
FUNNEL: Automatic Mining of
Spatially Coevolving Epidemics

Yasuko Matsubara†, Yasushi Sakurai†, Willem G. van Panhuis§, Christos Faloutsos‡

† Dept. of Computer Science and Electrical Engineering, Kumamoto University,
§ Dept. of Epidemiology, University of Pittsburgh, ‡ Dept. of Computer Science, Carnegie Mellon University

{yasuko,yasushi}@cs.kumamoto-u.ac.jp, wav10@pitt.edu, christos@cs.cmu.edu

ABSTRACT
Given a large collection of epidemiological data consisting of the
count of d contagious diseases for l locations of duration n, how
can we find patterns, rules and outliers? For example, the Project
Tycho provides open access to the count infections for U.S. states
from 1888 to 2013, for 56 contagious diseases (e.g., measles, in-
fluenza), which include missing values, possible recording errors,
sudden spikes (or dives) of infections, etc. So how can we find a
combined model, for all these diseases, locations, and time-ticks?

In this paper, we present FUNNEL, a unifying analytical model
for large scale epidemiological data, as well as a novel fitting algo-
rithm, FUNNELFIT, which solves the above problem. Our method
has the following properties: (a) Sense-making: it detects impor-
tant patterns of epidemics, such as periodicities, the appearance of
vaccines, external shock events, and more; (b) Parameter-free: our
modeling framework frees the user from providing parameter val-
ues; (c) Scalable: FUNNELFIT is carefully designed to be linear
on the input size; (d) General: our model is general and practi-
cal, which can be applied to various types of epidemics, including
computer-virus propagation, as well as human diseases.

Extensive experiments on real data demonstrate that FUNNELFIT

does indeed discover important properties of epidemics: (P1) dis-
ease seasonality, e.g., influenza spikes in January, Lyme disease
spikes in July and the absence of yearly periodicity for gonorrhea;
(P2) disease reduction effect, e.g., the appearance of vaccines; (P3)
local/state-level sensitivity, e.g., many measles cases in NY; (P4)
external shock events, e.g., historical flu pandemics; (P5) detect
incongruous values, i.e., data reporting errors.

Categories and Subject Descriptors: H.2.8 [Database manage-
ment]: Database applications–Data mining

Keywords: Epidemics; Time-series; Automatic mining

1. INTRODUCTION
Given a huge collection of co-evolving epidemic time-series,

such as measles and influenza, how can we find typical patterns or
anomalies, and statistically summarize all the epidemic sequences?
In this paper, we present a unifying model, namely FUNNEL, which
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provides a good description of large collections of epidemiological
data. 1 Intuitively, the problem we wish to solve is as follows:

INFORMAL PROBLEM 1. Given a large collection of epidemi-
ological data, which consists of d diseases in l locations of duration
n, with missing values and recording errors, we want to

• find basic patterns of diseases (e.g., seasonality)
• find extra patterns (e.g., outbreaks, sudden drops)
• detect anomalies (i.e., possible errors)

Uncovering the mechanisms and patterns of contagious diseases
is an important and challenging task for public health scientists and
policy makers. In this paper, we study a publicly available resource
of epidemiological data: Tycho [32], which contains the count of
infections of 56 diseases in the U.S, covering over 125 years on a
weekly basis. 2

Preview of our results. Figure 1 (a) shows the number of measles
cases in the United States from 1928 to 1982, as gray circles, and
our fitted model, as a solid red line. The sequence has a clear yearly
periodicity, but also characteristic bi- and triennial patterns result-
ing in alternating large (1941, 1958) and small (1940, 1947) epi-
demic years [22], which is known as “skip” phenomena [29]. It
should also be noted that the number of cases suddenly dropped in
1965. This was achieved because of the vaccination program that
started in 1963. Figure 1 (b) shows the potential population of sus-
ceptibles for measles for each state in the U.S. The top three states
in this respect are, NY, PA, and CA.

Figure 1 (c) shows a scatter plot of the seasonality strength vs.
the peak season for each disease. We determined four categories of
diseases in terms of (1) the strength of annual periodicity (radius)
and (2) their phase difference, i.e., the month in which they peak
(angle). For example, we found previously characterized epidemic
peaks for influenza in January-February and for respiratory child-
hood diseases (e.g., measles) in the spring [27], and for tick-borne
diseases (e.g., Lyme disease) peaks in the summer [28]; There is no
periodicity for sexually transmitted diseases, (e.g., gonorrhea).

We can capture these important patterns in epidemic data with
our proposed model, simply by changing its parameters. More im-
portantly, our method is fully-automatic, that is, it provides a good
description of a large collection of epidemiological data, without
user intervention, prior training, or parameter tuning.
Contrast with competitors. Table 1 illustrates the relative advan-
tages of our method. Only our approach has checks against all
entries, while,

• The SI model (and SIR, SIRS, etc.) can compress the data
into a fixed number of parameters, and capture the dynamics
of epidemiological data, however, it cannot describe periodic
patterns, and is incapable of forecasting.

