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ABSTRACT

Performance monitor software for data centers typically gen-
erates a great number of alert sequences. These alert se-
quences indicate abnormal network events. Given a set of
observed alert sequences, it is important to identify the most
critical alerts that are potentially the causes of others. While
the need for mining critical alerts over large scale alert se-
quences is evident, most alert analysis techniques stop at
modeling and mining the causal relations among the alerts.
This paper studies the critical alert mining problem:

Given a set of alert sequences, we aim to find a set of k crit-
ical alerts such that the number of alerts potentially trig-
gered by them is maximized. We show that the problem
is intractable; therefore, we resort to approximation and
heuristic algorithms. First, we develop an approximation
algorithm that obtains a near-optimal alert set in quadratic
time, and propose pruning techniques to improve its runtime
performance. Moreover, we show a faster approximation ex-
ists, when the alerts follow certain causal structure. Second,
we propose two fast heuristic algorithms based on tree sam-
pling techniques. On real-life data, these algorithms identify
a critical alert from up to 270, 000 mined causal relations in
5 seconds; meanwhile, they preserve more than 80% of so-
lution quality, and are up to 5, 000 times faster than their
approximation counterparts.

1. INTRODUCTION
System monitoring and analysis in data centers and cyber

security applications produces alert sequences to capture ab-
normal events. For example, performance metrics are posed
on hosts in data centers to measure the system activities,
and capture alerts such as high CPU usage, memory over-
flow, or service errors. Understanding the causal and de-
pendency relations among these alerts is critical for data
center management [12, 25], cyber security [17], and device
network diagnosis [23], among others.
While there exist a variety of approaches for modeling and

deriving causal relations [3, 31, 32], another important step
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is to efficiently suggest critical alerts from a huge amount
of observed alerts. Intuitively, these critical alerts indicate
the “root causes” that account for the observed alerts, such
that if fixed, we may expect a great reduction of other alerts
without blindly addressing them one by one. We consider
several real-life applications below.

Data centers. System monitoring and analysis providers
seek efficient and reliable techniques to understand a large
number of system performance alerts in data centers. Ac-
cording to LogicMonitor1, a SaaS network monitor company,
a data center of 122 servers generates more than 20, 000
alerts per day. While it is daunting for domain experts to
manually check these alerts one by one, it is desirable to au-
tomatically suggest a small set of alerts that are potentially
causes for a large amount of alerts, for further verification.
These critical alerts also help in determining key control
points for data center infrastructures [25].

Intrusion detection [2, 16]. State-of-the-art intrusion de-
tection systems produce large numbers of alerts from cyber
network sensors, over tens of thousands of security metrics,
e.g., Host scan or TCP hijacking [2]. As suggested in [16],
it is observed that a few critical alerts generally account for
over 90% of the alerts that an intrusion detection system
triggers. By handling only a small number of critical alerts,
a huge amount of effort and resource can be reduced. On the
other hand, critical alerts can reduce the number of “false
alerts” and improve alarm quality [2].

Network performance diagnosis [23]. Large-scale IP
networks (e.g., North America IPTV network) contain mil-
lions of devices, which generate a great number of perfor-
mance alarms from customer call records and provider logs.
Scalable mining of critical alerts for a given set of symptom
events benefits fast network diagnosis [23].

These highlight the need for efficient algorithms to mine
critical alerts, given the sheer size of observed ones. In this
work, we investigate efficient critical alert mining techniques.
We focus on a general framework with desirable performance
guarantees on alert quality and scalability.

(1) We formulate the critical alert mining problem: Given
a set of alerts and a number k, it aims to find a set of k
critical alerts, such that the number of alerts that are poten-
tially caused by them is maximized. We introduce a generic
framework for mining critical alerts. In this framework, we
learn and maintain an alert graph, a graph representation

1http://www.logicmonitor.com/
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of causal relations among alerts. Upon users’ requests, top
critical alerts are mined from alert graphs.

(2) We show that the critical alert mining problem is np-
complete. Nonetheless, we provide an algorithm with ap-
proximation ratio 1− 1

e
, in time O(k|V ||E|), where |V | and

|E| are the number of alerts and the number of their causal
relations, respectively. To further improve the efficiency of
the algorithm, we propose a bound and pruning algorithm
that effectively reduces the size of alerts to be verified as
critical ones. In addition, we identify a special case: when
alert graphs are trees, it is in O(k|V |) time to find k critical
alerts, with the same approximation ratio.

(3) The quadratic time approximation may still be expensive
for large alert graphs. We further propose two fast heuristics
for large-scale critical alert mining. These algorithms induce
trees that preserve the most probable causal relations from
large alert graphs, and estimate top critical alerts and their
impact by only accessing the trees. The first one induces a
single tree, while the second algorithm balances alert quality
and mining efficiency with multiple sampled trees.

(4) We experimentally verify our critical alert mining frame-
work. Over real-life data center datasets, our algorithms ef-
fectively identify critical alerts that trigger a large number
of other alerts, as verified by domain experts. We found that
our approximation algorithms mine a top critical alert from
up to 270, 000 causal relations (one day’s alert sequences) in
5 seconds. On the other hand, while our heuristics preserve
more than 80% of solution quality, they are up to 5, 000
times faster than their approximation counterparts. The
heuristics also scale well over large synthetic alert graphs,
with up to in total 1 million alerts and 10 million relations.

In contrast to conventional causality modeling and min-
ing, our algorithms leverage effecitive pruning and sampling
methods for fast critical alert mining. In addition, we do
not assume the luxury of accessing rich semantics from the
alerts that helps in improving mining efficiency, although
our methods immediately benefit from the semantics in spe-
cific applications [16, 23, 25], as well as domain experts.
Taken together with domain knowledge and causality min-
ing tools, these algorithms are one step towards large-scale
critical alert analysis for data centers, intrusion detection
systems, and network diagnosis systems.

