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ABSTRACT
We often care about people’s degrees of belief about certain events:
e.g. causality between an action and the outcomes, odds distribu-
tion among the outcome of a horse race and so on. It is well recog-
nized that the best form to elicit opinion from human is probability
distribution instead of simple voting, because the form of distri-
bution retains the delicate information that an opinion expresses.
In the past, opinion elicitation has relied on experts, who are ex-
pensive and not always available. More recently, crowdsourcing
has gained prominence as an inexpensive way to get a great deal
of human input. However, traditional crowdsourcing has primarily
focused on issuing very simple (e.g. binary decision) tasks to the
crowd. In this paper, we study how to use crowds for Opinion Elic-
itation. There are three major challenges to eliciting opinion infor-
mation in the form of probability distributions: a) how to measure
the quality of distribution; b) how to aggregate the distributions;
and, c) how to strategically implement such a system.

To address these challenges, we design and implement COPE
(Crowd-powered OPinion Elicitation market). COPE models crowd-
sourced work as a trading market, where the “workers” behave
like “traders” to maximize their profit by presenting their opinion.
Among the innovative features in this system, we design COPE
updating to combine the multiple elicited distributions following a
Bayesian scheme. Also to provide more flexibility while running
COPE, we propose a series of efficient algorithms and a slope based
strategy to manage the ending condition of COPE. We then demon-
strate the implementation of COPE and report experimental results
running on real commercial platform to demonstrate the practical
value of this system.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Data mining; H.1.2 [MODELS AND PRINCIPLES]: User/Machine
Systems—Human information processing
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Figure 1: Example of Opinion Elicitation of five participants over two
variables(NRC-EU accident uncertainty analysis [4])

1. INTRODUCTION
The application of crowdsourcing has ushered in a brand new

age of human-computer collaboration. Online labor markets, such
as Amazon MTurk1, oDesk2, enable large scale crowdsourcing by
providing access to human computation “workers” as well as a pro-
grammable infrastructure. The basic assumption in crowdsourcing
is that the tasks must be broken down into simple units, such as
multiple-choice questions. There is considerable skill in breaking
down a complex task into simple units that can be crowd sourced.

Often, we may benefit from getting a richer input from work-
ers. For a very simple example, consider the question ‘how many
inches of snow will fall tomorrow in city X?’ We could discretize
this, say into integers, and ask each worker to pick a snipe number
as prediction. But such an approach will miss the nuance that the
worker predicts 3-6 inches, and chose to predict 4 inches because
a single discrete choice was required. For this worker, 6 inches
is a likely outcome, while 7 inches is unlikely, but the prediction
of 4 inches does not tell us this. In short, simple voting does not
suffice because it coarsens the distribution and leads to an extrem-
ized opinion expression. What we would like is a framework for
eliciting a probability distribution from a worker, and aggregating
this with similar distributions obtained from other workers. We call
such distributions as opinions.

Opinion is a concept of wide extension, which refers to numer-
ical statements expressing an individual’s degrees of belief about
certain events [17]. Rooted from this definition are such things as
prior, posterior, structural distribution, as well as additive probabil-
ity and belief functions, which can all be expressed in a form of
distribution. Such opinion information can then be used not just
frivolous pursuits, such as predicting amount of snow, but also as a

1www.mturk.com
2www.odesk.com
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foundation for more advanced decision making procedures and to
construct more sophisticated models for risk analysis [4].

In this paper, we focus on exploiting the intrinsic human abil-
ity to estimate an opinion, and develop a crowdsourcing frame-
work for this purpose. Specifically, given an event space S , the
“workers” are expected to contribute their frank opinion �ri in the
forms of probability distribution. When the process closes accord-
ing to certain conditions, the aggregated probability distribution is
the elicited consensus opinion.

EXAMPLE 1. In the standard Probabilistic Risk Analysis [4],
during the construction of the Event Trees, one significant step is
to provide an accurate probability distribution among many pos-
sible outcomes. For certain cases, such probability could be ob-
tained analytically(e.g. failure probability in Circuit Design), but
for many sociological or business-related situations, the distribu-
tions have to be gathered from a group of related individuals [12].
For example, the Council of Government plans to change the ar-
rangement of public holidays, and before they make the decision,
the council board expects a prior distribution among all possible
outcomes, e.g. less tourism, more tourism or simply neutral to the
alternation. Thus, a crowdsourced application could help to collect
the distributed beliefs efficiently.

EXAMPLE 2. Another type of applications appears in the causal-
ity structure determination, which is widely utilized in building
Probabilistic Graphical Models [22]. Given an event, many indi-
viduals are invited to describe a set of possible causes for the out-
come, along with their probabilistic distributions. Such distribution
information can help to build more sophisticated quantitative mod-
els such as Bayesian Networks and so on. Figure 1 illustrates an
example where 5 expert participants elaborate their probabilistic
estimation on two environmental variables B-3-600 and B-3-300 in
terms of uniform distribution on selected range over a value space.
Then a set of sophisticated inference can be conducted [4].

There is a crucial challenge for such Opinion Elicitation on cur-
rent crowdsourcing platforms: opinion distribution does not have a
“ground truth” with ordinary meaning. Formally, suppose for indi-
vidual i, the intrinsic opinion for her on an m outcomes event is a
probability distribution �d = {d1, d2, . . . , dm}, but during the elic-
itation process, her reported estimation might be �r = {r1, r2, . . . ,
rm} �= �d. The reason of insincerity might be carelessness or indif-
ference: since the “workers” from online labor markets are essen-
tially money-driven, sloppiness naturally appears when their per-
formance cannot be measured and eventually does not matter. In
such cases, we cannot benefit from the correctness based payoff
mechanism currently popular on crowdsourcing platforms.