1Available at http://www.cs.kumamoto-u.ac.jp/~yasuko/software.html
2Project Tycho at University of Pittsburgh: http://www.tycho.pitt.edu/

105



1930 1940 1950 1960 1970 1980
0

2

4

6 x 104

Year

C
ou

nt

 

 

1930 1940 1950 1960 1970 1980

105

Year

C
ou

nt
 (l

og
)

 

 

Original
I(t)

Original
S(t)
I(t)
V(t)

Vaccination

(a) Fitting result of FUNNELFIT (measles)

(b) Potential population of susceptibles (measles)

  0.1

  0.2

  0.3

  0.4

  0.5

February (2) 

August (8)

March (3) 

September (9)

April (4) 

October (10)

May (5)

November (11)

June (6)

December (12)

July (7) January (1) 

Rubella
Measles

Mumps

Gonorrhea
Streptococcal sore throat

ChickenpoxSmallpox

Lymedisease

Typhoidfever
Cryptosporidiosis

Rocky mountain spotted fever

Typhus fever

Influenza

(c) Seasonality strength (radius) vs. peak season (angle)

Figure 1: Modeling power of FUNNELFIT: (a) the original number of measles cases (gray dots), and our model (red lines). It
captures the yearly cycle, external spikes, and vaccination starting in 1963, as well as (b) the local sensitivity (e.g., many patients in
NY, PA, CA, TX); (c) the scatter plot of the seasonality strength vs. the peak season - (angle): the peak month for each disease and
(radius): the strength of the fluctuation, e.g., influenza peaks every winter, measles in the spring, and no periodicity for gonorrhea.

Table 1: Capabilities of approaches. Only our approach meets
all specifications.

SIRS AR/PLiF PARAFAC FUNNELFIT

Compression
√ √ √ √

Domain knowledge
√ √

Missing values
√ √

Periodicity
√ √

Forecasting
√ √

Parameter free
√

• The auto regression (AR) model and PLiF [15] have the abil-
ity to compress and forecast sequences, but they are funda-
mentally unsuitable for epidemic data, and cannot capture
the non-linear patterns of virus propagation.

• Our epidemic data can be turned into a tensor. PARAFAC is
capable of compression, but it cannot handle missing values,
periodicity, or forecasting.

Most importantly, none of above are parameter-free methods.
Contributions. Our method has the following desirable properties:

1. Sense-making: thanks to our modeling framework, our method
can provide an intuitive explanation for epidemics, such as
the seasonality of diseases, vaccination, and external shocks.
It matches the behavior of various types of contagious dis-
eases, such as measles, influenza, and smallpox.

2. Automatic: it is fully automatic, requiring no human inter-
vention. Our algorithm is theoretically founded on the idea
of minimizing the cost of the resulting modeling.

3. Scalable: it scales linearly with the input size.
4. Generality: it includes earlier patterns and models as special

cases (e.g., SIRS), and it can be applied to various types of
epidemic data including computer virus infections.

Outline. The rest of the paper is organized in the conventional
way: Next we describe related work, followed by our proposed
model and algorithms, experiments, discussion and conclusions.

2. RELATED WORK
We provide a survey of the related literature, which falls broadly

into two categories: (1) epidemiology, and (2) pattern discovery in
time series.

Epidemiology. The canonical textbook for epidemiological mod-
els including SI/SIR is Anderson and May [2]. Grenfell et al. [9]
studied the recurrent travelling waves for measles, while the work
in [8] explained the complex dynamical transitions in epidemics.
Stone et al. [29] studied the seasonal dynamics of recurrent epi-
demics including measles, and identified a new threshold for pre-
dicting the occurrence of either a future epidemic, or a ‘skip’ (i.e., a
year in which an epidemic fails to initiate). Van Panhuis et al. [32]
digitized the entire history of weekly Nationally Notifiable Disease
Surveillance Reports for the U.S. from 1888 to 2013.
Pattern discovery in time series. In recent years, there has been
an explosion of interest in mining time series [4, 6, 21, 16]. Tra-
ditional approaches applied to data mining include auto-regression
(AR), linear dynamical systems (LDS), Kalman filters (KF) and
their variants [10, 15, 31]. Similarity search and pattern discov-
ery in time sequences have also attracted huge interest [33, 13, 30,
26, 7]. Regarding large-scale time-series mining, TriMine [18] is
a scalable method for forecasting co-evolving multiple (thousands
of) sequences, while, [17] developed a fully-automatic mining al-
gorithm for co-evolving time sequences. Rakthanmanon et al. [25]
proposed a similarity search algorithm for “trillions of time series”
under the DTW distance. Recently, analyses of epidemics, so-
cial media, propagation and the cascades they create have attracted
much interest [24, 12, 14, 23, 19].

However, none of these methods specifically focused on auto-
matic mining of non-linear dynamics in coevolving epidemics.

3. PROPOSED MODEL
In this section we present our proposed model.

3.1 Design philosophy of FUNNEL
Data description. The Project Tycho [32] covers more than a cen-
tury of weekly surveillance reports of nationally notifiable diseases
(56 diseases in total) for all 50 states in the U.S, from 1888 to the
present, with 87,950,807 reported individual cases for diseases.

This dataset consists of tuples of the form: (disease, location,
timestamp). We then have a collection of entries with d unique
diseases, and l states, with duration n (on a weekly basis). We can
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Figure 2: The air temperature vs. # of cases: (a) influenza is
completely anti-correlated with the air temperature (i.e., peak-
ing in the winter), while, (b) measles also has strong periodicity,
but it peaks in the spring (i.e., with a phase shift).

treat this set of d × l epidemic sequences as a 3rd-order tensor,
i.e., X ∈ N

d×l×n, where the element xij(t) of X shows the total
number of entries of the i-th disease in the j-th state at time-tick t.

