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ABSTRACT
In many diverse settings, aggregated opinions of others play
an increasingly dominant role in shaping individual decision
making. One key prerequisite of harnessing the “crowd wis-
dom”is the independency of individuals’ opinions, yet in real
settings collective opinions are rarely simple aggregations of
independent minds. Recent experimental studies document
that disclosing prior collective opinions distorts individuals’
decision making as well as their perceptions of quality and
value, highlighting a fundamental disconnect from current
modeling efforts: How to model social influence and its im-
pact on systems that are constantly evolving? In this paper,
we develop a mechanistic framework to model social influ-
ence of prior collective opinions (e.g., online product rat-
ings) on subsequent individual decision making. We find our
method successfully captures the dynamics of rating growth,
helping us separate social influence bias from inherent val-
ues. Using large-scale longitudinal customer rating datasets,
we demonstrate that our model not only effectively assesses
social influence bias, but also accurately predicts long-term
cumulative growth of ratings solely based on early rating
trajectories. We believe our framework will play an increas-
ingly important role as our understanding of social processes
deepens. It promotes strategies to untangle manipulations
and social biases and provides insights towards a more reli-
able and effective design of social platforms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; J.4 [Social and Behavior Sciences]: Soci-
ology

General Terms
Algorithms, Experimentation
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Crowd wisdom; social influence; herding effect
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623720.

1. INTRODUCTION
With the explosive growth of information, our decisions

are increasingly relying on aggregated opinions contributed
by others, with the belief that the aggregations over a large
population can successfully harness the “wisdom of crowds”
[22]. Indeed, rooting back to Galton [8], many studies have
shown that collective opinions of a group are often closer
to the truth than the answer of an individual to a ques-
tion. While the crowd wisdom applies usefully to a spectrum
of domains, ranging from product or service recommenda-
tion [10] and crowdsourcing [5, 20, 26] to stock markets and
political elections [22], one key prerequisite of harnessing
the crowd wisdom is the independency of individuals’ opin-
ions [22]. Indeed, most if not all of the times, individuals are
exposed to others’ opinions before forming and expressing
their own. As concrete examples, we go to the theater after
checking reviews of the movies online; we download songs
from the hit list; we purchase products or go to restaurants
after researching what others think about them. As a result,
the market does not simply aggregate pre-existing individ-
ual preferences, but rather creates an environment rich in
social influence.

Thanks to the availability of Web-based experiments, re-
cent studies offered convincing evidence that social influence
exerts important but counterintuitive effects on collective
judgement [16, 19]. Indeed, through carefully designed con-
trol experiments in different settings, these studies demon-
strate that disclosing prior collective opinions distorts indi-
viduals’ decision making as well as their perceptions of qual-
ity and value, creating herding effects that are irrational and
pervasive, yet consequential to market outcome. Despite the
significance of these results in experimental settings, there
has been no quantitative framework to model social influence
and its impact on systems that are constantly evolving. In-
deed, models on collective intelligence, from majority voting
to collaborating filtering to crowdsourcing [5], all assume in-
dependent crowds, representing a critical gap between mod-
eling frameworks and empirical insights.

Here we develop a mechanistic framework to model social
influence of prior collective opinions (e.g., product ratings)
on subsequent individual decisions, namely, Herding Effect
Aware Rating Dynamics Model (Heard). Using 28 million
ratings spanning over 18 years on over 1.7 million products
from Amazon [15] as an exemplary case, we demonstrate
that our method successfully captures the dynamics of rat-
ing growth across different product categories, allowing us
to separate social biases introduced by prior ratings from
the true values inherent to products. We further show that,
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comparing with competing methods, our framework not only
effectively detects the presence of social biases and gauges
less biased values for any given product, but also accurately
predicts the long-term cumulative growth of ratings through
a scalable estimation model solely based on early rating tra-
jectories. As a result, Heard can also make testable pre-
dictions of collective response to artificial manipulations in
rating systems, assisting in further testings through more
systematic experiments.

To the best of our knowledge, this work represents one of
the first few quantitative framework to model social influ-
ence biases introduced from prior opinions. We believe our
method is of fundamental importance to studies of social
processes, promotes new strategies in untangling manipula-
tions and biases within social environments, and provides
significant insights towards design of platforms that aggre-
gate individual opinions, from electoral polling to market
analysis to product recommendation.

The remainder of the paper will proceed as follows. Sec-
tion 2 surveys relevant literature. Section 3 details the model
design of Heard and develops efficient inference algorithms
to fit the model. Section 4 presents a scalable algorithm to
predict the future rating growth based on Heard. Section 5
empirically evaluates the proposed models and algorithms.
The paper is concluded in Section 6.

2. RELATED WORK
In this section, we review three categories of related work,

namely, social network induced influence, measuring social
influence in experimental settings, and effect of semantics of
prior opinions.

