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ABSTRACT
In performance display advertising a key metric of a cam-
paign effectiveness is its conversion rate – the proportion of
users who take a predefined action on the advertiser web-
site, such as a purchase. Predicting this conversion rate is
thus essential for estimating the value of an impression and
can be achieved via machine learning. One difficulty how-
ever is that the conversions can take place long after the
impression – up to a month – and this delayed feedback
hinders the conversion modeling. We tackle this issue by in-
troducing an additional model that captures the conversion
delay. Intuitively, this probabilistic model helps determining
whether a user that has not converted should be treated as
a negative sample – when the elapsed time is larger than the
predicted delay – or should be discarded from the training
set – when it is too early to tell. We provide experimental
results on real traffic logs that demonstrate the effectiveness
of the proposed model.

Categories and Subject Descriptors
H.3.5 [Information Storage And Retrieval]: Online In-
formation Services; I.2.6 [Artificial Intelligence]: Learn-
ing

Keywords
Display advertising; machine learning; conversion prediction

1. INTRODUCTION
Display advertising is a form of online advertising where

advertisers pay publishers for placing graphical ads on their
web pages. The traditional method of selling display adver-
tising has been pre-negotiated long term contracts between
the advertisers and the publishers. In the last decade spot
markets, demand-side platforms (DSP) and real-time bid-
ding exchanges (RTBs) have emerged as a popular alterna-
tive due to the promise of increased liquidity for publishers,
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and increased reach with granular audience targeting capa-
bilities for the advertisers [14].

These markets also offer the advertisers a wide range of
payment options. If the goal of an advertising campaign is
getting their message to the target audience (for instance
in brand awareness campaigns) then paying per impression
(CPM) with targeting constraints is normally the appropri-
ate choice for the advertiser. However, many advertisers
would prefer not to pay for an ad impression unless that
impression leads the user to the advertiser’s website. Per-
formance dependent payment models, such as cost-per-click
(CPC) and cost-per-conversion (CPA), were introduced to
address this concern. The focus of this paper is the CPA
model which allows the advertisers to pay only if the user
takes a predefined action on their website, such as purchas-
ing a product or subscribing to an email list. A platform that
supports such conditional payment options needs to convert
advertiser bids to expected price per impression (eCPM).
The eCPM of a CPC or CPA bid, will depend on the proba-
bility that the impression will lead to a click or a conversion
event. Estimating these probabilities accurately is critical
for an efficient marketplace [10].

There has been significant work in the literature on mod-
eling clicks in the context of search advertising [5, 11] and
display advertising [1, 2], but relatively little on conversion
prediction [16]. This paper deals with the problem of conver-
sion prediction and more specifically with post-click conver-
sions, these conversions that can be attributed to a preceding
click.

The techniques used for click and conversion modeling
share some commonalities, but there is an additional dif-
ficulty in conversion modeling: whereas a click often occurs
in a relatively short time window after an impression, a con-
version can happen days or weeks later. This results in the
following dilemma when deciding on the matching window
length typically used when building a training set: if that
window is too short, some of the examples are incorrectly
labeled as negatives – those for which a conversion will oc-
cur in the future; but if it is too long, the examples in the
training set will be impressions that are at least as old as
the matching window, hence a risk of generating a stalled
model.

The solution proposed in this paper does not involve a
matching window: when generating the training set, a click
is labeled as positive if it is followed by a conversion and is
treated as unlabeled otherwise. It cannot indeed be labeled
as negative for sure in that latter case because a conversion
can happen in the future. The problem of learning from posi-
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tive and unlabeled data has already been extensively studied
[3, 4]. But most of these works rely on the assumption that
the labeled positive examples are chosen randomly from the
positive class; or in other words, that the probability of hav-
ing a positive example with missing label is constant. This
assumption does not hold in our setting: the label is much
more likely to be missing if the click has just happened.

To tackle this issue of delayed feedback, we introduce a
second model that captures the expected delay between the
click and the conversion. This model is closely related to the
models used in survival time analysis [7]. This field studies
the distribution of survival times – typically the time be-
tween the beginning of a treatment and the death of the
patient – but some of these times are censored, for instance
when a patient drops out of the study or when a patient is
still alive at the end of the study. A censored time means
that the survival time is at least equal to that time. Simi-
larly, for the problem of conversions, some of the delays are
censored: if at training time a conversion has not occurred,
the delay of the conversion (if any) is known to be at least
the time elapsed since the click.