For example, (‘measles’, ‘PA’, ‘April 1-7, 1931’; 4740), means
that the number of cases due to ‘measles’ in ‘PA’ on ‘April 1-7 in
1931’ is ‘4740’.

We refer to each sequence of the i-th disease in the j-th state:
xij = {xij(t)}

n
t=1, as a “local/state”-level epidemic sequence.

Similarly, we can turn these local sequences into “global/country”-
level epidemics: x̄i = {x̄i(t)}

n
t=1, where x̄i(t) shows the total

count of the i-th disease at time-tick t, i.e., x̄i(t) =
∑l

j=1 xij(t).
Preliminary observations. Here, we provide the reader with sev-
eral important observations. Figure 2 shows the scatter plots (top)
and sequence plots (bottom) of the original local-level sequences
of influenza and measles counts in three states, versus the aver-
age air temperature for five years. 3 In Figure 2 (a), influenza
cases are strongly anti-correlated with the air temperature, corre-
sponding to influenza epidemics in colder seasons. On the other
hand, for measles (Figure 2 (b)), the scatter plot exhibits charac-
teristic loop shapes, which indicates that there is a phase shift of
measles vs. temperature - actually, measles peaks in the spring. As
shown in Figure 1 (c), there are several groups of infectious dis-
eases with specific seasonal patterns, including children’s diseases
(e.g., measles, mumps) in the spring, and tick-borne diseases (e.g.,
Lyme disease) in the summer. Consequently we have:

OBSERVATION 1 (DISEASE SEASONALITY). Many diseases
have yearly cycles with different phases, that is, they are correlated
with air temperature and the seasons.

The next observation refers to the abrupt decline of several dis-
eases. Luckily, many diseases have been eradicated or significantly
reduced over the last century, through various factors including vac-
cination, sanitation and antibiotics. For example, in Figure 1 (a),
the number of measles cases has been decreasing since the vacci-
nation program was introduced in 1963. We will collectively refer
to such abrupt declines as disease reduction effects.

OBSERVATION 2 (DISEASE REDUCTION EFFECT). Many in-
fectious diseases have been reduced or eliminated through vacci-
nation programs, antibiotics, sanitation, etc.

Next, let us look at the topic from a local point of view. In
Figure 2, three local sequences are correlated with each other, but
with different fractions of patients, which correspond to the number
of susceptible people in each state. For example, measles mainly
affects children, and so, the more children there are, the more cases
of measles there will be (see, NY, PA, CA, TX, in Figure 1 (b)).
3 National climate data center: http://www.ncdc.noaa.gov/cag/

Table 2: Symbols and definitions
Symbol Definition
d Number of diseases
l Number of states (i.e., locations)
n Duration of sequences
X 3rd-order tensor (X ∈ Nd×l×n)
xij Local-level epidemic sequence of disease i in state j
x̄i Global-level epidemic sequence of disease i
Sij(t) Count of susceptibles of disease i in state j at time t
Iij(t) Count of infectives of disease i in state j at time t
Vij(t) Count of vigilants of disease i in state j at time t
B Base matrix (d× 6) i.e., B = {b1, . . . , bd}
R Disease reduction matrix (d× 2) i.e., R = {r1, . . . , rd}
N Geo-disease matrix (d× l) i.e., N = {Nij}d,li,j=1

E External shock tensor i.e., E = {E(D), E(T), E(S)}
M Mistake tensor i.e., M = {mij(t)}d,l,ni,j,t=1

F Complete set of FUNNEL i.e., F = {B,R,N,E ,M }
OBSERVATION 3 (AREA SPECIFICITY AND SENSITIVITY). For

each disease, neighbors are correlated with different sensitivity.

The last two observations are the extra properties of epidemics.
Figure 1 (a) shows large outbreaks of measles in 1941 and 1958,
while Figure 2 (a) shows two large flu pandemics in 1944 and 1946.

OBSERVATION 4 (EXTERNAL SHOCK EVENTS). There are some
extreme spikes, representing major events such as historical flu
pandemics.

Basically, real-world datasets are subject to quality constraints
such as typing errors and incorrect reports (we refer to them as
“mistakes”).

OBSERVATION 5 (MISTAKES). There are some implausible
spikes, which are completely independent of the dynamics of epi-
demic patterns.

Summary. In this paper, we propose a new model, namely, FUN-
NEL, which tries to incorporate all the above important proper-
ties that we observed in the real epidemic data. Consequently, we
would like to capture the following properties:

• (P1): yearly periodicity
• (P2): disease reduction effects
• (P3): area specificity and sensitivity
• (P4): external shock events
• (P5): mistakes, incorrect values

For simplicity, let’s focus on a simple step first, where (a) we as-
sume that we are given a single epidemic sequence, say, the number
of measles cases in NY. We then (b) extend our model to multiple
co-evolving epidemics, that is, to capture the individual patterns of
d diseases in l states.

3.2 FUNNEL - with a single epidemic
We begin with the simplest case, where we assume that we are

given a single epidemic sequence.