2. PROBLEM DEFINITION
We start with the notions of alert sequences and alert

graphs. Then we introduce the critical alert mining problem.

Performance metrics. A performance metric measures
an aspect of system performance. For data centers, com-
mon types of performance metrics include CPU and mem-
ory usage for virtual machines, error rate of disk writes for
a service, or communication time between two hosts. The
same type of metrics over different hosts, virtual machines,
or services are considered as distinct performance metrics.
In practice, system service providers e.g., LogicMonitor

may cope with 2 million metrics from a data center with
5, 000 hosts. These metrics could correlate with and cause
each other due to functional or resource dependencies.

Alert and alert sequences. For a set of performance
metrics P, alerts are determined by aggregating the metric
values of interest. For example, in data centers, an alert is

raised when the value of a performance metric (e.g., CPU
usage) goes beyond a pre-defined threshold (e.g., > 75%).
In this work, we define an alert as a triple u = (pu, tu, wu),
where pu ∈ P is a performance metric u corresponds to, tu
denotes the timestamp when the alert u happened, and wu

is the weight of u, representing the benefit if u is fixed.
We use a sequence of alerts to characterize abnormal

events for a specific performance metric. Indeed, in prac-
tice the performance metrics are typically periodically mon-
itored to capture the abnormal events as alerts. We denote
as ~sp an alert series (an ordered sequence of alerts following
their timestamps), for a specific performance metric p ∈ P.
Each entry of ~sp is either 0 (normal) or 1 (alert).

To characterize causal relations between two alerts, we
next introduce a notion of dependency rule. We also in-
troduce alert graph as an intuitive graph representation for
multiple dependency rules.

Dependency rule. Let p and q be two distinct perfor-

mance metrics. A dependency rule p
lpq
−−→ q denotes an alert

issued on q at some time t is caused by an alert issued on
p at t′ ∈ [t− lpq, t− 1], where lpq is a lag from p to q (e.g.,
5 minutes). Note that we do not specify the time t, as a
dependency rule describes a statistical rule for all the ob-
served alerts. Intuitively, a dependency rule indicates that
alerts on q occurs if and only if alerts on p occurs as the
cause of the alerts on q; that is, the alerts on p will trigger
the alerts on q. If certain trouble shooting action is taken
to fix p, q is addressed accordingly [2, 23].

Dependency rules can be automatically learned from alert
series [3, 31]. They can also be suggested by experts and ex-
isting knowledge bases [10]. To smoothen the noise or error
brought by rule generation process, we associate an uncer-
tainty to each dependency rule. In particular, we denote the

uncertainty by Pr(p
lpq
−−→ q), which is the probability that the

corresponding dependency rule holds.

Alert graph. An alert graph over a set of alerts V is a
directed acyclic graph G = (V,E, fe):

• V is the set of vertices in G, where each vertex v ∈ V
is an alert from V .

• E is a set of edges in G. Let u = (pu, tu, wu) and v
= (pv, tv, wv) be two alerts in V . There is an edge
(u, v) ∈ E if and only if there exists a dependency rule

pu
lpupv−−−−→ pv, where tu < tv, and tv − tu ≤ lpq.

• fe is a function that assigns for each edge (u, v) the

probability that u causes v, i.e., Pr(pu
lpupv−−−−→ pv).

We shall use the following notations. Abusing the notions
from tree topology, we say u (resp. v) is a parent (resp.
child) of v (resp. u) if (u, v) ∈ E, and the edge (u, v) is an
incoming edge of v. The topological order r of an alert u in
G is defined as follows. (a) r(u) = 0 if u has no parent, and
(b) r(u) = 1 + max r(v), for all its parents v.

Following the convention of causal relation and cascading
models [29], we assume that an alert is caused by a single
alert issued earlier, if any. Intuitively, a path from an alert
u to another alert v in the alert graph indicates a potential
“causal chain” from u to v, indicated by e.g., the actual
dependencies among the vulnerabilities of the servers [5].
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Figure 1: Critical alert mining: pipeline

Critical alerts. We next introduce a metric to characterize
critical alerts, in terms of how many alerts are potentially
caused by them via a cascading effect (and hence are ad-
dressed if the critical ones are fixed). Given G = (V,E, fe),
a set of fixed alerts S ⊆ V , and an alert u ∈ V , we use a
notion of alert-fixed probability Pf to characterize the prob-
ability that u is fixed if S is fixed. More specifically,

• Pf (S, u) = 1 if u ∈ S,

• otherwise,

Pf (S, u) = 1−
∏

(u′,u)∈E

(

1− Pf (S, u
′)fe(u

′, u)

)

.

Based on the alert-fixed probability, we next define a set
function, denoted as Gain, to characterize critical alerts.
Given an alert graph G = (V,E, fe) and S ⊆ V , the gain of
S is a set function

Gain(S) =
∑

u∈V

wu · Pf (S, u).

As remarked earlier, here wu refers to the weight of u,
i.e., the benfit if u is fixed. Intuitively, Gain(S) computes
the total expected benefits induced via fixing a set of alerts
S and subsequently addressing the alerts caused by S. The
larger Gain(S) is, the more “critical” S is.
We next introduce the critical alert mining problem.

Definition 1. Given an alert graph G and an integer k,
the critical alert mining problem (referred to as CAM) is to
find a set of k critical alerts S ⊂ V such that Gain(S) is
maximized.

Finding the best set of k alerts which maximize the gain
is desirable albeit intractable.

Theorem 1. For a given alert graph G and an integer k,
the problem CAM is NP-complete.