Social networks have attracted significant interest, partly
due to the availability of large datasets in many domains.
One active line of enquiry in social network studies is how be-
havior [1, 2], opinion [7], and information [13, 24, 3] spreads
through social networks. It is conceivable that microscopic
social interactions could induce influence that is visible on
an aggregated level [25]. In a way, the process of generating
collective opinions is similar to consensus formation [11]. For
example, individuals may change their opinions after learn-
ing about what their friends think. This is supported by
experimental results by Lorenz et al. [14], in which they
demonstrated that even mild social interactions can signifi-
cantly bias simple estimation tasks. Therefore, Das et al. [4]
proposed a social sampling method that takes into account
individuals’ influence from their social neighbors and arrives
at a de-biased estimation of collective opinions. While this
line of research shows that social interactions can exert influ-
ence on overall outcome, their focus on networks inevitably
distinguishes themselves from our work. Indeed, often times,
the population responsible for collective opinions are not in-
teractive. You choose a restaurant, go watch a movie, or
purchase a book, because of the opinions or reviews authored
by people you do not know. Therefore, our work focuses on
how to model social influence on a macroscopic level and
hence predict the outcome of crowd wisdom.

On the other hand, there have been a number of experi-
mental studies on measuring social influence within a popu-
lation, thanks to the emergence of Web-based experiments.
For example, Salganik et al. [19] implemented a music lab,
where individuals download and rate songs with or with-
out information about how good the songs are, and they
demonstrated that increasing social influence could result in

differential outcomes for songs of similar quality. Muchnik
et al. [16] ran a large-scale randomized experiment on a red-
dit like website, finding that prior ratings created significant
bias in individual rating behavior, from turnout to binary
choices. These studies confirmed experimentally that dis-
closing prior ratings can create strong herding effects that
are irrational and pervasive, leading to significant bias that
is consequential to collective outcome. At the same time,
they also highlight a fundamental gap between experimental
insights and modeling efforts. Our work directly addresses
this gap: To the best of our knowledge, this work is among
the first few attempt to quantitatively model the herding
effects in crowd wisdom and develop effective mechanisms
to factor out such bias in estimation.

Finally, there have been a number of interesting studies
into the semantics of collective opinions, such as that ana-
lyze the text and social aspects of product reviews [10, 15,
21, 9]. While they are useful for review spam detection,
customer sentiment analysis, product recommendation, and
more, insights extracted from semantic features are, how-
ever, not mechanistic, hence not capable of projecting the
full rating trajectories. Nevertheless, these studies are com-
plementary to our work, in a sense that the useful semantic
features learned can be integrated into our model in forms
of prior belief of model parameters. Indeed, one shall see in
next sections that incorporating such text and social infor-
mation into the rating growth model would be a promising
future direction.

Our work also draws connections to other modeling ef-
forts. The design of our herding effects model is inspired by
the multi-neuron coupled spiking phenomena [17]. The ex-
ponential additive generative mechanism has been applied
in modeling latent topics for text [6]. Our work differs in
proposing a more general form of generative model and de-
veloping scalable inference algorithms to fit the model.

3. MODEL AND ALGORITHM
In this section, we detail the design of the Heard model

and present efficient inference algorithms to fit the model.
Concretely, we draw an analogy to the coupled spiking phe-
nomena in a multi-neuron system to model the dynamics of
rating growth and fit the model parameters using maximum
likelihood estimation.

3.1 HEARD Model
Without loss of generality, we consider a discrete K-level

rating system, which is extensively used by today’s online
retailers; for example, Amazon adopts a one-to-five star rat-
ing system. Consider the sequence of ratings regarding a
specific product, with ri ∈ {1, 2, . . . ,K} being the i-th rat-
ing. We assume the first (i − 1) ratings form the history

for ri: xi = [xi,1, xi,2, . . . , xi,K ]>, where xi,k represents the
proportion of level-k ratings among the first (i− 1) ratings.

Clearly,
∑K
k=1 xi,k = 1 for i > 1 and x1 is an all-zero vec-

tor. We intend to model how disclosing such rating history
would influence individual rating behavior on ri.

Intuitively, the generation of a new level-k rating is driven
by multiple factors, including: the intrinsic product quality,
the occurrence of preceding level-k ratings, and the history
of other ratings. We can draw a close analogy to the spiking
activities of a multi-neuron system [17]: the response (i.e.,
spike) generated by a neuron is jointly determined by the
stimulus strength and the preceding spikes of this neuron
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Figure 1: Illustration of HEARD model. The occur-
rence of a new level-k rating is jointly influenced by
(i) the intrinsic quality of product, (ii) the preceding
level-k ratings, and (iii) the history of other ratings.

and correlated neurons. We therefore introduce an additive
generative model to describe the distribution of the i-th rat-
ing ri over different levels:

Pr (ri = k|xi) =
exp

(
µk + f(i)θ>k xi

)∑K
k′=1 exp

(
µk′ + f(i)θ>k′xi

) (1)

This conditional distribution describes the likelihood of
observing a level-k rating given rating history xi. In this
general formulation, we have:

• µ = [µ1, µ2, . . . , µK ]> ∈ RK represents the coefficients
of an intrinsic distribution, which is assumed related
to the true quality of the product.