The absence of ground truth knowledge has previously been ad-
dressed, most famously in the ESP game [1], where the payoff de-
pends on matching with a partner (or another worker). The basic
idea is that if two (or more) individuals independently think of a
label for an image, that label is likely to be a good choice. Inappro-
priate labels are unlikely to qualify. As presented, this is a discrete
scheme, there either is a match or there isn’t. We would like to
extend this idea to find a continuous function to score how well
probability distributions match. Furthermore, rather than match-
ing between arbitrarily paired individuals, we do so between each
individual and the group ‘consensus’.

To address these needs, we propose a ‘market’ framework for
crowdsourcing. Workers trade in this market to earn as high a
profit as they can. The concept of variable pay for work is al-
ready accepted and widely practiced – many Human Intelligence
Tasks (HITs) are offered with a base pay and a (quality-dependent)

bonus, with the bonus sometimes being substantially more than the
base pay. The quality determination for the bonus is sometimes
subjective. We propose instead to have the bonus be determine by
the market in a manner that is clearly defined, completely transpar-
ent, and reflective of opinion correctness (in a manner we will for-
mally specify below). We implement these ideas in COPE (Crowd-
powered OPinion Elicitation market). The base pay is provided to
workers in the form of seed capital that they invest in an opinion
elicitation market with their opinion. We use Bayesian updating,
beginning with our initial guess as the prior, to obtain a posterior
distribution that reflects the weighted opinions of all the traders
in the market. When the task ends, the payoff for each trader is
proportional to her contributed modification from the prior to the
posterior. Traders that have a zero, or negative contribution, re-
ceive no payoff (or a small fixed payoff). In other words, traders
have an economic incentive to align their opinion with what they
believe will be the consensus direction. Sometimes, individuals
may hold opinions that they know are different from the general
view. In most opinion elicitation scenarios, we are less interested
in such idiosyncratic opinions and more interested in the consensus
opinion. The economic incentives of our scheme align well, even
for such idiosyncratic individuals, motivating them to express what
they truly believe to be popular opinion.

In this paper, we have made the following contributions:

• We formally propose the crowdsourcing application of Opin-
ion Elicitation, which treats every crowdsourcing worker as
an intrinsic opinion provider and elicits probability distribu-
tion information from them.

• We propose COPE as the elicitation mechanism, which guar-
antees the reliability of elicitation and cost control. The COPE
is built upon a general crowdsourcing worker market, and
we strategically induce every involved worker to behave as a
risk-neutral trader to achieve honest information elicitation.

• We propose a Bayesian scheme based distribution updating
method to incorporate distribution reports from the traders
with correctness proof. We also design a series of algorithms
to accelerate the incremental merging of causality distribu-
tion as well as a slope based market running strategy to pro-
vide more operational flexibility on COPE.

• We practically implement COPE on a general labor market
and test the system with real datasets. The COPE not only
serves as a practical information market, but also provides
extra human computation resource as a side product.

The rest of the paper is organized as follows. In Section 2 we
present a framework overview about the COPE system. In Sec-
tion 3 we formally present the design of COPE with necessary pre-
liminaries. In Section 3 we present the algorithmic details about
the COPE system and a set of core algorithms. In Section 4 we
introduce the mechanism of running the system of COPE. In Sec-
tion 5 we elaborate on the non-trivial implementation of COPE on
Amazon MTurk. In Section 6 we illustrate the experimental re-
sults. Then in Section 7 we introduce the recent related work. We
conclude the paper with discussion in Section 8.

2. FRAMEWORK OVERVIEW
In this section, we present a system overview of COPE(Figure 2).

Its three major components are introduced one by one as follows.
Pre-market Building
A running market entails traders and trading capital. In order

to turn a crowdsourcing “worker” into an informative “trader”, the
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Figure 2: The Framework of COPE

Pre-market Building module is designed. First, each “worker” is
given a set of normal decision making tasks(termed as deposit tasks),
e.g. sentiment analysis of short textual messages, image tagging,
simple ranking according to image content and so on. After the
“worker” finishes these tasks, the promised rewards Ci is retained
and set as the seed capital. Note that the nature of these tasks will
not affect the performance of the market, and these extra crowd-
sourced tasks are a by-product from running COPE.

Meanwhile, among the normal crowdsourcing tasks, a set of test-
ing tasks, of which we know the true answers, are planted. We then
examine a workers responses to these testing tasks to find patterns
indicating systematic bias, which helps to calibrate the distribution
aggregation afterwards. More details can be found in Section 3.2.2.

Market Running
When the traders are prepared, with their seed capital and cate-

gorical labels, the COPE is initiated. The system presents to each
trader a trading topic, i.e. a set of exclusive outcomes of one ac-
tion or possible reasons for one phenomenon, and each trader may
specify a distribution among these options. The trader is informed
that their later payoff depends on how much their presented answer
contributes to the final global distribution of the entire market. The
final payoff will be given when the market is closed by the requester
or when other conditions are met like Market Bankruptcy. Please
refer to Section 3.1.2 for more details about the payment. COPE
then receives a report �ri from each trader ti, and the COPE method
is incurred to merge the new reports into the global distribution �p.

Market Supervision
The market holder, a.k.a. decision maker monitors COPE from

the market supervision module, where the overall cost of the mar-
ket is calculated whenever a new updating is conducted. We assume
that the decision maker is working under the constraint of a patron
budget B. She may choose to end COPE when the overall cost ex-
ceeds the preset budget. In addition, she is allowed to adopt a slope
based running strategy to flexibly decide the terminating condition.
More details can be found in Section 4.

3. DESIGNING COPE
In this section, we first present some basic concepts required to

define the information market and probability aggregation. Then
we formally describe the design of the COPE.

3.1 Preliminaries

3.1.1 Trader
The atomic units that build up the COPE are the traders. A trader

in COPE, invests an asset by presenting a report �r and gets profit
by receiving the payoff depending on the presented report M(�r).