But unlike survival time analysis where a patient will
eventually die, the user may not eventually convert. This
is the reason why two models are required: one to predict
whether the user will convert and the other to predict the
delay of the conversion in case he does. These two models
are trained jointly. It is indeed inherently impossible to sep-
arate the two models: when a conversion has not occurred,
there is an ambiguity on whether the user will convert but
at a later time, or the user will not convert at all. The two
models are needed to correctly assign probabilities to both
outcomes.

For this work we collected traffic logs of Criteo, a global
leader in performance display advertising, specialized in re-
targeting.1 Criteo acts as an intermediary between publish-
ers and advertisers by paying publishers on a CPM basis
(either through bids on ad exchanges or via direct relation-
ships with publishers) and gets paid by advertisers whenever
there is a click on an ad (CPC) or when there is a conversion
following that click (CPA).

The paper is organized as follows. Section 2 reviews con-
version attributions and introduces some key statistics about
the conversions in our data. The model to address the de-
layed conversion issue is presented in section 3 and its opti-
mization in section 4. We discuss in section 5 related work
and finally present experimental results in section 6.

2. CONVERSIONS
This section first describes the mechanism used in this

paper to attribute conversions to click and then presents
some statistics about the data and conversions in our system.

2.1 Post-Click Attribution
In marketing the attribution is the mechanism used to

assign credit for a conversion. The two main mechanisms are
post-view attribution in which a conversion is attributed to
one or several prior impressions and post-click attribution
in which an impression needs to have been clicked to be
considered as having led to a conversion. The post-click

1http://en.wikipedia.org/wiki/Behavioral_
retargeting

attribution model is often deemed more reliable in the online
advertising industry and is the one considered in this paper.

The attribution mechanism also includes a conversion win-
dow: a conversion is attributed to a click only if it occurred
within this time window. The window length can be defined
by the advertiser, but for the sake of simplicity, we fixed it
to 30 days in this paper.2 In other words, conversions oc-
curring after 30 days are ignored and the delay between a
click and a conversion can never be more than 30 days.

The specific rules that we applied for matching a con-
version and a click are as follows. In addition to the 30
days window requirement, a match is defined as a conver-
sion event and a click event sharing the same user identifier
and the same advertiser. In the case of multiple clicks lead-
ing to a conversion, we adopted the industry standard to
attribute the conversion to the last click. If several conver-
sions match a click, we keep only the first one, discarding
the remaining ones. This means that we are not attempting
to model multiple conversions per clicks even though this
step may be needed in a production system.

2.2 Conversion Rate Prediction
In a cost-per-conversion (CPA) payment model, the ad

exchange or DSP needs to estimate the value of an impres-
sion. If CPA is the price the advertiser is willing to pay for
a conversion, the expected value of an impression is:3

eCPM = CPA× Pr(conversion, click)

= CPA× Pr(click)× Pr(conversion | click). (1)

The first equation reflects the post-click attribution model
while the second one splits that probability into the product
of a click probability and a probability of conversion given
click. While it is possible to directly model Pr(conversion, click),
the decomposition (1) has two advantages: first it reduces
the load on the data processing pipeline as there is no need
to join impressions and conversions over a long period of
time; and second it may predict more accurately campaigns
with few or no conversions and a reasonable amount of clicks
because in that case the clicks still provide some information
on the effectiveness of the campaign.

The modeling of Pr(click) and Pr(conversion | click) present
different challenges: training a click model requires a scal-
able learning architecture – there can be billions of impres-
sions served every day by an ad platform – but the click
feedback is almost immediate; on the other hand, the train-
ing set of the conversion model is much smaller – it scales as
the number of clicks, not impressions – but the conversion
feedback can come with a delay of up to 30 days. This paper
presents a way to address this delay feedback challenge.

2.3 Analysis of the Conversion Delay
We calculated the percentage of conversion events within

different time intervals. As shown in figure 1, a large por-
tion (35%) of the conversions occur within one hour of the
clicks, but the rest of them happen much later: about 50% of
the conversions occur after 24 hours and 13% after 2 weeks.
These delay statistics are quite different from the ones re-
ported in [16, Section 4.2]: on the Yahoo RMX exchange,

2Most advertisers use in fact a 30 day attribution window.
3The eCPM is in fact defined as the value for 1000 impres-
sions so the right hand side of equation (1) should be mul-
tiplied by 1000.
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Figure 1: Cumulative distribution of the click to
conversion delay. Its oscillating shape is due to daily
cyclicality (more visible in figure 5).