3.2.1 Base model - FUNNEL-BASE

The model we propose has nodes (=people) of three classes:
• Susceptible: nodes in this class can get infected by any neigh-

boring node who is infectious.
• Infected: nodes who have been infected and are capable of

transmitting the infection to those in the susceptible class.
• Vigilant (i.e., recovered/immune): nodes in this class cannot

get infected nor can they cause infections.
Figure 3 (a) shows a diagram of our base model, where, β(t)

represents the rate of effective contacts between infected and sus-
ceptible individuals; δ is the rate at which infected individuals re-
covered; γ is the immunization loss probability for a recovered or
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Figure 3: FUNNEL diagrams: there are three classes - suscep-
tible (i.e., healthy, but can get infected), infected (i.e., capable of
transmission), vigilant (i.e., healthy, and cannot get infected).

vigilant individual. 4 More importantly, to handle the first prop-
erty of epidemics: (P1), we assume that the infection rate β(t) is a
periodic function of time t. We refer to it as FUNNEL-BASE.

MODEL 1 (FUNNEL-BASE). Let S(t), I(t), V (t) be the num-
ber of susceptible, infected, vigilant people at time-tick t. Our base
model is governed by the following equations:

S(t+ 1) = S(t)− β(t)S(t)I(t) + γV (t)

I(t+ 1) = I(t) + β(t)S(t)I(t)− δI(t)

V (t+ 1) = V (t) + δI(t)− γV (t) (1)

where β(t) = β0 ·
(

1 + Pa · cos
(

2π
Pp

(t + Ps)
)

)

, Pp = 52, 5

and, we have the invariant N = S(t) + I(t) + V (t), with initial
conditions S(1) = N − 1, I(1) = 1, V (1) = 0.

Consequently, FUNNEL-BASE consists of a set of the following pa-
rameters: b = {N,β0, δ ,γ , Pa, Ps}, specifically,

• N : Potential population of the disease. N is composed of
susceptible, infected and vigilant individuals.

• β0: Rate of effective contacts between infected and suscepti-
ble individuals averaged over the year.

• δ: Healing rate of the disease.
• γ: Forgetting rate of the diseases.
• Pa: Amplitude of the fluctuation, specifically, it gives the

relative value of the peak/off-season.
• Ps: Phase shift of the seasonal cycle.

3.2.2 With disease reduction - FUNNEL-R

With respect to the second property: (P2), we also introduce an
essential concept, namely, the “disease reduction” effect.

MODEL 2 (FUNNEL-R). We add a disease reduction rate: θ(t),
to capture the effect of the disease reduction program, that is,

S(t+ 1) = S(t)− β(t)S(t)I(t) + γV (t)− θ(t)S(t)

I(t+ 1) = I(t) + β(t)S(t)I(t)− δI(t)

V (t+ 1) = V (t) + δI(t)− γV (t) + θ(t)S(t) (2)
where, the disease reduction program started at time tθ and θ(t) is

defined as: θ(t) =

{

0 (t < tθ)
θ0 (t ≥ tθ)

The model is identical to FUNNEL-BASE, with the addition of the
disease reduction factor, θ(t), which corresponds to the direct im-
munization probability when susceptible (see Figure 3 (b)). Note
that this effect is due to vaccination, antibiotics and any other anti-
disease factors. Hereafter, we simply say the “disease reduction
effect”, unless otherwise specified.

In addition to the base parameters b, FUNNEL-R requires a set
of two parameters, r = {tθ, θ0}, where,

• tθ: Starting time of the disease reduction effect.
• θ0: Diffusion rate of the disease reduction effect.

4 This factor also incorporates the birth and mortality rate.
5We have 52 time-ticks (weeks) in one year.

3.2.3 With external shocks - FUNNEL-RE

Next, with respect to the property: (P4), we assume that there
are external shock events, such as flu pandemics. So how do we
go about capturing such unexpected patterns? Assume that there is
a swine flu pandemic. In this situation, many more people in the
susceptible class would become infected than in previous years.

An elementary concept we need to introduce is the temporal sus-
ceptible rate: ϵ(t). Figure 3 (b) describes how this is done. The
idea is that the number of susceptibles S(t) is the count of vic-
tims available for infection, and if there is an external shock event
at time-tick t, the virus attacks are much stronger than usual, and,
each victim-attack pair would lead to a new victim, and will even-
tually cause a major pandemic.

MODEL 3 (FUNNEL-RE). Our full model can be described
as the following equations:

S(t+ 1) = S(t)− β(t)ϵ(t)S(t)I(t) + γV (t)− θ(t)S(t)

I(t+ 1) = I(t) + β(t)ϵ(t)S(t)I(t)− δI(t)

V (t+ 1) = V (t) + δI(t)− γV (t) + θ(t)S(t) (3)

In addition, we introduce the temporal susceptible rate, ϵ(t), which
is defined as follows:

ϵ(t) = 1+
k

∑

i=1

f(t; e
(T )
i ), f(t; e(T )) =

{

ϵ0 (tµ − tσ < t < tµ + tσ)
0 (else)

where, k is the number of shocks, and if k = 0, then ϵ(t) = 1.

Here, each external shock consists of e(T ) = {tµ, tσ, ϵ0}, i.e.,
• tµ: Central time point of the external shock event.
• tσ: Duration of the event.
• ϵ0: Strength of the external shock effect.