Specifically, a trader Ti is able to provide a report �r as a prob-
ability distribution over the event space S of a set of random vari-
ables X = {X1, X2, . . . , Xm}. The report �r ∈ P belongs to
the possible report space P , and a trader Ti chooses to present �r
rather than any other possible report �r′ ∈ P when the correspond-
ing payoffs M(�r) > M(�r′). That is, a trader will present a report
to maximize his/her payoff according to a certain reward rule.

Without loss of generality, we assume in this work that all traders
in COPE are Risk-neutral Traders, which is commonly utilized
in Probabilistic Risk Analysis. This property refers to the traders
who have no preference between choices with equal expected pay-
offs(profit), neglecting the risk associated to each option. In other
words, a Risk-neutral Trader behaves/invests only according to the
expected payoffs(profit).

DEFINITION 1 (RISK-NEUTRAL TRADER - Ti). Given two
optional reports �r and �r′ and their corresponding payoffs M(�r)

and M(�r′) as two real-valued random variables, a Risk-neutral
Trader Ti considers �r � �r′ iff E[M(�r)] > E[M(�r′)]. Here the
operation � indicates preference among actions.

For simplicity, in this paper we use simply the term trader to
refer to a Risk-neutral Trader. Note that in the effort of approx-
imating market opinion with the mean beliefs of the traders, risk
aversion plays a positive role as well as inevitably introducing cer-
tain bias [33]. We consider more detailed tuning on risk-aversion
stimulation as the future work, which can be strategically leveraged
by adjusting the payoff function in the section below.

3.1.2 Payoff
While COPE is running, the market maintains a global probabil-

ity distribution �p, which combines all previous reports from traders.
If the COPE stops at step n, i.e. n traders have finished their in-
vestment by providing reports �R = {�r1, �r2, . . . , �rn}, the COPE
conducts the payoff according to their contributed estimated dis-
tribution. In the design of COPE, we first use KL-divergence to
measure the distance between two discrete distributions:

DEFINITION 2 (KULLBACK-LEIBLER DIVERGENCE [23]).
Let �r and �u be two probability mass functions in a discrete do-
main S with a finite or countably infinite number of values. The
Kullback-Leibler diverge(KL divergence) between �r and �u is

D(�r||�u) =
∑

x∈S
�r[x] log

�r[x]

�u[x]
(1)

KL divergence is defined where for any x in space S if �r[x] > 0
then �u[x] > 0.

There is a wide spectrum of distance measurements that can
serve to gauge the “contribution” from prior distribution �p to pos-
terior distribution �p∗ by a report �ri. Considering the scenario of
COPE, we prefer KL-divergence(also formally known as relative
entropy) to measure the information gain between two distribu-
tions. There are two major reasons: a) the process of eliciting
causality from crowdsourcing traders is an information gaining pro-
cess, and KL-divergence is one of the natural practices followed
in Bayesian inference or updating [22]; b) in accordance to the
measurement of the intrinsic goodness of a report �ri(introduced
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in Section 3.1.3), which is in essence a measure of information en-
tropy, the preference of relative entropy seamlessly incorporates the
COPE Updating and corresponding payoff.

The payoff to a trader Ti considers the relative contribution to the
final distribution �p from her(measured as KL-divergence D(�ri||�p)).
Meanwhile, it is designed to guarantee the honesty of each trader
as well. Therefore, we propose the following payoff mechanism
which incorporates a non-linear component that is related to the
final outcome:

DEFINITION 3 (PAYOFF). Given the market estimation �p, a
trader Ti, whose proposed report is �ri, will receive a payoff Mi,
when the market is closed.

Mi = Ci · Odd

Di + 1
= Ci · Odd

D(�ri||�p) + 1
(2)

Ci is the invested capital of Ti, and Odd is the preset parameter
such that at most a trader could earn Odd× Ci as payoff.

In Definition 3 we use D(�ri||�p) instead of D(�p||�ri) in order to
avoid the zero value in �ri, which may affect the correctness of the
KL-divergence. In addition, to enhance the practical usage, cur-
rently we assume the invested capital Ci for each trader Ti is the
same seed capital: C1 = C2 = . . . = Ci = . . . = C, and the
payoff can be thus simplified as

Mi =
C · Odd

D(�ri||�p) + 1

The payoff mechanism in Definition 3 enables COPE to punish
careless or wrong traders by confining the rewards in the range of
(0, Odd × Ci], where the condition for equality is that the report
�ri = �p the global posterior distribution. We summarize and provide
the following lemma:

LEMMA 1 (PAYOFF RANGE). The range of payoff for trader
Ti is as follow:

0 < Mi ≤ Odd× Ci (3)

The maximum equality is observed when �ri = �p.
PROOF. Based on Equation 1, we notice that

D(�ri||�p) = ∑
j∈S �ri[j] log

�ri[j]
�p[j]

(4)

= −∑
j∈S �ri[j] log

�p[j]
�ri[j]

(5)

≥ − log
∑

j∈S �ri[j]
�p[j]
�ri[j]

(6)

= log
∑

j∈S �p (7)

= 0 (8)

The inequality in line 6 derives from Jensen’s Inequality and the
convexity of log(·) function. Thus, we could obtain that

0 <
Odd

D(�ri||�p) + 1
≤ Odd (9)

where Lemma 1 is proved. And without difficulty, we can observe
that the turning point for a no-loss-no-gain investment is Odd −
D(�ri||�p) = 1.

The introduction of KL-divergence as a leveraging parameter in
computing the payoff helps the market holder to encourage infor-
mative traders. Obviously, this mechanism converts the labor mar-
ket into a trader market without introducing real-money gambling
settings which constrains the development of information markets
in a long list of countries [18]. Moreover, currently the design of
COPE does not allow traders to forsake the opportunity to become
a trader, i.e. that must confront the risk of losing the seed capital.
The mechanism where abandonment of risking will be explored as
future work.