• f(·)1 is the magnitude function, which describes the re-
lationship between the strength of herding effects and
the number of historical ratings; in particular, we have
f(1) = 0.

• θk ∈ RK weighs the different components of xi. Note
that our model captures both positive and negative in-
fluence. Concretely, when the k′-th component θk,k′ >
0, the preceding level-k′ ratings excite the occurrence
of level-k ratings; while if θk,k′ < 0, the level-k′ ratings
inhibit the generation of new level-k ratings.

These factors are then integrated in an exponential func-
tion, as illustrated in Figure 1.

Note that here we ignore the time dimension in our model
because various external factors may abruptly influence the
temporal dynamics of rating growth, e.g., low price promo-
tion, emergence of new products, advertisements, etc.

Let Θ = [θ1,θ2, . . . ,θK ,u] represent all the parameters.
Both Θ and magnitude function f(·) are estimated from
data; in particular, f(·) is estimated from an infinite dimen-
sional functional space. Next we elaborate their inference.

3.2 Model Inference
We assume regarding a specific product, a temporally or-

dered sequence of N ratings {ri}Ni=1 has been observed. Note
that while we focus on the case of a single product for ease of
presentation, the extension to multiple products is straight-
forward. For notational simplicity, we introduce a set of
indicator variables yi ∈ {0, 1}K with yi,k = 1 if r(i) = k and

1In the following, we use fi as a short notation of f(i).

0 otherwise. Then the log-likelihood of parameters Θ given
this rating sequence is expressed as:

L(Θ) =
1

N
log

N∏
i=1

Pr (ri|xi,Θ)

=
1

N

N∑
i=1

K∑
k=1

yi,k log
exp

(
µk + fiθ

>
k xi

)∑K
k′=1 exp

(
µk′ + fiθ>k′xi

)
We estimate the model parameters by minimizing the pe-

nalized log-likelihood function, which is defined as:

Lλ(Θ) = −L(Θ) +
λ

2

(
||Θ||2F +R(f)

)
(2)

where the first term represents the negative log-likelihood,
the second term is a regularizer with λ being the balance pa-
rameter to prevent overfitting, and || · ||F denotes the matrix
Frobenius norm. In particular, R(f) is a penalty term pre-
ferring smooth functions. Without prior knowledge, we use
R(f) =

∫∞
0

(f ′(t))2dt, where f ′(·) represents the derivative
of f(·).

While Lλ(Θ) appears similar to the softmax regression; it
contains the integral of an unknown function and meanwhile
all the parameters are coupled, which makes it difficult to
directly apply off-the-shelf optimization methods (e.g., co-
ordinate descent). Next we propose an iterative algorithm
which optimizes Lλ(Θ) by (i) constructing a surrogate func-
tion to decouple the parameters and (ii) applying an Euler-
Lagrange equation to fit the unknown function.

More specifically, let Θ(n) = [θ
(n)
1 ,θ

(n)
2 , . . . ,θ

(n)
K ,µ(n)] de-

note the current parameter setting. We construct the follow-
ing surrogate function Q(Θ; Θ(n)), which is a tight upper
bound of Lλ(Θ):

Q(Θ; Θ(n)) =
1

N

∑
i

∑
k

(
φ2
i,k +

(
β
(n)
i,k − 2φ

(n)
i,k − yi,k

)
φi,k

)
− 1

NK

∑
i

(∑
k

φi,k − 2
∑
k

φ
(n)
i,k

)(∑
k

φi,k

)

+
λ

2

(
||Θ||2F +R(f)

)
+

1

N

∑
i

C
(n)
i (3)

where the terms φi,k, φ
(n)
i,k , β

(n)
i,k and C

(n)
i are defined below:

φi,k = µk + fiθ
>
k xi

φ
(n)
i,k = µ

(n)
k + f

(n)
i θ

(n)>
k xi

β
(n)
i,k =

exp
(
φ
(n)
i,k

)
∑
k′ exp

(
φ
(n)

i,k′

)
C

(n)
i =

∑
k

(
φ
(n)2
i,k − β

(n)
i,k φ

(n)
i,k

)
− 1

K

(∑
k

φ
(n)
i,k

)2

+ log
∑
k

exp
(
φ
(n)
i,k

)
It is noted that Q(Θ; Θ(n)) possesses the following desir-

able properties (details in Appendix):{
Q(Θ; Θ(n)) ≥ Lλ(Θ) ∀Θ,Θ(n)

Q(Θ; Θ(n)) = Lλ(Θ(n)) ∀Θ(n)

which imply that if Θ(n+1) = arg minΘQ(Θ; Θ(n)), then we

must have Lλ(Θ(n)) ≥ Lλ(Θ(n+1)). Therefore, minimizing
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Q(Θ; Θ(n)) with respect to Θ at each iteration will ensure
that Lλ(Θ) decreases monotonically.

Updating Parameters
The formulation above has the advantage that we can de-
rive the closed form solution of Θ for arg minΘQ(Θ; Θ(n)).