95.5% of the conversion events happen within one hour of
the click.

These long delays have implications for learning: this pre-
vents the use of a short matching window – such as the 2
days advocated in [16] – since such a short window would
incorrectly label as negatives a large portion of the conver-
sions.

2.4 New campaigns
Display advertising is a non stationary process as the set of

active advertisers, campaigns, publishers and users is con-
stantly changing. When new campaigns are added to the
system, models built on past data may not perform as well
on those new campaigns. Keeping the models fresh can
therefore be of critical importance for achieving sustained
performance.

We analyzed the rate at which new campaigns are intro-
duced. To this end, we used one day of data as the reference
period and computed the percentage of new campaigns in-
troduced in every day of the following next 26 days. Figure 2
shows that the percentage of traffic from new campaigns is
increasing steadily day-by-day reaching 11.3% after 26 days.
This analysis suggests that waiting 30 days to train a model
in order to have a full conversion feedback would probably be
harmful: the model would not predict well for a substantial
portion of the traffic.

3. MODEL
Before going into the details of our model, we need to

introduce some notations regarding the different variables
in our training set.

Each past event can be characterized by the outcome of
the following 5 random variables:

• X a set of features;

• Y ∈ {0, 1} indicating whether a conversion has already
occurred ;

• C ∈ {0, 1} indicating whether the user will eventually
convert;
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Figure 2: Percentage of traffic with a new campaign
for each day following a reference day.

• D the delay between the click and the conversion (un-
defined4 if C=0);

• E the elapsed time since the click.

The main relation between these variables is that if a con-
version has not been observed, it is either because the user
will not convert or because he will convert later, in other
words,

Y = 0 ⇐⇒ C = 0 or E < D. (2)

This obviously implies that if the user has already con-
verted (Y=1) the value of C is observed:

Y = 1 =⇒ C = 1 (3)

The only independence assumption required in the fol-
lowing derivation is that the pair (C,D) is independent of
E given X,

Pr(C,D | X,E) = Pr(C,D | X) (4)

This independence makes sense since E, the elapsed time
since the click, has an influence only on Y , whether the user
has already converted or not.

We denote by lower case letters observed values of these
random variables: we are given a data set comprising of
triplets(xi, yi, ei) and in addition, if yi = 1, we are also
given the delay di between the click and the conversion.

Two parametric models are used to fit this data: a proba-
bility of conversion Pr(C | X) and a model of the conversion
delay Pr(D | X,C = 1). Once these two models are trained,
the former is used to predict the probabilities of conversion
while the latter is discarded.

Both models are generalized linear models: the first one
is a standard logistic regression model,

Pr(C = 1 | X = x) = p(x) with p(x) =
1

1 + exp(−wc · x)
,

and the second one is an exponential distribution of the
(nonnegative) delay,

Pr(D = d | X = x, C = 1) = λ(x) exp(−λ(x)d). (5)

4For the sake of correctness, we can set D to -1 or any other
arbitrary value whenever C = 0.

1099



Some other distributions can be used to model time between
events (e.g. Weibull, Gamma, Log-Normal; see [13, section
2] for an extensive list), but the exponential distribution is
a common one and fits quite well the empirical delay distri-
butions as we shall see in section 6.2.

The function λ(x) is called the hazard function in survival
analysis and in order to ensure that λ(x) > 0 we use the
parametrization λ(x) = exp(wd · x). The parameters of the
model are thus the two weight vectors wc and wd.

Under these models, the probability of a conversion event
is:

Pr(Y = 1, D = di | X = xi, E = ei)

= Pr(C = 1, D = di | X = xi, E = ei)

= Pr(C = 1, D = di | X = xi)

= Pr(D = di | X = xi, C = 1) Pr(C = 1 | X = xi)

= λ(xi) exp(−λ(xi)di) p(xi). (6)

The first equality comes from the equivalence (2) and that
ei has to be larger than di, while the second equality results
from the conditional independence (4).

