dataset, denoted by
LFM.

Delicious Bookmarks is a social network for storing, shar-
ing, and discovering web bookmarks. The Del dataset con-
tains 1,861 nodes and 7,668 edges and 69,226 URLs de-
scribed by 53,388 tags. Payoffs are created using the in-

1http://grouplens.org/node/462

formation about the bookmarked URLs for each user: the
payoff is 1 if the user bookmarked the URL, otherwise the
payoff is 0. Pre-processing is performed by breaking the tags
down into smaller fragile items made up of single words, ig-
noring the underscores, hyphens, and dashes. Each word is
represented using the TF-IDF context vector based on the
words of all tags, i.e., these feature vectors are the context
vectors. PCA was performed on the dataset and the first 16
principle components selected as context vectors building a
linear function based on payoff records for each user. This
linear function generates a payoff when given a new context.
At each round t, we provide xk,t ∈ R16 for all users k.

The Last.FM dataset is a music website that builds a de-
tailed profile of each user’s musical taste by recording details
of the tracks that the user listened to from a range of dig-
ital devices. LFM contains 1,892 nodes and 12,717 edges
and has 17,632 artists described by 11,946 tags. We use the
listened-to artists information to construct payoffs: if the
user listened to an artist at least once the payoff is 1, oth-
erwise the payoff is 0. Similar pre-processing is performed
as Delicious Bookmarks. Compound tags are broken down
into several corresponding single words resulting in 6,036
words. We represent context features using the TF-IDF fea-
tures, and after PCA the first 16 principle components are
selected as context vectors. For each user we then build a
linear function based on payoff records. This linear function
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can generate a payoff when given a new context. At each
round, we provide xk,t ∈ R16 for all users k.

We construct the network topology according to the social
network of the users. Neighborhood is considered as rela-
tionship. The linear payoff function for each user is learned
in advance and unknown to the algorithm, which decides its
next selection according to previous feedback.

For the Del dataset, there exists the timestamp informa-
tion that records when contact relationships were created,
and we can therefore construct a dynamic network according
to the timestamps. Timestamps are from 1146752335000 to
1288104100000; we therefore divide them into 14 groups ac-
cording to the first three numbers (114, 115, . . . , 128). We
set the total rounds T = 14000 and update the network ev-
ery 1000 rounds. For the Last.FM dataset, there is no time
information, thus we construct a static network.

The results of average payoff and cumulative payoffare
shown in Figure 7. Our algorithm outperforms the other
baselines. Although the two networks have a similar number
of users, LFM has more relationships and the average and
cumulative payoff results are higher than Del. For the aver-
age payoff of Del, there exist three low intervals marked by
(red) rectangles in Figure 7(a). These occurred at the begin-
ning and close to round t = 1000 and t = 10000. Since many
new nodes and edges are added at these rounds and NetBan-
dits performs more exploration than exploitation. The pay-
offs improve after exploration. For the average payoffresults
of LFM, there is a low interval at the start, denoted by the
(red) rectangle in Figure 7(c), because NetBandits is trying
to select possible better arms and perform exploration; then
later the performance improves. Figure 7(b)(d) show that
the cumulative payoff results of NetBandits increase faster,
and are much greater than the other algorithms, and demon-
strate that exploration does not hurt the total performance.

8. CONCLUSION AND FUTURE WORK
In this paper we formalize a new bandit problem, termed

networked bandits. We presented the novel problem of how
to select the arm with multiple payoffs in networked bandits
by considering a multi-armed bandit of interconnected arms,
one of which can invoke other related arms at each round.
After selecting an arm, we can obtain payoffs from this arm
and its relations.

We consider this approach in the contextual bandit setting
and assume disjoint linear payoffs for arms. We propose a
new networked bandit algorithm NetBandits that considers
the uncertainty of the payoffs using integrated confidence
sets. We also provide a regret bound for our solution. Our
experiments show that it is better to consider both the net-
work topology and the payoffs of arms, and we observe that
our approach performs well in this setting.

The networked bandit problem requires further work. Some
interesting problems still remain, such as how to modelNt(a).
In our work we do not make any assumption about the struc-
ture of the network topology; for example the hub may have
higher priority, and it is possible to find a more efficient
method for some fixed structures.

Another problem is arm complexity. We assume that one
arm invokes other arms, which in turn can invoke other arms
sequentially, with processing occurring at the same time.
However in some real applications, the structure is possible
to be much more complex and evolve over time, which is
likely to delay the payoffs.
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