Proof. We prove the NP-completeness of the decision
version of CAM as follows. (1) CAM is in NP. Indeed, given
an alert graph G = (V,E) and a set of vertices S ⊆ V , one
can evaluate Gain by computing Pf (S, v) of each alert v in
polynomial time. (2) To show that CAM is NP-hard, we
construct a reduction from the maximum coverage problem,
which is known to be np-hard [35]. An instance of a max-
imum coverage problem consists of a set of sets S and an
integer k. It selects at most k of these sets such that the
number of elements that are covered is no less than a bound
B. A maximum coverage instance can be constructed as a
bipartite alert graph, with each “upside” node as a set in S,

each “downside” node a distinct element in these sets, and
there is an edge from upside node to downside node if the
corresponding element is in the set denoted by the upside
node. In addition, the weights on edges are uniformly 1.
Given the bound B, one may verify that there is a solution
for the maximum converage problem if and only if there is
a set S of k critical alerts with Gain(S) ≥ B. Therefore,
CAM is at least as hard as maximum coverage problem, and
is NP-hard. Hence, CAM is np-complete.

3. MINING FRAMEWORK
In this section, we present a framework for critical alert

mining. It consists of three components as illustrated in
Figure 1: (1) offline dependency rule mining; (2) online alert
graph maintenance; and (3) on-demand critical alert mining.

Offline dependency rule mining. Given a set of ob-
served alert sequences, the system mines the alerts of inter-
est and their causal relations offline, and represent them as
a set of dependency rules. As there are a variety of methods
to model a causal relation, in this work we adopt Granger
causality [3, 31], which can naturally be represented by de-
pendency rules. An alert sequence X is said to Granger-
cause another sequence Y if it can be shown, via certain
statistic tests on lagged values of X and Y , that the values
ofX provide statistically significant information to predicate
the future values of Y . More specifically,

(1) We collect alert sequences for all performance metrics of
interest as training data, following two criteria as follows: (a)
the alerts in training data should be the latest ones such that
the latest dependency patterns among performance metrics
can be captured; and (b) the alert information should be
rich enough such that learned dependency rules would be
more robust. In our work, we treat the latest one week alert
data as the training data.

(2) We apply existing Granger causality analysis tools [31]
to mine the dependency rules, and apply conditional prob-
abilities to estimate the uncertainty of the rules [20].

The learned dependency rules are stored in knowledge
bases to support online alert graph maintenance. More-
over, existing knowledge bases such as event causality sce-
narios [10], or vulnerabilities exploitation among cyber as-
sets [5] can also be “plugged” into our critical causal mining
framework. The dependency rules are then shipped to the
next stage in the system to maintain alert graphs.

Online alert graph maintenance. Using dependency
rules, our system constructs and maintains an alert graph
G online from a range of newly issued alerts. Upon an alert
u from performance metric q is detected at time t, it first
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marks u as a new alert in G. It then checks (1) if there

exists dependency rules in the form of p
lpq
−−→ q, and (2)

whether there are alerts detected on performance metric p
during the time period [t − lpq, t). If there exists such an
alert v on p, an directed edge from v to u is inserted, and

the rule uncertainty Pr(p
lpq
−−→ q) is associated to the edge

(v, u). Following the above steps, it maintains G online for
newly detected alerts.

On-demand critical alert mining. The major task (and
the focus of this work) in the pipeline is to identify k critical
alerts from alert graphs. In practice, a user may specify a
time window of interest, which induces an alert graph from
the maintained alert graph. It contains all the alerts de-
tected during the time window. However, the induced alert
graphs can still be huge.
In this paper, we propose three algorithms to address the

scalability issue: (1) a quadratic time approximation with
performance guarantees on the quality of critical alerts, (2) a
linear time approximation, which guarantees the alert qual-
ity for tree-structured alert graphs; and (3) sampling-based
heuristics which can be tuned to balance the alert quality
and response time. The critical alerts are then returned to
users for further analysis and verification.

4. BOUND AND PRUNING ALGORITHM
Theorem 1 tells us that it is unlikely to find a polynomial

time algorithm to find the best k alerts with the maximum
gain. All is not lost: we can find polynomial time algorithms
that approximately identify the most critical alerts. The
main result in this section is as follows.

Theorem 2. Given an alert graph G = (V,E, fe) and an
integer k, (1) there exists an algorithm in O(k|V ||E|) time
with approximation ratio 1 − 1

e
, where e is the base of nat-

ural logarithm, and (2) there exists a 1 − 1
e
approximation

algorithm in O(k|V |) time, when G is a tree.

Here e refers to Euler’s number (approximately 2.71828).
Denote the optimal k alerts as S∗, we present an effi-
cient algorithm to identify k alerts S where Gain(S) ≥
(1− 1

e
)Gain(S∗), in quadratic time.

We start with a greedy algorithm, denoted as Naive.

Naive greedy algorithm. Given an alert graph G =
(V,E, fe) and an integer k, Naive finds k critical alerts in
k iterations as follows. (1) It initializes a set S0 to store the
selected alerts. (2) At the ith iteration, Naive checks each
alert in V , and greedily picks the alert si that maximizes
the incremental gain Gain(Si−1 ∪ {si}), where Si−1 is the
set of critical alerts found at iteration i − 1. (3) It repeats
the above step until k alerts are identified.
One may verify that Naive is a 1− 1

e
approximation algo-

rithm. To see this, observe that the set function Gain(·) is a
monotonically submodular function. A function f(S) over a
set S is called submodular if for any subset S1 ⊆ S2 ⊂ S and
x ∈ S \ S2, f(S1 ∪ {x}) - f(S1) ≥ f(S2 ∪ {x}) - f(S2). It is
known that for maximizing a submodular function, a greedy
strategy achieves 1 − 1

e
approximation ratio [27]. Hence it

suffices to show that the function Gain is a monotonically
submodular function. Indeed, (1) one may verify that Gain

is monotonic: for any S1 ⊆ S2 ⊆ V , Gain(S1) ≤ Gain(S2);
(2) the diminishing return of Gain can be shown by mathe-
matical reduction. We provide the detailed proof in [1].

For complexity, Naive requires k iterations, and in each it-
eration, it scans all the vertices u and computes Pf (Sk−1, u),
which takes in total O(k|V ||E|) time.