By the law of total probabilities, and again using the con-
ditional independence (4) of C and E given X, the prob-
ability of not having observed a conversion can be written
as:

Pr(Y = 0 | X = xi, E = ei)

= Pr(Y = 0 | C = 0, X = xi, E = ei)P (C = 0 | X = xi)

+ Pr(Y = 0 | C = 1, X = xi, E = ei)P (C = 1 | X = xi)

(7)

Furthermore, the probability of delayed conversion is:

Pr(Y = 0 | C = 1, X = xi, E = ei)

= Pr(D > E | C = 1, X = xi, E = ei)

=

∫ ∞
ei

λ(x) exp(−λ(x)t)dt

= exp(−λ(x)ei), (8)

where the first equality comes from (2). Combining (7), (8)
and the fact that Pr(Y = 0 | C = 0, X = xi, E = ei) = 1,
the likelihood of not observing a conversion can finally be
written as:

Pr(Y = 0 | X = xi, E = ei) = 1−p(xi)+p(xi) exp(−λ(xi)ei).
(9)

4. OPTIMIZATION
We propose two ways of optimizing the model presented in

the previous section. The first one aims at untangling both
models by inferring the value of the hidden variable C. This
is achieved through the use of the expectation maximization
(EM) algorithm. The second one directly optimizes the log
likelihood by gradient descent.

4.1 Expectation-Maximization
The EM algorithm is useful to find the maximum likeli-

hood parameters of a model with hidden variables. In our
model, C (whether the user will eventually convert) is a hid-
den variable. The details of the two steps are given below.

Expectation step.
For a given data point (xi, yi, ei), we need to compute the

posterior probability of the hidden variable,

Pr(C = 1 | X = xi, Y = yi) := wi

If yi = 1, this is trivial from equation (3): wi = 1. The
interesting case is when yi = 0:

Pr(C = 1 | Y = 0, X = xi, E = ei)

= Pr(Y = 0 | C = 1, X = xi, E = ei) Pr(C = 1 | X = xi)

= exp(−λ(xi)ei)p(xi), (10)

where the last equation comes from (8).

Maximization step.
As for any EM algorithm, the quantity to be maximized

during the M step is an expected log-likelihood according to
the distribution computed during the E step:∑

i, yi=1

log Pr(Y = 1, D = di | X = xi, E = ei)+∑
i, yi=0

(1− wi) log Pr(Y = 0, C = 0 | X = xi, E = ei)

+wi log Pr(Y = 0, C = 1 | X = xi, E = ei)

(11)

Using a similar derivation as the one to obtain (9), the
expected log likelihood of a unlabeled sample turns out to
be:

(1− wi) log Pr(Y = 0, C = 0 | X = xi, E = ei)

+wi log Pr(Y = 0, C = 1 | X = xi, E = ei)

= (1− wi) log(1− p(xi)) + wi [log(p(xi))− λ(xi)ei]

(12)

Plugging (6) and (12) into (11), the quantity to be maxi-
mized during the M step over the parameters of p and λ (w
being fixed) can finally be summarized as (remember that
wi = 1 for yi = 1):

∑
i

wi log p(xi) + (1− wi) log(1− p(xi))

+
∑
i

log(λ(xi))yi − λ(xi)tiwi

(13)

with

ti :=

{
ei if yi = 0

di if yi = 1
.

Equation 13 has two interesting properties:

1. It is easy to optimize since the log-likelihood decom-
poses, in other words p and λ can be optimized inde-
pendently. And each of these optimization problems is
convex.

2. It is easily interpretable: the optimization on p is a
weighted logistic regression, while the optimization on
λ is a standard exponential regression in survival mod-
els [7, Section 3.5] where the unlabeled samples have
their censored times multiplied by wi.

The drawback of this EM algorithm is that it is a nested
optimization problem: each M step requires an optimization
on the parameters of p and λ. This typically implies slow
convergence. To speed-up training, the M step can be solved
approximately [8] or the likelihood can be directly optimized
as described below.
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Figure 3: Negative log-likelihood as a function of λ
and p on a toy example consisting of one positive
sample with a delay of 1 and 10 negatives samples
with a delay of 4.