3.3 FUNNEL - with multi-evolving epidemics
So far we have seen how FUNNEL captures the dynamics of a

single epidemic sequence. The next question is, “how can we apply
FUNNEL to multiple co-evolving epidemics in X , and capture the
individual behavior of d diseases in l states?”

We want to estimate the parameter set of FUNNEL, for each in-
dividual epidemic sequence in X . The straightforward solution
would be that we consider a set of (d × l) sequences of length

n generated from X : {xij}
d,l
i,j=1, (i.e, “local-level” epidemic se-

quences), and estimate parameter set: {b, r, e(T )} for each se-
quence. However, some of the (disease, state) pairs have very
sparse sequences (e.g., Lyme disease in Alaska), which derails the
fitting result. Also, we are interested in capturing global/country-
level patterns, as well as local/state-level trends. So how can we
deal with this issue? We thus propose “sharing” the global-level
parameters for all l states, to achieve much better modeling.
FUNNEL - full model parameter set. Our goal is to extract the
main trends and external patterns of co-evolving epidemics X ∈
N

d×l×n, and make a good representation of X . Figure 4 shows
our modeling framework. Given epidemic data X , we try to find
important patterns with respect to the following five aspects, (P1)
B: base properties of diseases, (P2) R: disease reduction effects,
(P3) N: locations vs. diseases, (P4) E : external shock events,
and (P5) M : mistake values. The first two are global/country-
level parameter sets, and the third is a local/state-level parameter
set, and the last two are used for describing extra trends in X .

DEFINITION 1 (COMPLETE SET OF FUNNEL). Let F be a
complete set of parameters (namely, F = {B,R,N,E ,M }) that
describe the global/local/extra patterns of epidemics in X .

Next, we will see each property in detail.
(P1), (P2) Global/country view. Basically, we assume that the
following parameters are the same for all l states.
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DEFINITION 2 (BASE MATRIX B (d× 6)). Let B be a set of
base parameters of d diseases, i.e., B = {b1, . . . , bd} where bi is
the parameter set of the i-th disease.

For example, the infection/healing rate of measles should be the
same for NY and FL. Similarly, once the measles vaccine has been
introduced, (i.e., the disease reduction effect), it could be imme-
diately spread all over the country, that is, the starting time of the
disease reduction effect would be the same for all locations.

DEFINITION 3 (DISEASE REDUCTION MATRIX R (d× 2)).
Let R be a parameter set of the reduction of d diseases, i.e., R =
{r1, . . . , rd} where ri is the parameter set of the i-th disease.

(P3) Local/state view. We also want to analyze and explain local-
specific patterns and trends in X . So, what is the difference be-
tween measles in NY and in FL? Our answer is: they are exactly
the same, except for the “local sensitivity” of the disease. The idea
is that we share the parameters of the global-level matrices for all
l states with but one exception, local sensitivity, Nij , which de-
scribes the potential population of the disease i in the j-th state.
Specifically, we set the invariant, Nij = Sij(t)+Iij(t)+Vij(t) in
Model 3. This parameter corresponds to the fraction of individuals
who are likely to be infected by the disease. For example, NY has
more measles patients than FL, because it mainly affects children
(i.e., there were more children in NY than FL, in the last century).

DEFINITION 4 (GEO-DISEASE MATRIX N (d× l)). Let N be
a parameter set of the potential population of d diseases and l
states, i.e., N = {Nij}

d,l
i,j=1, where Nij is the potential popula-

tion of susceptibles of the i-th disease in the j-th state.

(P4) Extra view - external shocks. Consider that in 1946 a serious
flu pandemic spread throughout the country. We want to describe
this external shock event in terms of three aspects, (disease, state,
time), e.g., (e1) “influenza, country-wide, 1946”. Similarly, there
was a community-wide outbreak of cryptosporidiosis in Utah, in
2007. i.e., (e2) “cryptosporidiosis, Utah, 2007”. To describe these
external shock events, we create a new parameter set, namely ex-
ternal shock tensor E , which consists of a set of k external shock
events, as described in Figure 4 (b).

The external shock tensor E can be also decomposed into three-
aspect matrices, {E(D), E(S), E(T)}, each of which shows the pat-
terns in terms of disease, state, time. A single external shock event
can be described as triplet vectors {e(D), e(S), e(T )}, where,

• The shock (disease) vector e(D) shows the assignment of the
external shock to the disease ID (i.e., 1 ≤ e

(D) ≤ d).
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(a) External shock fitting (b) Mistake fitting

Figure 5: External shock vs. mistake for giardiasis in 2007:
(a) the model (i.e., red line) is greatly influenced by the large
distance of the outlier from the original sequence, while (b) it
filters out the mistake point, and fits the sequence very well.

• The shock (state) vector e(S) describes the participation strength
of each state for each external shock event.

• The shock (time) vector e(T ) shows the temporal pattern of
the external shock event.

Specifically, e(T ) is the global-level parameters, as described in
subsubsection 3.2.3, and e

(S) is the local-level parameters, i.e.,

e
(S) = {e(S)

j }lj=1, where, we change ϵ0 in Model 3 to describe
the strength of the external shock for l individual locations. That

is, the strength of the shock effect in the j-th state is, ϵ0 · e(S)
j .

Consequently, we have the following:

DEFINITION 5 (EXTERNAL SHOCK TENSOR E ). Let E be a
3rd-order tensor of k external shock events, i.e., E = {E(D),E(S),
E

(T)}, where triplet matrices show the parameters in terms of
three aspects, namely, “disease”, “state”, and “time”.