Specifically, by deriving the derivatives of Q(Θ; Θ(n)) with
respect to µk and θk,k′ and set them to zero, we obtain their
update rules as follows:

µ
(n+1)
k =

K
∑
i

(
yi,k − β(n)

i,k

)
+ 2N(K − 1)µ

(n)
k

2N(K − 1) +NKλ
(4)

θ
(n+1)

k,k′ =
K
∑
i fixi,k′

(
yi,k − β(n)

i,k

)
+ 2(K − 1)

∑
i f

2
i x

2
i,k′θ

(n)

k,k′

2(K − 1)
∑
i f

2
i x

2
i,k′ +NKλ

(5)

Updating Magnitude Function
Next we derive the update rule for magnitude function f(·)
by optimizing it in an infinite dimensional functional space.
We extract the parts of Q(Θ; Θ(n)) relevant to f(·) and then

reformulate the problem of minimizing Q(Θ; Θ(n)) with re-
spect to f(·) as follows:

min
f∈L1(R)

∑
i

Aif
2
i +

∑
i

Bifi +
λ

2

∫ +∞

0

(f ′(t))2dt (6)

where terms Ai and Bi are defined below:

Ai =
1

N

∑
k

(
θ
(n)>
k xi

)2
− 1

NK

(∑
k

θ
(n)>
k xi

)2

Bi =
1

N

∑
k

(
2µ

(n)
k − 2φ

(n)
i,k + β

(n)
i,k − yi,k

)
θ
(n)>
k xi

+
2

NK

(∑
k

θ
(n)>
k xi

)(∑
k

φ
(n)
i,k −

∑
k

µ
(n)
k

)
Abusing the notation a little, we introduce two functions:

A(t) = AtI{t ≤ N ∧ t ∈ N} and B(t) = BtI{t ≤ N ∧ t ∈ N},
where I{·} is the indicator function which returns 1 if the
predicate is true and 0 otherwise.

Then the solution of the objective function as defined in
Eqn.(6) must satisfy the Euler-Lagrange equation [27] (proof
referred to Appendix):

2A(t)f(t) +B(t)− λf ′′(t) = 0 (7)

where g′′(·) is the second order derivate of g(·).
Due to the discrete nature of the functions A(t) and B(t),

we solve this differential equation numerically using a Sei-
dal type iteration. Specifically, we discretize the differential
equations over intervals of length 1:

λ(fi+1 − 2fi + fi−1)− 2Aifi −Bi = 0

Clearly from the equations above we can efficiently solve
fi for i = 1, 2, . . . , N . We may then perform curve fitting to
extrapolate the values of fi for i > N .

Complete Algorithm
To set a proper starting point for optimization, we consider
the degenerated case where the prior ratings have no effect

on individual rating behaviors. Under this assumption, we
have the following setting:{

µk = log
(∑N

i=1 yi,k
N

)
k = 1, 2, . . . ,K

fi = 0 i = 1, 2, . . . , N
(8)

Meanwhile we initialize θ1,θ2, . . . ,θK randomly.
Putting everything together, Algorithm 1 sketches the

procedure of model inference. After initialization, it iter-
ates between updating parameters Θ and solving magnitude
function f(·) until the objective function converges.

Algorithm 1: Inference of HEARD Model

Input: rating history {ri}Ni=1

Output: setting of parameters Θ and function f
// initialization

initialize Θ and f according to Eqn.(8);

compute statistics {xi}Ni=1;
// iterative optimization

while not converged yet do
// update parameter

for k = 1, 2, . . . ,K do
update µk following Eqn.(4);
for k′ = 1, 2, . . . ,K do

update θk,k′ following Eqn.(5);

// update magnitude function

compute {fi}i by solving differential Eqn.(7);

return setting of Θ and f ;

4. APPLICATION
In this section we show that equipped with the aforemen-

tioned Heard model, we are able to answer a set of funda-
mental questions, including:

Debiasing: What is the intrinsic quality of a product af-
ter factoring out the herding effects from its collective
ratings?

Prediction: Based on its rating history, can we predict the
distribution of its next 100 ratings?

What-If Analysis: Given its current ratings, how would
its future ratings be “herded” if we could “inject” in 50
five-star ratings?

Next we detail how to answer these questions.

4.1 Debiasing Collective Ratings
To the first question, recall that the Heard model defined

in Eqn.(1) comprises two additive components, namely, the
intrinsic distribution and the herding effect distributions.
The background intrinsic distribution as controlled by pa-
rameters {µk} is assumed related to the true quality of a
product. Therefore, once we have estimated {µk} from the
rating history of a product, we can then “debias” the collec-
tive ratings by factoring out the components attributed to
the herding effects.

More concretely, abusing the notation a little, let µ =
[µ1, µ2, . . . , µK ]>. Without the herding effects, each rating
is generated by the following unconditional categorical dis-
tribution:

η =
exp(µ)∑
k exp(µk)

(9)
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which represents the intrinsic rating of the product.
The straightforward solution to estimating µ of a given

product is to directly fit the model parameters using its rat-
ing history as in Algorithm 1, which however may lead to
overfitting. Instead, we introduce an “out-of-sample” exten-
sion. As will be detailed in Section 5, the herding effects
often follow similar patterns for products of the same cate-
gory (e.g., books). We therefore use the rating histories of a
bulk of products in the same category to train category-level
parameters {θk} and magnitude function f(·). For the query
product, we fix {θk} and f(·) and focus on learning product-
level parameter µ. As shown in Algorithm 2, this procedure
is similar to Algorithm 1, except that at each iteration we
only need to update µ.