Table 1: Summary of Notations
Notation Description

Ti a Risk-neutral trader with index i
�p the current market estimation
�ri the report from trader i
�di the subjective belief of trader i

sc(·) the goodness measure function
Odd the boosting parameter set by market holder
�μo the mean of optimistic distributions
�μp the mean of pessimistic distributions

C(Ci) the seed capital (of trader Ti)
Mi the payoff of trader Ti

λ the adjusting parameter for COPE updating

3.1.3 Goodness of Reported Distribution
To reward the traders who contribute reports with more care and

honesty, the COPE incorporates the factor sc(�ri) to evaluate the
goodness of the contributed report �ri.

DEFINITION 4 (GOODNESS). Given a proposed report �ri from
trader Ti, we define the goodness of the report sc(�ri)as its expected
score according to scoring rule in logarithm form [30], i.e.

sc(�ri) =
∑

j

�ri[j] · Sj(�ri[j]) =
∑

j

�ri[j] log �ri[j] (10)

The definition of goodness sc(�ri) describes the degree to which
the trader tends to present a more extreme distribution(which is
more informative) than an even one, which helps the COPE ad-
just the incremental update from each new report �ri. Specifically,
we notice that the value of goodness E(sc) is mathematically the
entropy of the given report �ri, which reflects the amount of new
information that brought in by trader Ti.

Note that we avoid using a traditional strict scoring rule [18] as
payoff mechanism mainly for two reasons: 1) Strict scoring rules-
based mechanisms are mostly suitable for verifiable tasks; and 2) It
is too intricate to explain the sophisticated strict scoring rule to
workers from Labor Markets, and even with a explicit explanation,
the haste while specifying distribution weakens the rule-oriented
calibration to a large extent.

We tentatively present the following conjecture for further ex-
ploration:

CONJECTURE 1. The risk-neutral trader invests honestly under
the payoff mechanism in COPE, i.e.

�ri = �di (11)

Since any linear transformation of existing strict scoring rules is
also a strict scoring rule, thus, a light modification of the current
payoff mechanism on COPE may validate the above conjecture.

3.2 Mechanism of COPE
The system of COPE is an integrated market that is built on a

general crowdsourcing platform. It receives trades (bets) as elicited
distribution from traders and combines them into a global distribu-
tion. In this section, we present the design and mechanism of three
major technique steps that enables the COPE.

3.2.1 Evaluating �ri

Each trader Ti will accomplish several normal crowdsourcing
tasks before she/he is entitled to participate into a trading. By
injecting probe tasks, whose answers are known beforehand, into
normal ones, we could evaluate the bias type of the trader Ti .

After finishing the given batch of normal crowdsourcing tasks,
each worker is labeled into one of two categories, namely opti-
mistic Ro = {�ro1, �ro2, . . . , �ro|Ro|} and pessimistic Rp = { �rp1 , �rp2 ,
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Algorithm 1: Overall Procedure while Running COPE
Input: Outcome Space S , Market Holder’s Prior Distribution

�p0, Budget B > 0, n Risk-neutral traders
Output: Posterior Distribution �p∗, payoff Mi to each trader Ti

1 Initialization: Set the prior distribution �p0 = �u as uniform
distribution

2 Pre-market Building: For each trader Ti, label it according to
his category, calculate the marginal mean �μo and �μp according
to Equation 12 and 13

3 Market Running: For each trader Ti, the Market obtains an
discrete distribution �ri over the outcome space S

4 for each trader Ti do
5 adjust the global posterior �p∗ according to COPE

updating;

6 Post-market:Calculate bounds OR exact Market Cost MC
based on Section 4;

7 if Bankruptcy conditions are met then
8 stop the market;
9 conduct payoff to each trader Ti;

10 return posterior distribution �p∗;

. . . , �rp|Rp|}. For each category, an arithmetic mean is calculated
and set as the estimation of the first moment of that category.

Specifically, for the category of optimistic workers, we have:

�μo =

∑
i
�roi

|Ro| (12)

And for the pessimistic workers, we have:

�μp =

∑
i
�rpi

|Rp| (13)

Note that to achieve higher accuracy from COPE, more cate-
gories can be introduced. And the estimated moment values for
each category serve as a clue for the following Bayesian scheme
distribution updating.

3.2.2 Updating New Report �ri into �p

One of the core technique challenges for building the COPE is
how it should aggregate the elicited reports from individuals into a
universal distribution, while following certain guidance or princi-
ples that suits the semantic requirements from the market requester
or decision maker. This is a controversial topic that incurs long
debates among the community of subjective probability [4, 11, 12],
and two major types of updating schemes, namely Axiomatic and
Bayesian both exhibit observable rationales under various updat-
ing situations. Therefore, the design of updating scheme should
be considered together with the specific application scenario. As
mentioned in the introduction, the market holder establishes COPE
mainly in order to elicit a distribution for further risk analysis tasks,
which implies the existence of a latent decision maker who would
conduct an exclusive decision among the possible outcomes. Ac-
cording to C. Genest and J. Zidek’s conclusion in [17], the most ap-
propriate method for updating the distribution under such circum-
stances should follow the Bayesian scheme with a set of specific
constraints. In this section, we present the mechanism of COPE to
update the current global distribution �p following such a scheme.

In the combining procedure, the current global distribution is
treated as the prior distribution, and the aggregated distribution is
then treated as the posterior distribution. Following the Bayesian

updating scheme, we have following updating expression:

p∗ = Pr(�p|�r) ∝ Pr(�p)L(�r|�p)
Pr(�r)

(14)

However, in the setting of COPE or other running information
market, it is practically impossible for the decision maker to as-
sess a full likelihood function Pr(�p)L(�r|�p). Fortunately, powered
by the normal deposit tasks finished by each trader, we could par-
tially evaluate their tendency with the estimation of the first mo-
ment value of each category. Then we are able to devise the COPE
combining method following standard Bayesian scheme.

First we introduce two essential properties that describe a nor-
mative combining method within Bayesian scheme, the Unanimity
Principle and Compromise Principle.