(P5) Extra view - Mistakes. Basically, real datasets contain many
errors such as incorrect reports. FUNNEL should detect and filter
them out as outliers. We thus introduce an additional concept.

DEFINITION 6 (MISTAKE TENSOR M ). Let M be a 3rd-order
tensor of mistake data points, where, the element mij(t) of M

shows the entry of the i-th disease in the j-th state at time-tick t.

Note that M is very sparse, and very often mij(t) = 0.
Figure 5 compares the fitting results of the external shock vs.

mistake for the giardiasis cases, which contains an incongruous
point in 2006 (approximately, 10, 000). In this case, the point
should be treated as (b) a mistake value, instead of (a) an external
shock event; in figure (a), the model (red line) is strongly influenced
by the extreme point, while in (b), it successfully captures the real
patterns of the original sequence.
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4. OPTIMIZATION ALGORITHM
In this section, we describe our fitting algorithm, FUNNELFIT.

Our goal is to extract the important patterns of epidemics from X .
More specifically, the problem that we want to solve is as follows:

PROBLEM 1. Given a tensor X of (disease, state, time) triplets,
Find a compact description that best summarizes X , that is, F =
{B,R,N,E ,M }.

We want to find a good representation F to solve the problem. The
essential questions are: (a) How can we estimate the parameter set
that best captures the dynamics and patterns in X ? (b) How should
we decide the number of external shocks k? (c) How can we ignore
mistake (i.e., outlier) values in X ?

4.1 Model quality and data compression
We provide a new intuitive coding scheme, which is based on the

minimum description length (MDL) principle. In short, it follows
the assumption that the more we can compress the data, the more
we can learn about its underlying patterns.
Model description cost. The description complexity of model pa-
rameter set consists of the following terms,

• The number of diseases d, states l, and time-ticks n require
log∗(d) + log∗(l) + log∗(n) bits. 6

• The model parameter set of the base (B), reduction (R), geo-
disease (N) matrices require d× 6, d× 2, d× l parameters,
respectively, i.e., CostM (B)+CostM (R)+CostM (N) =
cF · d(6 + 2 + l), where cF is the floating point cost7.

Similarly, the model description cost of the external shock tensor
E = {E(D), E(S), E(T)}) consists of the following:

• The number of external shocks k requires log∗(k) bits.

• The shock-disease matrix E
(D) requires k log(d).

• The shock-time parameter set e(T ) = {tµ, tσ, ϵ0} in E
(T)

requires log(n), log(n), cF , respectively.

• The shock-state matrix E
(S) requires cF · kl.

Consequently, the model cost of the external shock tensor E is
CostM (E) = log∗(k) + k

(

log(d) + 2 log(n) + cF · (1 + l)
)

.

The model cost of mistake tensor M consists of

• The number of non-zero elements in M requires log∗(|M |)
• The location of each non-zero element and its value, mij(t)

require log(d),log(l),log(n), log∗(mij(t)), respectively.

Thus, CostM (M ) = log∗(|M |)+
∑|M |

mij(t)>0(log(d)+ log(l)+

log(n) + log∗(mij(t))), where, |M | is the number of non-zero
elements in M .
Data coding cost. Once we have decided the full parameter set
F , we can encode the data X using Huffman coding [3], i.e., a
number of bits is assigned to each value in X , which is the log-
arithm of the inverse of the probability of the values (here, we
use a Gaussian distribution). The encoding cost of X given F
is: CostC(X|F) =

∑d,l,n
i,j,t=1 log2 p

−1
Gauss(µ,σ)(xij(t)−mij(t)−

Iij(t)), where, xij(t), mij(t) are the elements in X and the mis-
take tensor M , respectively, and Iij(t) is the estimated count of
infections (i.e., Model 3). Also, µ and σ are the mean and variance
of the distance between the original and estimated values. 8

Putting it all together. Consequently, the total code length for X
with respect to a given parameter set F can be described as follows:

6Here, log∗ is the universal code length for integers.
7We used 4× 8 bits in our setting.
8 Here, µ, σ need 2cF bits, but we can eliminate them because they
are constant values and independent of our modeling.

CostT (X ;F) = log∗(d) + log∗(l) + log∗(n)

+CostM (B) + CostM (R) + CostM (N)

+CostM (E) + CostM (M ) + CostC(X|F) (4)

Thus our next goal is to minimize the above function.

4.2 Multi-layer optimization
Until now, we have seen how we can measure the goodness of

the representation of X , if we are given a candidate parameter set
F . The next question is, how to find an optimal solution of the full
parameter set: F = {B,R,N,E ,M }.

As described in subsection 3.3, our FUNNEL model consists of
multiple parameter sets, each of which explains either the local or
global pattern of epidemics in X . For example, the base and re-
duction matrices B, R explain the global-level behavior of each
disease, while the geo-disease matrix N describes the local-level
trends. Also, the extra tensors E , M consist of both the global
and local-level parameters. More specifically, the external shocks
consists of E = {E(D), E(S), E(T)}), where, the first two are
the global-level, and the last one is the local-level. Similarly, the
mistake tensor can also be describes by the triplet matrix M =
{M(D), M(S), M(T)}), each of which describes the location of
the mistake values in terms of disease, state, time. So, how can we
efficiently estimate these model parameters?