Algorithm 2: Out of Sample Extension

Input: rating history {ri}i of query product, setting of
{θk}k and f(·)

Output: setting of µ for given product
// initialization

initialize µ according to Eqn.(8);
compute statistics {xi}i;
// iterative optimization

while not converged yet do
// update parameter

for k = 1, 2, . . . ,K do
update µk following Eqn.(4);

return µ;

4.2 Predicting Rating Growth
Another interesting question one may pose is: given the

current rating history of a product, is it possible to predict
the distribution of it future ratings? While it is of theoretical
interest to discuss the statistical convergence properties of
the rating distribution as the number of ratings approaches
infinity; in real settings, most products during their lifetimes
receive only limited number of ratings. We thus focus on a
more concrete question as follows:

Given the first N ratings of a product, can we characterize
the distribution of its next M ratings?

Let us first consider the herding effects-agnostic case, in
which each rating is independently generated by the categor-
ical distribution as defined in Eqn.(9). Under this assump-
tion, the next M ratings follow a multinomial distribution;
specifically, the expected number of level-k rating is given
by Mηk with variance Mηk(1− ηk).

Next we incorporate the herding effects. Recall that the
distribution of the first (i− 1) ratings is given by xi, which
also corresponds to the history for the i-th rating. The tran-
sition probability from xi to xi+1 can be described as below:

Pr

(
xi+1 =

i− 1

i
xi +

ek
i

∣∣∣xi) =
exp(φi,k)∑
k′ exp(φi,k′)

(10)

where ek is a 1-of-K vector with the k-th element being 1.
Note that this transition rule essentially specifies a non-

stationary Markov chain in which both the state space and
the transition probability change from step to step. This
setting is not amenable to exact inference; we thus resort to
Monte Carlo methods [18].

Algorithm 3 sketches our prediction model. Starting with
current rating distribution xN+1 estimated from the given
rating history, it iteratively samples the next rating distribu-

tion using the transition rule in Eqn.(10). Let {x(i)
N+M+1}

L
i=1

be the set of samples of target distribution xN+M+1 and

x̂N+M+1 = 1
L

∑L
i=1 x

(i)
N+M+1 be the expectation of target

distribution. We can prove that for given thresholds ε and
δ, if the sample size L satisfies the following condition:

L ≥ b 1

2ε2
log

2

δ
c (11)

then |x̂N+M+1−xN+M+1| ≤ ε1 with probability at least 1−
δ, where 1 denotes a K-dimensional all-ones vector (details
given in Appendix).

It is also noted that Algorithm 3 features the complexity
of O

(
1
ε2

log( 1
δ
)MK

)
, thereby scaling up to large M .

Algorithm 3: Prediction of Rating Growth

Input: rating history {ri}Ni=1, prediction range M ,
error threshold ε

Output: estimation of rating distribution xN+M+1

// initialization

estimate Θ and f by Algorithm 1;
compute required sample size L by Eqn.(11) ;

compute xN+1 from {ri}Ni=1;
// random sampling

for i = 1, 2, . . . L do

x
(i)
N+1 ← xN+1;

for j = 1, 2, . . . ,M do

sample x
(i)
N+1+j according to Eqn.(10);

store x
(i)
N+M+1;

estimate E[xN+M+1] by 1
L

∑L
i=1 x

(i)
N+M+1;

4.3 What-If Analysis
The Markovian nature of the Heard model also enables

us to perform the “what-if” analysis. Concretely, given the
current rating distribution xi, one may arbitrarily change xi
to another distribution x′i to reflect any artificial conditions
one wishes to “inject” in (e.g., a burst of 50 five-star ratings
due to certain promotion campaigns). Staring from this new
state x′i and applying the prediction method above, one may
then gauge the consequences of the injected conditions by
predicting the trends of future rating growth.

Such what-if analysis is especially valuable for a range of
applications including market profitability estimation, bud-
geted advertising, and fraudulent manipulation detection.

5. EVALUATION
In this section we present an empirical evaluation on the

efficacy of the proposed models and algorithms.

5.1 Experimental Setting
We start with introducing the datasets and the alternative

techniques to be evaluated.

Real Customer Rating Data
We evaluate different models using the real customer rat-
ing data collected from Amazon, which spans a period of
approximately 18 years, including around 35 million ratings
regarding about 2.4 million products [15]. In particular, we

1091



category # products # ratings avg. # ratings avg. rating avg. entropy
Books 929,264 12,886,488 13.9 4.271 0.666
Music 556,814 6,396,350 11.5 4.410 0.555
Movies 212,836 7,850,072 36.9 3.944 0.955

Electronics 82,067 1,241,778 15.1 3.791 0.824
Total 1,780,981 28,374,688 15.9 4.253 0.673

Table 1: Summary of Amazon customer rating dataset.
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Figure 2: Accuracy of short-term prediction versus the length of rating history used for training.
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focus on the products in four major categories: Books, Mu-
sic, Movies & TV, and Electronics, which cover over 72% of
the total number of products in the collection. The statistics
of this rating dataset is summarized in Table 1. It is noticed
that these four categories demonstrate fairly diverse charac-
teristics, for example, with average rating entropy ranging
from 0.56 to 0.96.