Naive provides a polynomial time algorithm to approxi-
mate CAM within 1 − 1

e
. Nevertheless, the scalability issue

of Naive makes it difficult to use in practice for large alert
graphs. For instance, when an alert graph of around 20K
vertices and 200K edges, Naive mines 6 critical alerts in
more than 800 seconds. We next present a faster approx-
imation algorithm with the same approximation ratio. By
using pruning and verification, the algorithm is 30 times
faster than Naive, as verified in our experimental study.

4.1 Pruning and verification
To select a most promising alert at each iteration, Naive

evaluates the incremental gain for each alert in V \ S, and
then selects the one of the highest incremental gain, which
runs in O(|V ||E|) time. Instead of blindly processing every
alert, we may efficiently filter “unpromising”alerts, and then
evaluate the exact gain for the remaining vertices. In partic-
ular, at each iteration i, for two alerts v′ and v ∈ V \ Si−1,
we compute upper bounds U ′

v, Uv and lower bounds L′
v, Lv

for Gain(Si−1 ∪ {v}) and Gain(Si−1 ∪ {v′}) , respectively. If
v′ is already not a critical alert, all the alerts v with L′

v > Uv

can be safely skipped without losing the alert quality.

We next derive an upper and lower bound for Gain(·), and
present algorithms to compute them efficiently. Instead of
visiting each alert and causal relation in G, these algorithms
compute the bounds by visiting only local information of
each alert in G. This enables a fast estimation of Gain(·).

4.2 Upper bound
We introduce a notion of sum gain (denoted as SGain) to

characterize the upper bound for Gain(·). Given an alert
graph G = (V,E, fe), an alert v ∈ V , and a set of se-
lected critical alerts S ⊆ V , an upper bound is computed
as SGain(S ∪ {v}) =

∑

u∈V wu · P̂f (S ∪ {v}, u), where

• P̂f (S ∪ {v}, u) = 1, if u ∈ S;

• P̂f (S ∪ {v}, u) =
∑

(u′,u)∈E
P̂f (S ∪ {v}, u′)fe(u

′, u), if

u /∈ S.

The sum gain SGain (as illustrated in Fig. 2) is an upper
bound for Gain(·). Better still, it can be efficiently computed.

Proposition 1. Given an alert graph G = (V,E, fe), a
set of critical alert S ⊆ V , and an alert u ∈ V \ S, (1)
Gain(S ∪ {u}) ≤ SGain(S ∪ {u}); and (2) SGain can be com-
puted for all alerts in V in O(|E|) time.

We first prove Proposition 1 (1). We remark that SGain

is built upon the following generalization of Bernoulli’s in-
equality [24]. Given xi ≤ 1, we have

1−
n
∏

i=1

(1− xi) ≤
n
∑

i=1

xi.

We next conduct a mathematical induction over the topo-
logical order (Section 2) of the alerts in G as follows.

• Consider the alerts u1 ∈ V with topological order 0:
(1) if u1 ∈ S, P̂f (S, u1) = 1 and Pf (S, u1) = 1; (2)

otherwise, P̂f (S, u1) = 0 and Pf (S, u1) = 0, since u1

has no parents. In both cases, Pf (S, u1) ≤ P̂f (S, u1).
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Figure 2: Algorithm BnP: Upper and lower bound

• Assume that alert ui ∈ V with topological order i sat-
isfies Pf (S, ui) ≤ P̂f (S, ui). For an alert ui+1 ∈ V ,

Pf (S, ui+1) = 1−
∏

(u′,ui+1)∈E

(

1− Pf (S, u
′)fe(u

′, ui+1)
)

≤
∑

(u′,ui+1)∈E

Pf (S, u
′)fe(u

′, ui+1)

≤
∑

(u′,ui+1)∈E

P̂f (S, u
′)fe(u

′, ui+1)

= P̂f (S, ui+1)

Therefore, for any u ∈ V , Pf (S, u) ≤ P̂f (S, u). By defini-
tion, Gain(S∪{u}) ≤ SGain(S∪{u}). Hence, SGain is indeed
an upper bound for Gain(·).

Upper bound computation. As a constructive proof
for Proposition 1 (2), we present a procedure (denoted
as computeUpperBound) for SGain to compute the upper
bounds for all vertices in O(|E|) time.
The algorithm (not shown) follows a “bottom up” compu-

tation, starting from the alerts with the highest topological
order in G. (1) It first computes the topological order for all
the alerts in G. (2) Starting from the alert with the highest
topological order, it computes SGain for each alert u ∈ V \S
as follows: (a) SGain(S ∪ {u}) = SGain(S ∪ {u}) + wu, and
(b) for each u′ ∈ Ni(u), it updates SGain(S ∪ {u′}) by
SGain(S ∪ {u′}) + fe(u

′, u)SGain(S ∪ {u}). (3) It repeats
step (2) until all the alerts are processed.
It takes O(|E|) time for computeUpperBound to obtain the

topological order by depth-first search in step (1). Each edge
in G is visited exactly once in step (2) and (3). Therefore,
the algorithm runs in O(|E|) time.
The above analysis completes the proof of Proposition 1.

4.3 Lower bound
To compute the lower bound of Gain(·), we introduce a

notion local gain (denoted as LGain). Given an alert graph
G = (V,E), an alert v ∈ V , a set of selected alerts S ⊆ V ,
and an integer h, LGain of S ∪ {v} is defined as follows.

LGain(S ∪ {v}) =
∑

u∈V h
v

wu · Pf (S ∪ {v}, u),

where h is a tunable integer, and V h
v ⊆ V is a set of ver-

tices that can be reached from v in no more than h hops.
Intuitively, LGain estimates a lower bound of Gain(S) with
the impact of an alert to its local “nearby” alerts in G (as
illustrated in Fig.2). One may verify the following.