We propose a multi-layer optimization algorithm, to search for
the optimal solution in terms of both the global and local-level pa-
rameters. The idea is that we split parameter set F into two subsets,
i.e., FG and FL, each of which corresponds to a global/local-level
parameter set, and try to fit the parameter sets separately. Our algo-
rithm consists of the following two phases:

• GLOBALFIT: find good global-level parameters for {x̄i}
d
i=1,

i.e., FG = {B,R, E(D),E(T),M(D),M(T)}
• LOCALFIT: find good local-level parameters: for {xij}

d,l
i,j=1,

i.e., FL = {N,E(S),M(S)}
Here, the global epidemic sequence of the i-th disease: x̄i can
be described as the sum of the l local sequences, i.e., x̄i(t) =
∑l

j=1 xij(t). Algorithm 1 shows an overview of FUNNELFIT.
Given a tensor X , it finds the full set of FUNNEL parameters.

Algorithm 1 FUNNELFIT (X )

1: Input: Tensor X (d× l × n)
2: Output: Complete set of parameters, i.e., F = {B,R,N,E ,M }
3: /* Parameter fitting for global-level sequences */
4: {FG} =GLOBALFIT (X );
5: /* Parameter fitting for local-level sequences */
6: {FL} =LOCALFIT (X ,FG);
7: return F = {FG ,FL};

4.2.1 Global-level parameter fitting
Given a tensor X , our sub-goal is to find the optimal global-level

parameter set: FG , to minimize the cost function (i.e., Equation 4).
We want to fit the basic parameters of each disease (i.e., the base
and reduction matrices), and estimate the appropriate number of
external shocks and mistake values, simultaneously. Finding the
appropriate number of external-shocks/mistakes is a particular is-
sue here, because the parameter fittings are very sensitive to out-
liers, as described in Figure 5 (a). To find a good basic parameter
set for X , we have to filter out the external shocks and mistakes
appropriately. Simultaneously, a good external-shock/mistake fil-
ter requires a well estimated base model. We escape this circular
dependency by applying an iterative method that employs external-
shocks/mistakes detection and filtering, and basic model fitting in
an alternating way until the cost function reaches a minimum value.
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Algorithm 2 GLOBALFIT (X )

1: Input: Tensor X
2: Output: Set of global-level parameters FG
3: for i = 1 : d do
4: Create x̄i from X ; /* Global sequence x̄i of i-th disease */
5: /* Initialize external shocks and mistake values for disease i */

6: E
(D)
i = E

(T)
i = M

(D)
i = M

(T)
i = ∅;

7: while improving the cost do

8: bi = arg min
b′
i

CostC(x̄i|b
′

i, ri,E
(T)
i ,M

(T)
i ); /* Base */

9: ri = arg min
r′

i

CostC(x̄i|bi, r
′

i,E
(T)
i ,M

(T)
i ); /* Reduction */

10: E
(D)
i = E

(T)
i = M

(D)
i = M

(T)
i = ∅; /* Initialize values */

11: /* Find external shocks and mistakes for disease i */
12: while improving the cost do

13: e
(T ) = arg min

e′(T )
CostC(x̄i|bi, ri, {E

(T)
i ∪ e

′(T )},M(T)
i );

14: m
(T ) = arg min

m′(T )
CostC(x̄i|bi, ri,E

(T)
i , {M(T)

i ∪m
′(T )});

15: /* Compare external shock vs. mistake */
16: if CostT (x̄i; e(T )) < CostT (x̄i;m(T )) then
17: /* External shock wins - treat as an external shock */

18: E
(D)
i = {E(D)

i ∪ i}; E
(T)
i = {E(T)

i ∪ e(T )};
19: else
20: /* Mistake wins - treat as a mistake value */

21: M
(D)
i = {M(D)

i ∪ i}; M
(T)
i = {M(T)

i ∪m(T )};
22: end if
23: end while
24: end while
25: /* Update parameter set of i-th disease */
26: B = B ∪ bi; R = R ∪ ri;

27: E(D) = E(D) ∪E
(D)
i ; E(T) = E(T) ∪E

(T)
i ;

28: M(D) = M(D) ∪M
(D)
i ; M(T) = M(T) ∪M

(T)
i ;

29: end for

30: return FG = {B,R,E(D),E(T),M(D),M(T)};

External shock vs. mistake. There is also an important issue re-
garding the external shock vs. the mistake value. We want to distin-
guish automatically between an external shock event and a typing
error. For example, in Figure 5, there is a clear “typo”, rather than
an external shock event. Our coding scheme enables us to provide
the answer. The idea is that we try to fit the parameters by treating
the data as both an external shock event and a mistake value, and
then compare the cost of the two alternatives. For Figure 5, the cost
of (b) is less than (a), thus the algorithm determines that there is a
mistake value in 2007.
Algorithm. Algorithm 2 is a detailed algorithm of the global-level
fitting. Given a tensor X , it creates a set of d global sequences:
{x̄i}

d
i=1. It tries to fit the global-level parameter set, as well as find

the appropriate number of external-shocks/mistakes. We use the
Levenberg-Marquardt (LM) algorithm to minimize the cost func-
tion. Note that the extra tensors E and M consist of an entry
(disease, state, time), but this algorithm can find only the global-
level entry, which consists of (disease, time). The local-level

entries E
(S) and M

(S) can be computed by local-level parame-
ter fitting, as shown next in Algorithm 3. Also, the cost function
(Equation 4) includes the cost of local-level parameters such as N,
but these terms are independent of the global model fitting. Hence,
we can simply consider them to be constant.