Alternative Models
For comparison purposes, besides the Heard model, we im-
plemented two additional rating growth models:

• Independent Multinomial Generative model (Img). It
is the null hypothesis model, which assumes each new
rating is generated according to a fixed multinomial
distribution over different rating levels. This multino-
mial model is estimated from the rating history follow-
ing the maximum likelihood principle.

• Constant HEARD model (Heard c). It is a simpli-
fied variant of Heard, which follows the definition of
Eqn.(1), except that the magnitude function is set as
f(x) = 1 for x > 1; that is, it assumes the strength of
herding effects stays constant regardless of the cumu-
lative number of ratings.

We implemented all the models and associated algorithms
in Matlab and conducted the experiments on a Linux box
running 3.5GHz Intel i7 CPU and 16GB RAM. The default
parameter setting is: λ = 1, δ = 0.05, and ε = 0.01.

5.2 Validating Rating Growth Models
In this first set of experiments, we intend to evaluate the

validity of different rating growth models. For each product
in the dataset, we partition its temporally ordered sequence
of ratings into two subsequences as the training (i.e., rating
history) and testing parts respectively. We use the rating
history to train the rating growth models and let them pre-
dict the“future” ratings in the testing set. We compare their
accuracy in both short-term and long-term prediction.

Short-Term Prediction
In short-term prediction, we vary the length of rating history
(as the proportion of the entire rating sequence of a product)
and measure the average perplexity of the prediction of the
next 50 ratings by different models.

The results are shown in Figure 2. It is noticed that across
all four product categories, Heard and Heard c outperform
Img in terms of prediction accuracy. In particular, when only
limited data (e.g., 30%) is available for training, the accu-
racy of Img can be arbitrarily bad. This is attributed to the
fact that the prediction of Img relies on the overall statistics
of the rating history of each product, which however has not
emerged yet at this early stage. In contrast, Heard leverages
the rating histories of all the products in the same category
to fit the model, thereby achieving high accuracy even when
facing limited training data. This desirable property makes
Heard especially valuable for early-stage prediction, as we
will discuss shortly.

It is also noticed that Heard achieves higher accuracy than
Heard c but with marginally larger variance. This is con-
sistent with the fact that Heard adopts a more complicated
model than Heard c, which enables Heard to model a wider
range of herding effects but at the cost of slightly higher
variance.

0.01

−0.01

−0.01

0.00

0.01

0.00

−0.00

−0.00

0.00

0.01

−0.00

−0.01

−0.00

0.00

0.01

−0.01

−0.01

−0.01

0.00

0.03

−0.02

−0.02

−0.02

−0.00

0.06

K’

K

Books

 

 

1 2 3 4 5

1

2

3

4

5
−0.02

0.00

0.02

0.04

0.06
0.00

−0.01

−0.01

0.00

0.01

0.00

−0.00

−0.00

0.00

0.01

−0.00

−0.00

−0.00

0.00

0.01

−0.00

−0.01

−0.01

0.00

0.02

−0.01

−0.02

−0.02

0.00

0.05

K’

K

Electronics

 

 

1 2 3 4 5

1

2

3

4

5
−0.02

0.00

0.02

0.04

0.00

−0.00

−0.00

0.00

0.01

−0.00

−0.00

−0.00

0.00

0.00

−0.00

−0.01

−0.00

0.00

0.01

−0.01

−0.01

−0.01

0.00

0.03

−0.02

−0.02

−0.02

0.00

0.06

K’

K

Movies & TV

 

 

1 2 3 4 5

1

2

3

4

5
−0.02

0.00

0.02

0.04

0.06
−0.00

−0.00

−0.00

−0.00

0.01

−0.00

−0.00

−0.00

0.00

0.00

−0.00

−0.00

−0.00

0.00

0.01

−0.01

−0.01

−0.01

−0.00

0.03

−0.02

−0.03

−0.02

−0.01

0.07

K’

K

Music

 

 

1 2 3 4 5

1

2

3

4

5 −0.02

0.00

0.02

0.04

0.06

Figure 5: Heat maps of parameters {θk,k′} for each
product category.

Long-Term Prediction
In long-term prediction, we select the products with at least
500 ratings and fix the length of rating history (for training)
as 200. We then apply each model to predicting the rat-
ing distribution after the next M ratings (M is referred to
as the prediction range). The accuracy is measured by the
difference between predicted and actual average ratings.