Proposition 2. Given G = (V,E), S ⊆ V , for any alert
u ∈ V \ S, (1) Gain(S ∪ {v}) ≥ LGain(S ∪ {v}), and (2)

LGain can be computed in O(
∑

v∈V |Eh
v |) time, where Eh

v is

the set of incoming edges in G of the alerts in V h
v .

We present a procedure computeLowerBound to compute
LGain. For each alert v ∈ V \ S (e.g., u3 in Fig 2), the algo-
rithm visits the alerts in V h

v and their incoming edges (e.g.,
(u′

3, u3)) once, and computes LGain following the definition,
in O(

∑

v∈V |Eh
v |) time.

4.4 Algorithm BnP
Based on the upper and lower bounds, we propose an ap-

proximation, denoted as BnP. BnP enables faster critical
alert mining while achieving the approximation ratio 1− 1

e
.

The algorithm follows Naive’s greedy strategy: given an in-
teger k, it conducts k iterations of search, each determines
a top critical alert. The difference is that in each iteration,
it invokes a procedure Prune to identify a set C of candidate
alerts for consideration.

The procedure Prune (as illustrated in Fig. 3) invokes
computeUpperBounds and computeLowerBounds to dynam-
ically update the lower and upper bounds for each alert by
accessing their local information (lines 1-2), and filters the
alerts that are not critical:

1. it scans the lower bounds LGain of each alert, and find
the maximum one as bar (line 3);

2. it scans the upper bounds SGain of each alert, and
prunes those with SGain(u) < bar, adding the rest to
a candidate alert set C.

Input: An alert graph G = (V,E, fe);
a set of critical alert S.
Output: a set of candidate alerts C.

1. computeUpperBound (G, S);
2. computeLowerBound (G, S);
3. set bar as the largest LGain over alerts in V \ S;
4. C ← ∅;
5. for each u ∈ V \ S
6. if SGain(u) ≥ bar
7. C ← C ∪ {u};
8. return C;

Figure 3: The pruning procedure Prune

Correctness and Complexity. The algorithm BnP

achieves approximation ratio 1 − 1
e
, as it follows the same

greedy strategy as Naive. Note that the pruning procedure
Prune does not affect the approximation ratio.

For complexity, let Cm be the maximum set of candidate
sets in all the iterations after pruning. For the alerts in Cm,
it takes BnP O(|Cm||E|) time to find a best alert. The total
time for pruning is O(k(

∑

u∈V |Eh
u |+ |E|)). Hence, it takes

BnP in total O(k(
∑

u∈V |Eh
u | + |Cm||E|)) time. Moreover,

|Eh
u | is typically small, and is tunable by varying h, as in-

dicated by Proposition 2. For example, when h = 1, LGain
can be computed in O(dm|E|) for all the alerts, where dm is
the largest in-degree in G. As h gets larger, the computa-
tion complexity gets higher, leading to tighter lower bound
LGain. In our experimental study, by setting h = 3, 95% of
the alerts are pruned, which makes BnP 30 times faster than
Naive without losing alert quality.

Mining Alert Trees. When G is a directed tree, the algo-
rithm BnP identifies k critical alerts in O(k|V |) as follows.
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(1) Starting from the alerts u ∈ V of the highest topological
order, it computes Gain(u) = Gain(u) + wu, and makes an
update by Gain(u′) = Gain(u′)+fe(u

′, u)Gain(u), if u′ is the
parent of u. (2) It repeats (1) on the alerts following the de-
creasing topological order, until all the alerts are processed.
One iteration over (1) and (2) identifies a critical alert. (3)
BnP repeats (1) and (2) to find k critical alerts.
Following the correctness analysis, BnP preserves the ap-

proximation ratio 1− 1
e
over trees. Moreover, each edge in G

is visited once in a single iteration. Hence, it takes O(k|V |)
time of BnP over G as trees. Theorem 2 (2) hence follows.

5. TREE APPROXIMATION
Algorithm BnP needs to process all the candidates and

their causal relations, which may not be efficient for a large
amount of alert sequences. In extreme cases where few alerts
are pruned, BnP degrades to its naive greedy counterpart.
As indicated by Theorem 2(2), fast approximation exists

for alert graphs as trees. Following this intuition, we may
make large alert graphs “small”, by sparsifying them into
directed trees, which “preserve” most of alert dependency
information in an alert graph. This enables both fast algo-
rithms and low quality loss.

5.1 Single-tree approximation
We start by introducing a heuristic algorithm ST. The

basic idea is to induce a maximum directed tree (forest) T
from a given alert graph G, such that for any set of alerts S
in G, Gain(S) in T is “close” as much as possible to Gain(S)
in G, and a fast approximation can be performed over T
without much quality loss.

Maximum directed tree. Given an alert graph G =
(V,E, fe), a maximum directed tree of G is a spanning tree
T = (V,E′), where E′ ⊂ E, such that (1) for any u ∈ V , u
has at most one incoming edge, and (2)

∑

〈u,v〉∈E′ fe(u, v)
is maximized. Intuitively, T depicts a “skeleton” of an alert
graph G, where causal relations always follow the most likely
dependency rules.

Algorithm ST. Given an alert graph G = (V,E, fe), the
single-tree approximation ST mines k critical alerts as fol-
lows. (1) ST first finds the maximum directed tree T . To
construct T , an algorithm simply selects, for each alert u
in G, the incoming edge (u′, u) with the maximum fe(u

′, u)
among all its incoming edges. (2) ST searches the k critical
alerts following the algorithm BnP over T .
One may verify that it is in O(|E|) time to construct T .

From Theorem 2(2), it is in O(k|V |) time to find k critical
alerts in T (as either a tree or a forest). Hence, the algo-
rithm ST takes in total O(|E| + k|V |) time. Note that the
induced T can be a set of disjoint trees, where the above
complexity still holds.

5.2 Multi-tree sampling
Single-tree approximation provides fast mining method for

large scale alerts. On the other hand, using induced trees
to approximate causal structures may lead to biased results.
For example, more dependency information could be lost for
alerts with more incoming edges. To rectify this, we propose
a heuristic, denoted as MTS, based on multi-tree sampling.