PROPERTY 1 (UNANIMITY PRINCIPLE). If the reports are the
same, the prior distribution should be same to the posterior distri-
bution.

PROPERTY 2 (COMPROMISE PRINCIPLE). The posterior dis-
tribution should reside in the range of the two extreme reports.

It is necessary to follow these two principles in order to design a
updating method that confirms with Bayesian Updating. The work
in [16] studies the expert opinion combination in terms of fore-
casting tasks, and the proposed “GS-I” model only entails partial
assessment of the forecasters to complete the Bayesian updating.
Inspired by this, we design the COPE Updating as follows.

DEFINITION 5 (COPE UPDATING). For one step updating, the
posterior distribution is defined as below:

p∗ = p+ λ(�ri − �μ) (15)

and the λ is the confidence from the decision maker for the extreme
values in trader’s distribution.

λ =
sc(�ri)

log|S| · UB (16)

where |S| is the size of the possible event space and UB = min{ p
μ
,

1−p
1−μ

} gives the upper bound of the parameter λ.

Here λ is called adjusting parameter which helps the decision maker
to gauge the mis-calibration or bias of the reporting individuals.
Note that since the goodness of a report sc(�ri) is the entropy of
the given report, we can obtain the fact that λ ∈ [0,min{ p

μ
, 1−p
1−μ

})
with the following lemma.

LEMMA 2. The range of the adjusting parameter λ is within
[0,min{ p

μ
, 1−p
1−μ

}).
PROOF. Suppose U(x) = 1

|S| is the probability mass function
of a uniform distribution over outcome space S , and �ri is the report
vector from trader Ti. Then

D(�ri||U) =
∑|S|

j=1 �ri[j] log
�ri[j]
U [j]

(17)

= log |S| −H(�ri) (18)
= log |S| − sc(�ri) (19)

Then according to proof 1, we know that D(�ri||U) ≥ 0. Thus we
have the following inequality.

0 ≤ D(�ri||U) = log |S| − sc(�ri) (20)

which indicates that

0 ≤ λ =
sc(�ri)

log|S| · UB ≤ UB (21)

and Lemma 2 is proved.
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Algorithm 2: Procedure of Computing Market Cost of COPE
Input: current global posterior distribution �p, reports from n

traders Rn = {�r1, �r2, . . . , �rn}, seed capital C, preset
boosting parameter Odd

Output: total Market Cost MC

1 Initialization: zero-valued vector �M with size n, and
MC = 0

2 for each �ri in Rn do
3 compute Mi according to Equation 2 ;
4 �M [i] = Mi ;
5 MC+ = �M [i] ;

6 return MC;

Then the benefit of introducing COPE Updating method can be
observed: the design of COPE naturally satisfies the aforemen-
tioned two basic principles. We then claim the following lemma.

LEMMA 3 (PROPERTIES OF COPE). The COPE updating
confirms with the Unanimity Principle and Compromise Principle.

PROOF. According to Theorem 2.1 in [16], an updating strat-
egy satisfies the two properties when the value of λ observes the
following condition:

max{ p

μ− 1
,
p− 1

μ
} ≤ λ ≤ min{ p

μ
,
1− p

1− μ
}. (22)

Since λ = sc(�ri)
log|S| ∈ (0, 1), it satisfies the requirement above. Thus

the two properties are satisfied.

3.3 Cost of COPE
To establish a COPE, the market holder has to be willing to be a

patron with a budget B: when the overall cost of the COPE exceeds
this budget, the market has to be closed(termed as bankruptcy). Of
course, the patron could close the market before this, if a suffi-
ciently good result has been obtained.

DEFINITION 6 (MARKET COST). Given a COPE, the current
distribution �p, the set of reports from n traders Rn = {�r1, �r2, . . . ,
�rn}, the Market Cost is defined as the summation of the payoffs
from every trader ti, i.e.

MC = MC(�p,Rn) =

n∑

i=1

Mi (23)

The ending condition for one instance of COPE is that MC ex-
ceeds the preset budget B. And when this condition is reached,
the market stops accepting any new report and returns to the mar-
ket holder with the current global distribution �p∗. This condition
has to be checked after every trade report, and can be expensive to
compute. In Sec. 4.3 we describe how to do this efficiently.

4. RUNNING COPE
In this section, we introduce the essential techniques to keep

the COPE running. First we introduce the algorithm conducting
the COPE Updating Strategy in a batching style. Then we intro-
duce the computation of the Market Cost given the set of reports
Rn = {�r1, �r2, . . . , �rn}. Moreover, we further introduce an ad-
vanced strategy to run the market with more flexibility. An overall
procedure to run the COPE is presented in Algorithm 1.

4.1 Batch COPE Updating
In Section 3.2.2, we introduce the mechanism of updating the

current global distribution �p from one individual report �ri. For each
iteration of such individual update, the algorithm takes O(|S|) time
complexity. If given an entire set of reports Rn = {�r1, �r2, . . . , �rn},
the total time complexity becomes O(|S| · n). In this section, we
introduce a close form of conducting COPE updating in batch.

THEOREM 1 (BATCH COPE UPDATING). Givenn individual
reports Rn = {�r1, �r2, . . . , �rn}, and the labeled category mean �μo

and �μp, the posterior global distribution over outcome set S can
be computed following the equations below [16]:

�p∗ =
p1−n

∏n
i=1 ni

p1−n
∏n

i=1 ni + (1− p)1−n
∏n

i=1(1− ni)
(24)

where for each 1 ≤ i ≤ n, ni = [p + λi(�ri − �μ)] is between the
upper and lower bounds in Equation 22 and �μ is to be replaced
according to the label of each report.

By conducting the batch-style COPE Updating, the time complex-
ity could be reduced to O(n+ |S|).