The performance of different models is illustrated in Fig-
ure 3, wherein we vary prediction range M from 100 to 300.
It is observed that compared with Img and Heard c, the
prediction accuracy of Heard is much less sensitive to the
setting of M . This can be explained as follows. First, the
prediction of Img depends on the simple statistics (i.e., frac-
tion of ratings at different levels), which however may fluc-
tuate significantly over a large time span. Second, as M
increases, the change of the strength of herding effects can
no longer be ignored as Heard c does.

We can thus conclude that Heard achieves reliable accu-
racy in both short-term and long-term prediction tasks, im-
plying that Heard faithfully captures the growth dynamics
of product ratings.

5.3 Characterizing Herding Effect
Next, equipped with the Heard model as the analytical

tool, we conduct a quantitative study on the herding effects
observable in real customer rating data. More concretely,
for each product category, we apply Algorithm 1 to fitting
the model and examine the herding effects as characterized
by the estimated magnitude function f(·) and category-level
parameters {θk}k.

Strength of Herding Effect
Recall that f(n) specifies the strength of herding effects as a
function of the number of historical ratings n. Figure 4 illus-
trates the estimated f(n) for each product category. We fur-
ther apply curve fitting to f(n) with an exponential model
a∗exp(b∗n)−1 (a and b are parameters). Interestingly, the
magnitude functions in all four categories tightly follow the
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Figure 6: Cumulative proportion of products versus difference between intrinsic and external average ratings.

exponential curves, despite their slightly different parameter
settings of a and b.

This finding entails multi-fold implications: First, it con-
firms our intuition that the strength of herding effects evolves
with the cumulative number of historical ratings. Second, it
also echoes the results documented by existing experimental
studies (e.g., [19]) on the nonlinear relationship between the
predicability of individual behaviors and external influence.
Third, most importantly, it provides a formula to explicitly
quantify the strength of herding effects. For example, com-
paring the curves for the categories of Books and Movies &
TV, it is observed that the herding effects is stronger in the
category of Movies & TV, that is, customers are more easily
to be influenced by prior ratings when purchasing Movies &
TV products. Such information can be valuable for applica-
tions such as targeted advertising.

Mutual Influence
Now we proceed to examining parameters {θk}. Recall that
these parameters dictate the mutual influence between the
ratings at different levels, concretely, with θk,k′ specifying
how preceding level-k′ ratings may positively excite or neg-
atively inhibit the generation of level-k ratings.

Figure 5 illustrates the heat maps of {θk} estimated for
each product category. While each category has its unique
traits, certain common patterns are observed. First, high
ratings (e.g., five-star ratings) tend to stimulate new high
ratings while inhibiting the generation of low ratings. Sec-
ond, high ratings are more impactful than low ratings in
influencing other ratings. These observations are consistent
with the finding of the asymmetric herding effects of positive
and negative prior opinions as reported in [16].

5.4 Case Studies
As discussed in Section 4, equipped with Heard, we are

able to perform various analytical tasks. In this set of ex-
periments, we showcase how Heard helps answer two fun-
damental questions: (i) exposing the rating inherent to the
quality of a product (i.e., “intrinsic rating”) by factoring out
the herding effects from collective ratings, and (ii) perform-
ing predicative, what-if analysis by incorporating artificial
conditions into the rating growth dynamics model.

Debiasing Collective Ratings
To understand the issue that the simple aggregated (or ex-
ternal) rating of a product deviates from its true quality,
we apply Heard to estimate the intrinsic ratings as in Sec-
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Figure 7: Two sample products with similar intrinsic
ratings but with different rating growth histories,
leading to significantly distinct external ratings.

tion 4.1 and then measure for each product the difference
between its intrinsic and external average ratings.

Figure 6 shows the cumulative proportion of products with
respect to the difference between intrinsic and external rat-
ings in each category. It is observed that in all the cases, over
50% products have their external ratings deviate at least 0.5
from their intrinsic ratings, which is significant considering
that Amazon uses a five-level rating system.

Endowed with the capability of exposing the intrinsic rat-
ing of a product, we can then compare the true quality of two
products without being misguided by their external ratings.
Figure 7 showcases such an example, in which the dynam-
ics of the average external ratings of two sample products is
depicted. Despite that they differ significantly in their ex-
ternal ratings (about 0.9), their intrinsic ratings are indeed
fairly similar as shown in the right plot. This is explained by
that sample product 2 experiences a sequence of low ratings
at the early stage of its history, which considerably changes
the dynamics of its rating growth. With the help of Heard,
however, we are able to maximally debias this type of influ-
ence caused by the herding effects.

What-If Analysis
As introduced in Section 4.3, the Markovian nature of the
Heard model enables us to perform predicative, “what-if”
analysis by artificially incorporating desired conditions into
the prediction model and analyze the consequences using
simulation. For example, before deciding whether to invest
in a promotion campaign for a product, market analysts may
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wish to estimate the long-term influence of the burst of high
ratings due to the promotion.

Figure 8 shows one concrete example. We pick two sample
products respectively from the categories of Movies & TV
and Books, which have fairly close average ratings thus far.
Now, assuming the promotion takes effect, we inject 50 five-
star ratings into their rating histories. As shown in the right
panel of Figure 8, the prediction by Heard tells us: while
both products experience similar short-term bursts in their
popularity, in the long run the promotion has much longer-
lasting influence on the sample product from the category
of Books. It is clear that this provides valuable information
for the decision making of market analysts.