Algorithm MTS. The algorithm MTS is as illustrated in
Fig. 4. Given an alert graph G = (V,E, fe), integer k and

Input: Alert graph G = (V,E, fe),
integer k, the number of sampled trees N .

Output: A set S of k critical alerts.

1. S ← ∅; initializes Pf (·); i ← 0;
2. while i ≤ k Do

3. for each alert u in G Do

4. update P
(i−1)
f

(Si−1, u);

5. l ← 0;
6. while l ≤ N Do

7. Ti,l ← sampleTree(G);
8. for each alert u in G Do

9. Gain(Si−1 ∪ {u}) ← Gain(Si−1) +
∑N

l=1
D(u,l)

N
;

10. select u with the maximum Gain(Si−1 ∪ {u});
11. Si ← Si−1 ∪ {u};
12. return Sk;

Figure 4: Algorithm MTS

a sample number N , MTS starts by initializing a set S0 as
∅, the alert-fixed probability for each node as 0 (line 1), and
identify the topological orders of the alerts in G.

Algorithm MTS then finds a set S critical alerts in k itera-
tions as follows. Denote the selected critical set at iteration
i − 1 as Si−1. At each iteration i, (1) MTS updates the

alert-fixed probability P
(i−1)
f (Si−1, u) for each alert u ∈ V

in G, fixing Si−1 as the critical alerts (lines 3-4). (2) It
then invokes procedure sampleTree to sample N trees from
G (lines 6-7), according to the updated alert-fixed probabil-
ity in (1). (3) For each alert u, MTS computes the weighted
sum of u’s descendants D(u, l) in each sampled tree Tu,l,
and takes the average D(u, l) over all sampled tress as an
estimation of Gain(Si−1∪{u}) (lines 8-9). It selects the alert
u that introduces the maximum improvement, and update
Si−1 as Si by adding u (lines 10-11), which is used to update
Pf (·) in G in the next iteration.

Procedure sampleTree. Given an alert graph G and an
integer N , the procedure sampleTree (line 7) samples N
trees (forest) from G at iteration i. More specifically, it
generates a single tree (or forest) Ti,l as follows. (1) It
first samples a set of alerts Vi,l as the nodes for tree Ti,l

following Bernoulli distributions. For each alert u ∈ V

and the updated P
(i−1)
f (u), MTS selects u with probability

1−P
(i−1)
f (u), and inserts it to Vi,l. (2) MTS then samples an

edge for each alert u ∈ Vi,l. It randomly orders u’s parents.
Starting from the first parent, u tries to build an edge (u′, u)
to its parent with probability fe(u

′, u), where u′ ranges over
all the parents of u, until an edge is selected (and attached
to u), or all the parents are visited. (3) MTS repeats (2)
until all the alerts u ∈ Vi,l are visited.

It takes in total O(k∗N |E|) time for MTS to find k critical
alerts. (a) MTS takes in total O(k|E|) time to update Pf in
G; (b) the total sampling time is in O(k ∗N |E|); and (c) it
takes in total O(k ∗N |V |) time to select the critical alerts.

In contrast to its single-tree counterpart, MTS leverages
sampling to reduce the bias: alerts with more parents and
larger probability are more likely to have a parent in a sam-
pled tree. In addition, it synthesizes the gain estimation
from multiple trees, such that the noise from a single tree
is smoothed. Indeed, we found that using only 300 samples,
MTS finds top 6 critical alerts with Gain(·) 90% as good as
Naive, and is 80 times faster. It reduces 10% more loss on
Gain(·) compared with ST (see Section 6).

1062



6. EXPERIMENT
We applied both real-life and synthetic data to evaluate

our algorithms. We first provide a case study (Section 6.2).
Using real-life data, we next investigate (1) the efficiency and
effectiveness of our algorithms (Section 6.3), (2) the impact
of the number of explored hops to the performance of BnP
(Section 6.4), and (3) how the number of samples affects
MTS (Section 6.5). In addition, we evaluate the scalability
of our algorithms, over large synthetic data (Section 6.6).

6.1 Setup

Real-life data. We use real-life data center performance
data (referred to as LM), from LogicMonitor, an SaaS net-
work monitoring company. The data spans 53 days from
Nov. 23, 2013 to Jan. 14, 2014. It contains the sequences
for 50,772 performance metrics from 9,956 services residing
in 122 servers. Each metric is reported every 2 minutes.
The alerts are identified by specified rules provided by Log-
icMonitor, where we assign a weight 1.0 to all the metrics.

Dependency rules and alert graphs. Dependency rules
were mined from data collected in 7 consecutive days, and
are used to construct alert graphs using the data from the
following days. We used the tool developed by [31] to mine
the Granger causality among performance metrics as depen-
dency rules (with the p-value set to be 0.01 [31]). We then
applied conditional probability to estimate the uncertainty
of the rules [20]. From the dataset LM, we mined 46 sets of
dependency rules, where each set contains on average 2, 082
rules. Each set of rules were mined in less than 60 minutes.
By applying the sets of dependency rules on the alert de-

tected in the next single day, we obtained 46 alert graphs,
following the online alert graph construction (Section 3).
The number of alerts (resp. edges) ranges from 20, 248 to
25, 057 (resp. 162, 000 to 270, 370) for a single graph.

Synthetic alert graphs. For scalability tests over large
alert graphs, we applied the graph model proposed in [18]
to generate large synthetic alert graphs (referred to as SYN).
In particular, the node degree and edge weights follow the
empirical distributions [34] learned from alert graphs over
the real-life data LM. We ranged the number of alerts from
100K to 1M, and the average degree of SYN graphs is 9.