4.2 Computing Market Cost
The computation of Market Cost MC is another important issue

to consider in order to efficiently manage the COPE. After obtain-
ing the posterior global distribution �p by conducting COPE Updat-
ing, the market goes through all the reports and calculate the exact
payoff for each trader. A sketchy procedure of computing the Mar-
ket Cost MC is given in Algorithm 2. The time cost of exactly
calculating a market cost is O(n · |S|).

Note that the payoff for each trader is positive, but there are
traders who suffer from payoff less than the seed capital C due
to large difference between their report �ri and �p.

4.3 Market Running Strategy
When a market holder runs a COPE, he acts both as a patron to

support the market and a decision maker to determine when to stop
the market. The most simple strategy of running the market is to
calculate the exact total market cost every time when a new report
comes, and shut down the market immediately when MC ≥ B,
which we term as Bankruptcy.

Besides the trivial strategy described above, in this section, we
propose a slope based running strategy which grants the market
holder more flexibility, as well as improving the efficiency. The
slope is formed by the upper and lower edges of the market cost:
when the upper edge reaches the preset budget B, the system trig-
gers a warning that the Budget is running out and starts to calculate
the exact MC; if the lower edges exceeds the Budget, the market
is terminated immediately. But while the Budget is running within
the slope range, the system keeps the market running and returns to
the market holder the current result and wait for the decision of the
holder.

To facilitate such a slope based strategy, we develop a pair of
lower and upper bounds of the KL-divergence based on a variant of
Pinsker Inequality.

Lower Slope Edge
First we define the concept of Variational Distance, a.k.a. L1-

distance, which can be computed faster than the KL-divergence due
to the avoidance of computing weighted logarithm value.

DEFINITION 7 (VARIATIONAL DISTANCE). Let �v and �u be
two probability mass functions in a discrete domain S with a finite
or countably infinite number of values. The Variational Distance
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Algorithm 3: Procedure of determining Market Bankruptcy of
COPE
Input: current global posterior distribution �p, reports from n

traders Rn = {�r1, �r2, . . . , �rn}, seed capital C, preset
boosting parameter Odd

Output: Decision of Bankruptcy
1 Initialization: Bankruptcy bool flag FBK = 0,
2 for each �ri in Rn do
3 for each j in �ri do
4 compute the Vi(�ri, �p)+ = |�ri[j]− �p[j]| ;
5 compute the ci = maxj(�ri[j]/�p[j]) ;

6 ML
i = Odd · C/(log 2 · V (�ri, �p) + log ci + 1) ;

7 MCL+ = ME
i ;

8 if MCL −B > 0 then
9 return FBK = 1(Bankruptcy);

10 else
11 return FBK = 0(still running);

between �v and �u is

V (�v, �u) =
n∑

j=1

|�v[j] − �u[j]| (25)

whose value is always non-negative.

We now present the following Lower Bounding theorem.

THEOREM 2 (LOWER BOUNDING). Given a report �ri, the cur-
rent global distribution �p, the lower bound of the payoff to trader
Ti can be achieved as follow:

ML
i = Odd · C/(log 2 · V (�ri, �p) + log c+ 1) ≤ Mi (26)

where c = maxj(�ri[j]/�p[j]).

Before we prove the given lower bound, we first define the con-
cept of the Capacitory Discrimination as follows:

DEFINITION 8 (CAPACITORY DISCRIMINATION). Let �v and
�u be two probability mass functions in a discrete domain S with
a finite or countably infinite number of values. The Capacitory
Discrimination between �v and �u is

C(�v, �u) = D(�v||�m) +D(�u||�m) (27)

where

�m =
1

2
(�v + �u) (28)

is the arithmetic mean of the two given vectors.

And we introduce the Pinsker’s Inequality as follows:

THEOREM 3 (PINSKER’S INEQUALITY). Given two probabil-
ity mass functions �v and �u with outcome space S , the following
inequality is observed:

D(�v||�u) ≥ 1

2
V 2(�v, �u) (29)

The equality holds when �u = �v.

PROOF. Please refer to [13].

Then we prove Theorem 2 based on Variational Distance and the
Pinsker’s Inequality:

Algorithm 4: Procedure of Warning Trigger of COPE
Input: current global posterior distribution �p, reports from n

traders Rn = {�r1, �r2, . . . , �rn}, seed capital C, preset
boosting parameter Odd

Output: Decision of Warning Trigger
1 Initialization: Warning bool flag FWN = 0,
2 for each �ri in Rn do
3 //compute Variational Distance Vi = V (�ri, �p) according

to Equation 25 ;
4 for each j in �ri do
5 Vi(�ri, �p)+ = |�ri[j]− �p[j]| ;

6 MU
i = Odd · C/( 1

2
V 2
i + 1) ;

7 MCU+ = MU
i ;

8 if MCU −B > 0 then
9 return FWN = 1(Warning);

10 else
11 return FWN = 0(still running);

PROOF (THEOREM 2). According to Theorem 4 in [29], we can
obtain that

D(�ri||�p) ≤ C(�ri, �p) + log(
1

2
(1 + c)) (30)

where C(P,Q) is the capacitory discrimination with �m = 1
2
(�ri +

�p)

C(�ri, �p) = D(�ri||�m) +D(�p||�m) (31)

based on the definition of Variational Distance in Equation 25 and
Pinsker Equality in Equation 29, we could obtain an upper bound
of KL-divergence:

D(�ri||�p) ≤ log 2 · V (�ri, �p) + log c (32)

which leads to the inequality in the Theorem 2.

The lower bounds in Theorem 2 enables the COPE with a fast
algorithm to determine the Bankruptcy situation. We elaborate the
procedure in Algorithm 3.

Upper Slope Edge
When the upper edge of the slope reaches the preset budget, the

market holder receives an warning, and since then the system starts
to calculate the exact market cost.