4.2 Joint optimization
The optimization method we implemented for the exper-

iments in this paper is a gradient descent algorithm on the
regularized negative log likelihood with respect to the pa-
rameters of p and λ:

arg min
wc,wd

L(wc,wd) +
µ

2
(‖wc‖22 + ‖wd‖22), (14)

where µ is a regularization parameter and L is the negative
log likelihood,

L(wc,wd) =−
∑

i, yi=1

log p(xi) + log λ(xi)− λ(xi)di

−
∑

i, yi=0

log[1− p(xi) + p(xi) exp(−λ(xi)ei)]

with p(x) =
1

1 + exp(−wc · x)
, λ(x) = exp(wd · x).

(15)

This likelihood is the probability (6) of observing Y and
D in the case of a conversion and the probability (9) of
observing Y otherwise, these probabilities being conditioned
on X, E and the model parameters.

Note that the objective function (15) is not convex as illus-
trated on the toy example of figure 3. The non-convexity can
be understood intuitively because of the potential ambigu-
ity when observing a majority of clicks without conversion:
is the conversion rate low or are the delays long? As seen
on figure 3 there are indeed two solutions which explain the
data almost equally well: low conversion rate and short de-
lay (upper left hand corner) or high conversion rate and long
delay (lower right hand corner). This ambiguity typically
vanishes as the number of data increases and we have not
encountered any local minimum issue in our experiments.

Using the chain-rule, the gradients of the negative log-
likelihood with respect to wc and wd are:

∂L

∂wc
=

∑
i, yi=1

− 1

p(xi)

∂p(xi)

∂wc

+
∑

i, yi=0

1− exp(−λ(xi)ei)

1− p(xi) + p(xi) exp(−λ(xi)ei)

∂p(xi)

∂wc
(16)

∂L

∂wd
=

∑
i, yi=1

(
di − 1

λ(xi)

)
∂λ(xi)

∂wd

+
∑

i, yi=0

p(xi)ei exp(−λ(xi)ei)

1− p(xi) + p(xi) exp(−λ(xi)ei)

∂λ(xi)

∂wd
(17)

Since the optimization problem is unconstrained and twice
differentiable, it can be solved with any gradient based opti-
mization technique. We use L-BFGS [15], a state-of-the-art
optimizer.

The effect of an unlabeled sample (yi = 0) on the conver-
sion model is best understood by examining its contribution
to the gradient (16) of the conversion model parameters in
two extreme cases:

1. When λ(xi)ei � 1, that is when the elapsed time since
the click is short compared to the predicted mean de-
lay λ(xi)

−1: the numerator in (16) is close to 0 and
that sample has almost no influence on the conversion
model. This is expected since the click is too recent
and it cannot be inferred that the user will not convert.

2. When λ(xi)ei � 1, that is when the elapsed time is
much longer than the predicted mean delay: the gradi-
ent contribution is 1/(1− p(xi)), which is the same as
the gradient of a negative sample in logistic regression.
In that case the model effectively considers that sam-
ple as a negative one since there is enough evidence to
believe that the user will not convert.

5. RELATED WORK
As pointed in the introduction, our work is closely related

to learning from positive and unlabeled data and to survival
analysis. The negatives samples should indeed be consid-
ered as unlabeled since a conversion can take place in the
future. There has been a substantial amount of research
on this topic: see [4] and references therein. Equation (3)
of that paper is identical to the first part of our equation
(13): all positive examples are counted with a weight of 1,
while an unlabeled example is considered to be a mixture of
a positive example (with weight wi) and of a negative exam-
ple (with weight 1− wi). However these papers rely on the
assumption that the labels of a positive sample is missing
at random. This assumption does not hold in our scenario
since the probability of a conversion not having been ob-
served yet depends on the elapsed time since the click. This
is the reason why that time is present in the weight (10).

The link between our model and survival analysis is easy
to establish in the extreme case of users always converting:
in that case wi = 1 in (10) and the second part of equation
(13) is a standard exponential regression [7, Section 3.5].
There is a closed form solution for a model without features:

1

λ
=

∑
ti∑
yi
.
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Figure 4: Convergence of the predicted conversion
rate on a toy example with a true conversion rate
0.1 and an average conversion delay of 4 days. The
error bars are at 25% and 75%. The Naive method
treats all clicks without conversion as negatives.

Our delay model can thus been seen as an extension of a
survival analysis model in which the censored times ti are
weighted by the probability of conversions wi (see equation
(13)). When wi is small, the corresponding time ti has al-
most no influence on the likelihood function.