Evaluation. To measure the quality of the critical alerts
identified by an algorithm A, we investigate a metric loss
ratio of A defined as

loss ratio(A) = 1−
Gain(SA)

Gain(SNaive)
,

where SNaive (resp. SA) is the set of critical vertices returned
by the algorithm Naive (resp. algorithm A). As Naive guar-
antees the alert quality within a bound, loss ratio suggests
how“close”the quality of the alerts from heuristic algorithms
and the optimal ones is. The less, the better.

Implementation. In addition to the proposed algorithms
BnP, ST, and MTS, we implemented the following base-
line algorithms: (1) Naive, the greedy algorithms without
pruning strategy; (2) BnPUB, a simplified version of BnP,
which only uses upper bound to filter unpromising alerts: it
skips those alerts with upper bound smaller than an alert
with computed Gain(·) in each iteration (Section 4). (3)
MaxDeg, a simple strategy that returns the top k alerts with
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Figure 5: Critical alerts over LM

the largest weighted sum of outgoing edges.
All the algorithms were implemented in C++, and all ex-

periments were executed on a machine powered by an In-
tel Core i7-2620M 2.7GHz CPU and 8GB of RAM, using
Ubuntu 12.10 with GCC 4.7.2. Each experiment was run 10
times, and their average results are presented.

6.2 Case study
Using real-world data LM, our algorithms suggest reason-

able critical alerts that are indeed the source of a range of
large amount of alerts, as verified by the domain experts
from LogicMonitor. We illustrate three “causality patterns”
induced by top two critical alerts and their descendants fol-
lowing the weighted dependency rules in Fig. 5. (1) Our
algorithms suggest that StorageUsed, a critical alert that in-
dicates insufficient memory, leads to poor performance of
Web servers (Apache), which typically triggers delayed Ping
round-trip time (Ping-avgrtt) from other servers. In another
set of hosts, it leads to insufficient shared memory over a
range of servers, which typically triggers slower Shared Data
Access write time (SDA writetime) on their own. (2) A sec-
ond critical alert DiskReadLatency suggests I/O bottleneck
for a range of abnormal status of database applications. The
disk access speed alert often triggers the unsolved back up
requests from another server, which leads to poor perfor-
mance of CPU and database servers, and further affects a
range of database related requests from more outside servers.
These causal patterns are consistent with the workflow of
data centers at LogicMonitor.

Our algorithms do not assume prior domain knowledge.
On the other hand, external knowledge and rules enable
our algorithms to further improve the quality of the criti-
cal alerts and causal patterns.

6.3 Overall performance evaluation
We first investigate the efficiency and effectiveness of the

proposed algorithms, using alert graphs from LM. In the
following tests, we fixed the number of explored hops in BnP

as 3, and the number of sampled trees in MTS as 300.
As illustrated in Figure 6(a), the proposed algorithms

BnP, MTS, and ST consistently outperform the baseline al-
gorithms Naive and BnPUB in efficiency, while varying k, the
number of required critical alerts. They introduce differ-
ent levels of efficiency improvement. Compared with Naive

and BnPUB, BnP is 30 times and 17 times faster, respec-
tively, without quality loss on solutions. With some quality
loss, ST is 5000 times and 3000 times faster than Naive and
BnPUB, respectively, and MTS results in 80 times and 50
times speedup. In addition, all the algorithms take more
time when k varies from 1 to 6, as expected.

Figure 6(b) shows the loss ratio of ST and MTS, where k
varies from 1 to 6. Compared with MaxDeg, MTS and ST
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Figure 6: Mining performance on LM alert graphs

obtain significant improvement on loss ratio. As k increases,
the loss ratio of MaxDeg is consistently more than 0.4; mean-
while, the loss ratio of MTS and ST is around 0.1 and 0.2,
respectively. Compared with MTS, ST receives higher effi-
ciency at the cost of solution quality loss. When the number
of required critical alerts varies from 1 to 6, MTS and ST

share the same trend: the loss ratio decreases. Compared
with BnP that returns critical alerts without quality loss,
ST and MTS are 180 and 3 times faster, respectively, at the
cost of small quality loss.
In all cases, we observe that the total Gain(·) increases

with larger k with diminish return (not shown). This is
consistent with its submodularity.

6.4 Performance evaluation of BnP
In this set of experiments, we focus on the impact of the

number of hops h (for lower bound computation) to the
performance of BnP. We fixed k as 1. Besides running time,

we investigate the pruning ratio of BnP, defined as |V |−|C|
|V |

,

where |V | is the total alert number in an alert graph G, and
|C| is the average size of the candidate set C (Section 4)
after pruning, for all the k iterations.
Figure 7(a) and Figure 7(b) illustrate how the computa-

tion time of different components in BnP varies, and how
the pruning ratio varies, respectively, while the number of
explored hops h varies from 1 to 5. The result tells us the fol-
lowing. (1) When h increases from 1 to 3, the response time
of BnP drops. Indeed, as observed from Figure 7(b), the
efficiency improvement comes from the increasing number
of pruned alerts. With more alerts pruned, the amount of
time taken on Gain evaluation, which is the dominating cost,
drops accordingly. (2) When the number of hops increases
from 3 to 5, the response time of BnP increases. As the num-
ber of hops grows from 3 to 5, we can see that the pruning
ratio of BnP marginally is improved from Figure 7(b); how-
ever, the amount of computation time for lower bound in
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Figure 7: BnP performance on LM alert graphs

BnP dramatically increases, which becomes the dominating
computation cost. According to our result, when the num-
ber of explored hops is set to be 3, BnP achieves the best
performance on LM alert graphs.

In addition, as shown in Figure 7(b), BnP consistently
outperforms BnPUB in terms of pruning ratio, since the upper
and lower bounds in BnP introduce more powerful pruning
to reduce unnecessary computation.

6.5 Performance evaluation of MTS
In this set of experiments, we demonstrate how the num-

ber of sampled trees affect the performance of MTS.
Figure 8(a) tells us the following. (1) While the number of

required critical alerts is fixed, the response time of MTS is
proportional to the number of sampled trees (varies from 5 to
500). (2) When the number of samples is fixed, the response
time of MTS grows linear to the number of required critical
alerts. In all cases, MTS takes no more than 15 seconds.