5.5 Scalability
In the last set of experiments, we evaluate the scalability

of Heard. Specifically, for model inference, we measure the
average execution time per product by Heard under vary-
ing length of rating history (for training); meanwhile, for
future rating prediction, we measure its average execution
time under varying setting of prediction range.

The results are depicted in Figure 9. It is observed that
the execution time of Heard grows approximately linearly
with the length of rating history and the range of prediction.
This also confirms our theoretical analysis on the complexity
of Algorithm 1 and Algorithm 3. We can thus conclude that
Heard scales up to large rating datasets.

6. CONCLUSION
This paper presented a quantitative framework to gauge

the herding effects in collective opinions of individuals. We
proposed Heard, a mechanistic modeling framework for the
growth dynamics of online product ratings, which explicitly
accounts for the herding effects of prior customer opinions.
Using massive customer rating datasets, we demonstrated
the efficacy of Heard in capturing the dynamics of rating
growth, quantifying social influence and debiasing collective
ratings, and further performing what-if analysis against arti-
ficial manipulations. Heard is not limited to product rating
systems. Indeed, the mechanistic nature of Heard makes it
applicable for modeling the herding effects in other domains
where social influence plays a role, from crowdsourcing and
recommender systems to electoral polling.

This work also opens up several directions for future in-
vestigations. For example, recent work has shown that the
temporal dynamics of collective response to a publication
follows rather reproducible patterns, as citations can be cap-
tured by a mechanistic model [23]. Hence, incorporating the
temporal dynamics in the rating growth model can be fruit-
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Figure 9: Average execution time per product by
HEARD in model inference and rating prediction.

ful and could potentially shed new light on the nature of
crowd wisdom. Furthermore, our framework is orthogonal
to studies on the text and social aspects of product reviews
and collective opinions, suggesting a rather promising direc-
tion by combining the two approaches. Lastly, the model
makes falsifiable predictions for collective response against
artificial manipulations, making it a viable candidate to as-
sess and guide experimental studies, results of which could
feed back to and improve the model with more accurate and
realistic predictions.
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APPENDIX
Surrogate Function.
We first prove that the objective function Lλ(Θ) as defined

in Eqn.(2) and its surrogate function Q(Θ; Θ(n)) as defined
in Eqn.(3) satisfy the following relationships:{

Q(Θ; Θ(n)) ≥ Lλ(Θ) ∀Θ,Θ(n)

Q(Θ(n); Θ(n)) = Lλ(Θ(n)) ∀Θ(n)

First, according to the definition of Eqn.(1), we have:

Lλ(Θ) =
1

N

∑
i

(
log
∑
k

exp(φi,k)−
∑
k

yi,kφi,k

)

+
λ

2

(
||Θ||2F +R(f)

)
We focus on the log-sum-exponential term log

∑
k exp(φi,k)

and apply the following quadratic upper bound [12]: for any
vectors u ∈ RK and v ∈ RK ,

log
∑
k

exp(uk) ≤
∑
k

(uk − vk)2 − 1

K

(∑
k

(uk − vk)

)2

+
∑
k

exp(vk)(uk − vk)∑
k′ exp(vk′)

+ log
∑
k

exp(vk)

In our context, we replace the log-sum-exponential term of
Lλ(Θ) with its upper bound and substitute uk with φi,k and

vk with φ
(n)
i,k , which then leads to the result of Q(Θ; Θ(n)) ≥

Lλ(Θ).

To prove Q(Θ(n); Θ(n)) = Lλ(Θ(n)), it is noted that the
upper bound above is exact when u = v.

Euler-Lagrange Equation.
To derive Eqn.(7), it is first noticed that the optimization
problem in Eqn.(6) can be rewritten as:

min
f∈L1(R)

∫ ∞
0

F (f, f ′)dt

where F (f, f ′) is defined by:

F (f, f ′) = AtI{t ∈ N}f(t)2 +BtI{t ∈ N}f(t) +
λ

2
(f ′(t))2

According to Euler-Lagrange equation, the solution of this
problem satisfies the following differential equation:

∂F

∂f
− d

dt

∂F

∂f ′
= 0

By substituting F with the definition above, we get the
differential equation in Eqn.(7).

Sample Size.
Here we derive the number of samples required for the given
thresholds ε and δ as in Eqn.(11). Without loss of generality,
consider the k-th element of xN+M+1, xN+M+1,k. Following
the Hoeffding’s inequality, we have:

Pr(|x̂N+M+1,k−E[x̂N+M+1,k]| ≥ ε) ≤ exp

(
− 2L2ε2∑L

i=1(bi − ai)2

)
where x

(i)
N+M+1,k is bounded by [ai, bi].

Notice that x̂N+M+1 is an unbiased estimator of xN+M+1

and x
(i)
N+M+1,k is bounded by [0, 1]. By setting the right side

of the inequality above to δ, we obtain Eqn.(11).
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