There has been several prior works on predicting conver-
sion rates for display advertising [1, 12, 9, 16], but none
of them address the problem of conversion delay. Since we
are unaware of any method for this delayed feedback issue,
we are not comparing our algorithm against previously pub-
lished algorithms, but against a reasonable heuristic that
will be presented in the next section.

6. EXPERIMENTAL EVALUATION

6.1 Toy example
As discussed in section 2.4, the emergence of new cam-

paigns every day entails frequent updates of the model in
order to learn the statistics of these campaigns. We con-
sider the following simulated example in order to assess how
fast a model can react to a single new campaign. Data are
generated with a conversion rate p = 0.1 and with conver-
sion delays following an exponential distribution with mean
4 days. There are no features associated with the training
examples and we just learn constant predictors for p and λ.

The model is retrained every day and the predicted con-
version rate as a function of the number of days of available
data is shown in figure 4. This simulation has been ran 100
times and the plot includes median, 25% and 75% quan-
tiles. The proposed model, Delayed Feedback Model (DFM)
correctly predicts the conversion rate after just two days of
data, which is less than mean delay (4 days). After one day
of data the median predicted value is quite accurate, but the
error bars are large. This is due to the ambiguity illustrated
in figure 3: when few conversions have been observed, it is
unclear whether the conversion rate is low or the delays are
long.

As a comparison, the Naive method that treats the no-
conversions as negatives underpredicts the conversion rate,
especially at the beginning of the campaign.

6.2 Conversion delays
We have already analyzed the overall distribution of con-

version delays in figure 1. Next, we want to assess whether
the exponential distribution (5) used in our delay modeling
is reasonable. Note that (5) is a conditional distribution
(conditioned on the feature vector) whereas figure 1 plots
the marginal distribution. Even if the conditional distri-
butions are exponential, the marginal may not be. Since
it is impossible to inspect the full conditional distribution
(not enough samples for a given feature vector), we plotted
instead in figure 5 delay distributions conditioned on the
campaign only.

Four observations can be drawn from these plots. First,
there is a 24 hours cyclicality; this can easily be explained
by the fact that people tend to use their computer at a cer-
tain time of day, and thus a conversion is more likely to
happen at the same hour of the day as the click. Second,
notwithstanding this cyclicality, the empirical distributions
(blue lines) are rather close to the matched exponential dis-
tributions (green lines). Third, the exponential model has
a tendency to under-predict short delays (<1h) and over-
predict long delays; in other words, it seems that the delay
distribution is a mixture of a short delay and a long one. And
finally, the previous observation seems more pronounced for
campaigns with shorter average delays (first row of figure 5).

6.3 Competing models
Since we are unaware of an algorithm addressing the de-

layed feedback issue, we implemented the following heuris-
tic, that we call the Short Term Conversion model (STC).
A first model is trained to predict the conversions that occur
in a short time frame after the click; and another one ap-
plies a correction factor to account for conversions occurring
afterwards. More specifically these two models are

1. A probability of converting within a day,

Pr(C = 1, D ≤ 1 day | X = x) (18)

2. A model predicting the ratio of short term conversions
among all conversions,

Pr(C = 1, D ≤ 1 day | X = x)

Pr(C = 1 | X = x)

= Pr(D ≤ 1 day | C = 1, X = x). (19)

The final predicted probability is defined as the ratio of
the predictions from these models. The motivation behind
STC is that the first model can be reactive to change of
distributions, new campaigns, etc. since the lag between a
click and its inclusion in the training set is only one day. As
for the second model, there is still a 30 day lag to construct
its training set, but hopefully this model is relatively stable
over time and the lag would not hinder its performance.

The second model is a classification problem but it is
closely related to our delay model. Indeed, according to that
model, it is equal to 1− exp(−λ(x)× 1 day). The potential
benefit of our proposed approach is that both the conversion
and the delay models can be updated shortly after an event.
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Figure 5: Probability density functions of the delays between clicks and conversions for 4 different campaigns
(blue curves) along with the best exponential fits (green curves). The caption indicates the average delay for
the corresponding campaign.

In addition to the above STC model and our proposed
Delayed Feedback Model (DFM), the following baselines have
been evaluated:

Naive Classification algorithm where the clicks without as-
sociated conversion so far are treated as negatives. It
has the drawback of underestimating the conversion
rate (see figure 4) because it incorrectly considers as
negative a click for which a conversion will happen in
the future.