As a warning function, the upper slope edge is realized based on
an upper bound of the KL-divergence:

THEOREM 4 (UPPER BOUNDING). Given a report �ri, the cur-
rent global distribution �p, the upper bound of the payoff to trader
Ti can be achieved as follow:

MU
i = Odd · C/(

1

2
V 2(�ri, �p) + 1) ≥ Mi (33)

The proof can be directly inferred from the Pinsker Inequality.
Equipped with the upper bound of individual payoff, we are able
to estimate the upper edge of the slope. We then present the Warn-
ing Trigger technique as described in Algorithm 4. Note that while
calculating the lower edge, the variational distance V (p, r) has al-
ready been calculated, therefore, with a limited extra space cost, we
could obtain the upper slope edge with an O(1) time cost.

5. IMPLEMENTATION
In this section, we illustrate the non-trivial parts of the imple-

mentation of COPE.
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Figure 3: HIT Interface Prototype in a Running COPE

5.1 Deposit Task
There are two factors to consider while designing the deposit

tasks: the tasks should be with general purpose, and the estimation
tendency should be measured for the later Bayesian Updating. Fol-
lowing this requirement, we build up a prototype of COPE based on
classic jelly-beans-in-a-jar experiment [20]. In this prototype im-
plementation, when a “worker” accepts the task, she is presented
with a sample image and informed that the given image contains
exactly 200 blue dots. Then another figure is given as shown in the
upper part of Figure 3 and the “worker” is required to estimate the
number of dots without exhaustively counting them. A set of such
tasks could be included in the pre-market stage, with a moderate
amount of rewards, which makes the “worker” begrudged to for-
sake. Besides the family of jelly-beans-in-a-jar experiments, many
other suitable tasks could be incorporated into the pre-market stage.
One of the major requirement is that the estimation tendency label
of a worker �ri should be able to be inferred. As in the prototype,
the average over-estimation or under-estimation of the number of
dots serves as a measure of the estimation tendency label.

5.2 Opinion Elicitation
After the input from the “worker”, another page is presented as

shown in the lower part of Figure 3, which is previously hidden. In
this new page, the “worker” is required to specify the opinion dis-
tribution among a set of options. Due to the “probability-phobia”,
i.e. common workers feel unwilling or uncomfortable to exactly
specify a value of a probability, we use dynamic chart to elicit the
probabilistic estimation from a trader. The “worker” is given a set
of options where the distribution information is unknown, and she
is able to express opinion by swirling the spline of the pie chart.
The “worker” is now informed that the final reward depends on
how similar her estimation is compared to the aggregated opinion.
Under such case, the “worker” is forced into a psychological situa-
tion of a “trader”, where she confronts a situation of losing certain
stake if her answer is not carefully presented. The proposed mech-
anism in COPE is thus activated.

5.3 Payoff Dispatch
The essential technique challenge to implement a COPE on gen-

eral crowdsourcing platform is that the current infrastructure does
not support a flexible payment mechanism, which hinters the appli-

cation of the market. To tackle this challenge, besides the virtual
“stake” from the seed capital, in COPE we also develop an innova-
tive approach to conduct the payoff dispatching. When a “worker”
finishes the opinion estimation, a specific task is generated after the
closing of the COPE, and the task is visible and acceptable only to
the “worker” by identifying her worker ID. The reward of the new
task is set as the calculated payoff Mi.

6. EXPERIMENTS
In this section, we present the experimental study of the COPE.

Specifically, we first study the effectiveness of introducing market
mechanism in opinion elicitation. We compare the market mecha-
nism with simple voting strategies. After that, we evaluate the rela-
tionship between the latency and the number of aggregated traders’
information, then we study the characteristic between the distribu-
tion properties and the total Market Cost. In all figures, we use ex
to denote the performance of the exact algorithm and lw and up to
denote that of lower and upper bounding algorithms respectively.

6.1 Merits of Market Mechanism
In this section, we compare between the market-based mecha-

nism with simple voting to show the merit of introducing the new
mechanism. Note that in a jelly-beans-in-a-jar experiment, the mu-
tual communication among participants impairs the crowd’s accu-
racy [32]. However in the setting of COPE, the “investors” only
know the existence of other participants but are unaware of others’
opinion. Specifically, we set up three set of experiments on Ama-
zon MTurk as follows:

a) We propose to the online crowds a picture with a man’s por-
trait on it, and crowds are asked to estimate the age of the man(ground
truth is known to be 40). In the simple voting, we set up two pivots
value, e.g. piv1 = 35 and piv2 = 45, and ask the crowds to vote on
the option that she think is closest to the real age. Then an answer
is achieved by calculating the weighted aggregation. On the con-
trary, for the value based experiments, crowds are asked to specify
a value between piv1 and piv2 and their mean is aggregated as the
answer. The results are shown in Figure 4(a), where the error rates
from simple voting (both vt1 and vt2) are higher than those of the
value estimation (vl1 and vl2). The experiments are conducted on
two independent data sets.

b) We then evaluate the error rates when the crowds are informed
with different payoff mechanism, all under value estimation method.
The results are shown in Figure 4(b). A first group of crowds are
informed that their payoffs are irrelevant to their answers(‘dir1’ and
‘dir2’). The last group is encouraged to estimate according to the
majority’s opinion, i.e. the market mechanism introduced in this
paper(‘mkt1’ and ‘mkt2’). The results show that the direct pay-
off incurs highest error rate and the market based method performs
best in most cases.

c) Then we test the cost of introducing the market based mecha-
nism. Varying the number of tasks, we record the total payoffs and
show the results in Figure 4(c). We set up the price for a single task
as 0.02 and 0.05USD respectively. Then the simple direct payoffs
are shown in dashed lines and the market based mechanism in solid
lines, which saves more payoff for the requester.

6.2 Latency v.s. Market Size
In this and next sections, we mainly study the performance of

the proposed algorithms in mainly two aspects: the efficiency ac-
cording to the number of collected reports, and the value of Market
Cost according to a varying characteristic of the collected reports.
All experiments are conducted on a PC with 2 Intel(R) Core(TM)
2.13GHz CPU and 4GB memory, running on Microsoft 64-bit Win-
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Figure 4: Experiments Results

dows 8. We generate the data sets following both the family of
normal distribution and uniform distribution.