Figure 8(b) illustrates how the number of sampled trees
influences the effectiveness of MTS. When the number of
sampled trees increases, the loss ratio of MTS decreases,
while the reduction of loss ratio diminishes. As the number
of sampled trees changes from 5 to 100, the loss ratio of
MTS is significantly improved; meanwhile, as the number
of sampled trees changes from 100 to 500, the loss ratio
is marginally improved. In addition, fixing the number of
sampled trees, when the number of required critical alerts is
increased, the loss ratio of all MTS variants decreases.

6.6 Scalability
On SYN alert graphs, we fixed the number of required

critical alerts to be 3, and evaluate the scalability of BnP,
MTS, ST, Naive, and BnPUB. Note that the number of hops
explored in BnP is fixed to be 3, and the number of sampled
trees in MTS is fixed to be 300.
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Figure 9: Scalability results on SYN graphs

Figure 9 reports the scalability results. When the number
of alerts in SYN graphs increases from 100K to 1000K, the
response time of MTS and ST linearly grows. In particular,
when a SYN graph has 1M alerts and more than 90M edges,
MTS and ST return 3 critical alerts in 4 minutes and 13
seconds, respectively. On the other hand, Naive, BnPUB, and
BnP cannot finish the computation in an hour, even for alert
graphs with 100K alerts (hence are not shown). Indeed, the
efficiency of BnP relies on the amount of alerts it can prune.
In the worst case, it works as slow as Naive. In contrast,
MTS and ST are much less sensitive to the growth of graph
size, and are more promising for large alert graphs.

6.7 Summary
We found the following. (1) With pruning strategy, BnP

outperforms baseline algorithms in terms of efficiency up to
30 times, without loss of solution quality. (2) While MTS is
up to 80 times faster than baseline algorithms, the resulting
loss ratio is around 0.1. (3) ST is up to 5000 times faster
than baseline algorithms, with loss ratio around 0.2.

7. RELATED WORK

Causality models and analysis. Causal relations among
time series data have been modeled with Granger causal-
ity [33], lagged correlation [23], Bayesian networks [29, 26],
among others. Granger causality measures a cause in terms
of whether it passes Granger Test, i.e., whether it helps in
predicating the future events, beyond what can be predicted
by using only the historical events. Lagged correlation char-
acterizes causal relations with the correlation between two
time series shifted in time relative to one another. Causal
Bayesian networks interprets causal relations with graphical
models, in which the predecessors of a node are interpreted
as directly causing the variable associated with that node.

A variety of causality mining techniques have been stud-
ied [3, 31, 32], varied with causality models. Silverstein et
al. [32] proposed algorithms to mine causal relations in large
databases by estimating the conditional probability of rules
of interest. For Granger causality, Arnold et al. [3] applied
Lasso Granger method to find a set of events that are con-
ditionally dependent with regression, without exhaustively
performing pairwise Granger Test. A toolbox for detecting
Granger causality is developed [31]. These methods stop at
identifying causal relations. Our work, on the contrary, effi-
ciently identifies the most critical alerts rather than suggest-
ing all possible causal relationships. On the other hand, effi-
cient causality mining techniques, as well as existing knowl-
edge bases on event causality scenarios [10] serve as prepro-
cessing in our critical causal mining framework.

Root cause analysis. We are aware of a range of domain-
specific studies that aims to find the “root causes”. Given a
set of observed symptom events, the problem is to identify
the set of root causes that can best explain the symptom.
In intrusion detection, Julisch [16] leveraged alert cluster-
ing techniques to indicate root causes for system alarms. A
hierarchical clustering process is iteratively performed over
groups of similar alarms, until the top causes are identified.
In network performance diagnosis, Mahimkar et al. [23] pro-
posed methods to identify potential root causes as the events
that have statistically significant (lagged) correlations with
a set of known symptom events. In contrast, we propose
a general computational framework for efficient root cause
analysis over large-scale alert sequences in networks. While
we do not have the luxury to assume the access of rich
domain-specific semantics that benefit event filtering, any
such knowledge serves as preprocessing to reduce the input
size of our problem.

Influence maximization. Node influence evaluation aims
to select a group of nodes with maximized influence, under
various information diffusion models, such as independent
cascade model [21], linear threshold model [19], competing
model [4, 15], continuous-time model [11, 30], and credit
distribution model [13]. The problem is, however, highly
intractable (#P-hard). Sampling methods such as Monte
Carlo simulations are usually applied to estimate node in-
fluence. Nonetheless, these approaches typically take mas-
sive amount of computation time and are hard to scale over
large graphs [22]. To improve the scalability, various prun-
ing algorithms have been proposed to reduce the number of
Monte Carlo simulations [9, 11, 14, 36], and heuristic algo-
rithms have been studied to estimate node influence [6, 7,
8, 28]. In contrast to these works, we identify efficient algo-
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rithms for critical alert mining, with desirable performance
guarantees on alert quality and efficiency. Striking a balance
between mining quality and efficiency, these algorithms sug-
gest scalable mining for large scale alert analysis.

8. CONCLUSION
We have studied the critical alert mining problem. De-

spite its intractability, we developed approximation algo-
rithms with quality guarantees, as well as fast heuristics that
preserve at least 80% of solution quality, and perform up to
5, 000 times faster than their approximation counterparts.
This work is a first step towards large-scale critical alerts

mining. We are conducting experiments over various large
real-life datasets and causality models. One topic is to ex-
tend our techniques for distributed network monitoring sys-
tems and data centers. Another topic is to dynamically
maintain the alert graphs and mined critical alerts. In ad-
dition, to further improve the alert quality, one wants to
combine the mining framework with external semantics and
knowledge bases, and to automatically interpret the critical
alerts for various application domains.
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