Oracle Same as above, but the labels are given by an ora-
cle that can look into the future to determine if there
will be a conversion. This is an upper bound on the
best achievable performance as it is oblivious to the
delay issue.

Shifted The training set is shifted 30 days in the past in
order to correctly label all the clicks. There is thus no
more uncertainty in the labels, but the dataset is 30
days old.

Rescale Same as Naive, but the probabilities of conver-
sion are divided by a constant, which is the overall
probability of having a missing label on the test set.
This is in fact the method of choice when learning with
positive and unlabeled data and the labels are missing
at random (see [4, Lemma 1]).

Because the Rescale and the STC models involve ratios,
they may predict probabilities larger than 1. To avoid this
issue their predictions have been truncated to 0.99.

6.4 Features and setting
Most of the features considered in these experiments are

categorical and the continuous features and have been made
categorical through appropriate quantization. The model
also includes cross-features, defined as the cartesian prod-
uct of two categorical features. These features are useful
to introduce non-linearities in the model. All the features
are mapped into a sparse binary feature vector of dimension
224 via the hashing trick [17]. More details about the data
representation and the hashing trick can be found in [2].
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Shifted Naive Rescale STC DFM Oracle

Overall
NLL 0.4004 0.4076 0.4042 0.4111 0.3960 0.3889
Diff 0.0115 0.0187 0.0154 0.0222 0.0072 —

Recent
NLL 0.4176 0.4398 0.4248 0.4117 0.4006 0.3640
Diff 0.0537 0.0758 0.0608 0.0477 0.0366 —

Table 1: Negative log likelihood of different methods (lower is better) and difference with respect to the
Oracle method. In the lower part of the table, the test set is restricted to the recent campaigns.

The experimental setting is as follows: there are 7 days
of test data and for each test day, a model is trained with
the previous 3 weeks. Each training set contains a bit less
than 6M examples. For reproducibility of the results, the
dataset used in these experiments can be downloaded from
http://labs.criteo.com/tag/dataset.

The metric used for evaluation is the average negative log-
likelihood (NLL). We are not reporting standard predictions
metrics for classification such as the average area under the
ROC curve or precision/recall curve because these metrics
are insensitive to the absolute value of the predictions. In
our setting, the predicted probabilities are important be-
cause they are directly used in (1) to compute the value of
an impression .

We provide two set of results in our evaluation: a global
one on the entire test set, and another one on the recent
campaigns only. Recent campaigns are defined as the ones
which have more volume in the one week test set than in the
preceding 3 week training set. This portion of the traffic is
more challenging to predict as there is fewer historical data
to learn from.

All of our models have an L2 regularization on the weights
(see equation (14)). We did not use L1 regularization as a
dimensionality reduction technique because, as advocated in
[2], the hashing trick is more convenient and as efficient as
L1 regularization for this purpose. We set the regularization
parameter with a rule of thumb,

µ :=
1

n

n∑
i=1

‖xi‖22.

This heuristic has also been used as the default choice in
SVMLight [6].

Finally all the models have been trained using an L-BFGS
optimizer, including our DFM model (see section 4.2).

6.5 Results
The results are provided in table 1. Our proposed DFM

method improves the NLL of almost 3% compared to the
Naive baseline, which is considered substantial for our ap-
plication. It is also not too far from the upper bound given
by the Oracle method. On the most recent campaigns,
the difference between methods is, as expected, more pro-
nounced and DFM does better than the Shifted method
that has a 30 days old training set. As for the Naive
method, it underpredicts on average by 21%, confirming the
analysis done on the simulated example (see figure 4). The
Rescale method is much better calibrated: it underpre-
dicts by only 5.9% overall, but this number goes to 30% on
the recent campaigns. This is because the labels for recent
campaigns are more likely to be missing than for the other
campaigns. Finally the STC model achieved mixed results:

it is the best competing method on the recent campaigns,
but the worse one overall.

7. CONCLUSION
We have presented in this paper a technique that ad-

dresses the lag in conversions by modeling the conversion
delay. This technique is rather simple to implement as it
only relies on gradient descent optimization and it provides
more accurate conversion predictions than several baselines.
It is however not specific to display advertising and could
by applied to any problem where the model needs to be up-
dated with recent data, but where the associated labels may
come with a delay.
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