We first present the performance of calculating the Market Cost
with a varying report number from Figure 4(d) to Figure 4(h). Specif-
ically, we test the performance on Bimodal distribution, Normal
distribution and Uniform distribution. As described in Section 4,
the time complexity of calculating the Market Cost is O(n · |S|),
thus the latency is roughly linear according to a fixed size of out-
come space and an increasing number of reports.

6.3 Market Cost v.s. Distribution Variance
In this experiment, we test the relationship between the Market

Cost and the variance within a reported distribution. Specifically,
we simulate the statistical feature of the crowd with the following
four distribution: normal distribution with mean value equal to 0.5
(1), normal distribution with mean value equal to 0.65 (2), normal
distribution with mean value equal to 0.35 (3), and uniform distri-
bution (4). For each distribution, the market cost is calculated at
every variance value ranging from 0 to its set upper limit.

The results are shown from Figure 4(i) to Figure 4(l). From
the tested results, we can clearly observe that, for all the distri-
bution, the Market Cost is maximized where the variance equals to
0. Then, the Market Cost goes down sharply with the variance in-
creasing. In the final stage, the market cost becomes stable. Such a
result is easy to interpret: when the variance of the crowd is small,
that people hold similar attitudes toward the given event. Therefore,
their reports are likely to resemble the market estimation, which
makes the market cost large at first. When the variance gets larger,
the crowds’ opinions become diversified. Then, we can infer that
traders’ reports are likely to vary greatly from market estimation,
which leads to a lower Market Cost. The result here also indicates
that the variance of the crowd can serve as a good predictor of the
market cost.

7. RELATED WORK
In this section, we summarize the literature of research related

to the design of COPE. As described in Section 1, the design of
COPE is a pioneering effort to realize a market-manner information
aggregator onto a concrete commercial platform.

7.1 Information Elicitation
Probability distribution elicitation has paved its way in two main

branches, Scoring Rules [6] and Information Market [19].
Scoring Rules are first adopted as an incentive mechanism to

reward weather forecasters [6], where the reward depends on the
designed rules and the final outcomes of the uncertain events. Many
different scoring rules are then developed to suit various elicitation
scenarios: quadratic strict rules [6], logarithm rules [28], and more
recently scoring rule for more complex enviroments [8]. In the
work [27] by L. Savage, a functional characterization is presented,
and a comprehensive study of Scoring Rule to evaluate probability
can be found in work [30] by R. Winkler.

Information Market is developed based on the observation that
speculative markets like financial markets or commodity markets
reflect the confidence of the investors faithfully. Then chances to
reduce information uncertainty are wrapped as tradable products on
Information Market, where the stable price reflects the information
estimation among the investors. Early prototypes can be found in
horse betting [19], political polls [5], science progress [25] and so
on. A recent effort [18] by R. Hanson et al. proposes to combine
the Information Market and Scoring Rule to facilitate a sequential
market. Such a Scoring Market Rule is essentially a cost-function
market maker [10] from the perspective of market design. This
thread of approach also produces new practice of crowdsourced
learning tasks [31], where an iterative and interactive learning pro-
cedure is proposed to enhance the prediction performance based on
given historical dataset(on the contrary, COPE addresses the task
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of elicit intrinsic opinion of workers without any historical training
efforts). Moreover, a recent series of work [9, 26] conducted by
Y. Chen et al. provides more sophisticated market mechanism for
information elicitation. In the work [9] the authors design a spe-
cial type of information market that capture the signal structure as
informative securities. However, the design of such advanced in-
formation markets entails a specially designed speculative market,
which is way too complicated and intractable on general labor mar-
kets. And in the work [26] the authors implement an information
polling tool based on Amazon MTurk by direct polling and payoff,
without the support of a market structure.

7.2 Data-driven Human Computation
Human computation is a long-existing concept and has been prac-

ticed for centuries. Specifically, whenever a “human” serves to
“compute”, a human computation is observed. This leads to a his-
tory of Human Computation even longer than that of electronic
computer. However, with the emergence of Internet web service,
especially the one that facilitates online labor recruiting and man-
aging like Amazon MTurk and oDesk, human computation starts
to experience a new age where the source of human is broadened
to a vast pool of crowds, instead of designated experts or employ-
ees. This type of outsourcing to crowds, i.e. crowdsourcing, is now
receiving countless success in many areas such as fund raising, lo-
gistics, monitoring and so on.

In data-driven applications, human cognitive abilities are mainly
exploited in two types: voting among many options, and provid-
ing contents according to certain requirements. The wide usage of
“voting” as a human computing action grows from the observation
that humans are better at comparisons rather than evaluation objects
by specifying an exact numerical value. Most of basic queries in
database [14] and data mining [2] can be decomposed into simple
voting as human tasks [7, 14]. Meanwhile, in order to break the
close world assumption in traditional database, human are enrolled
to provide extraneous information to answer certain queries: item
enumeration [14], content composing [3, 21], counting [24] and so
on. The work in this paper takes effort to explore new usage of
human cognitive ability, specifying probability estimation among
uncertain events.

8. CONCLUSION
In this paper, we design and propose the COPE to facilitate Opin-

ion Elicitation functions on general crowdsourcing labor market.
We also elaborate the rationale of the design in terms of distribu-
tion combination and payoff mechanism. In the end, we theoreti-
cally and practically testify the performance of such function.

More general Opinion Elicitation tasks observe multivariate ran-
dom relationship, whose outcome space may increase exponen-
tially, which render the Market unmanageable. However, human
cognitive knowledge is able to help decide the necessity of such de-
pendency, while providing quantitative causality information. We
will proceed to extend COPE to capture such potential in the future.
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