4.2.2 Local-level parameter fitting
Given a set of d × l local-level sequences, {xij}

d,l
i,j=1 ∈ X ,

and a set of global-level parameters, FG , our next goal is to fit the
individual parameters of each disease in each state, that is, FL =
{N,E(S),M(S)}. We propose an iterative optimization algorithm
(see Algorithm 3). Our algorithm searches for the optimal solution
with respect to (a) the geo-disease matrix N, (b) the local-level

Algorithm 3 LOCALFIT (X ,B,R,E(D),E(T),M(D),M(T))

1: Input: (a) Tensor X , (b) global-level parameter set FG
2: Output: Set of local-level parameters, i.e., FL
3: while improving the cost do
4: /* For each local sequence xij of i-th disease in j-th state */
5: for i = 1 : d do
6: for j = 1 : l do
7: Nij = arg min

N′

ij

CostC(xij |B,R, N ′

ij , E , M );

8: end for
9: end for

10: for each external shock (e(D), e(S), e(T )) ∈ E do

11: Update e(S) to minimize the cost /* Local participation rate */
12: end for
13: for each mistake (m(D),m(S),m(T )) ∈ M do

14: Update m(S) to minimize the cost /* Mistake value */
15: end for
16: end while

17: return FL = {N,E(S),M(S)};

external shocks E(S), and (c) the local-level mistake values M(S),
so that the total coding cost is minimized.

LEMMA 1. The computation time of FUNNELFIT is O(dln).

PROOF. To create the global-level sequences from X , the algo-
rithm requires O(dln) time. For global-level parameter fitting, it
needs O(#iter · (k+ |M |) · dn) time, where #iter is the number
of iterations, k and |M | show the number of external shocks and
non-zero values in M , respectively. Similarly, for the local-level
parameter fitting, it needs O(#iter · (k + |M |) · dln) time to fit
the parameters. Note that #iter, k and |M | are small constant
values that are negligible. Thus, the complexity is O(dln).

5. EXPERIMENTS
In this section we demonstrate the effectiveness of FUNNEL with

real epidemic data. The experiments were designed to answer the
following questions:

Q1 Sense-making: Can our method help us understand the given
input epidemic data?

Q2 Accuracy: How well does our method match the data?
Q3 Scalability: How does our method scale in terms of compu-

tational time?

5.1 Matching co-evolving epidemic patterns
We demonstrate how effectively FUNNEL can learn important

patterns given a large collection of epidemics. Figure 6 shows the
results of model fitting on 15 typical diseases. We show the original
sequences (i.e., black dots) and estimated sequences: I(t) (i.e., red
line) in linear-linear (top) and linear-log (bottom) scales. In the
log-log scale, we also show the susceptible S(t) and vigilant V (t)
counts. We made several important observations, which correspond
to the five properties of the epidemic sequences.
(P1) Disease seasonality. As we have already seen in the introduc-
tion section (Figure 1(c)), we identified four categories i.e.,

• Influenza has very strong periodic spikes, in January-February.
• Children’s diseases (e.g., measles, mumps, chickenpox) also

have strong periodicity, but they peak in spring [27].
• Tick-borne diseases (e.g., Lyme disease), and cryptosporid-

iosis (i.e., water-borne disease) have strong periodicity, peak-
ing in the summer, related to vector and human behavior and
climate factors [28].

• Gonorrhea, i.e., sexually transmitted disease (STD) has no
periodicity.

(P2) Disease reduction effects. FUNNEL is capable of automati-
cally detecting the disease reduction impact. For example, in Figure 6
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Figure 6: Fitting results of FUNNEL for 15 diseases (global-level counts), shown in ‘lin-lin’(top) and ‘lin-log’(bottom) scales.
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Figure 7: The year of vaccine licensure [32] vs. detection.
Disease licensure detected
Measles 1963 1965
Mumps 1967 1975
Whooping cough (pertussis) 1948 1951
Rubella 1969 1972
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Figure 8: Local-level fittings for measles: as with the global fitting
shown in Figure 1, FUNNEL fits very well.
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Figure 9: Fitting accuracy for the (a) global sequences: {x̄i(t)}d,ni,t

and (b) local sequences: {xij(t)}d,l,ni,j,t . FUNNEL consistently out-
performs the previous models w.r.t. ther RMSE between real and
estimated values (lower is better).
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Figure 10: FUNNELFIT scales linearly: wall clock time vs. dataset
size (d× l × n). Our method is linear on the data size.

(a-f), most children’s diseases include the reduction patterns. Figure 7
shows the year the first vaccine was licensed vs. the year detected
as the starting point of the disease reduction effect. Basically, there
is a lag of 2-3 years between the licensure and the detected point,
which could be related to the diffusion rate of a vaccination pro-
gram. Note that FUNNEL does not detect any disease reduction
effect for influenza; This is because influenza epidemics continue
to occur due to high mutation rates in influenza virus that limit pro-
tective immunity.
(P3) Area specificity. FUNNEL can find the local dynamics of each
disease, as well as the global-level pattern of epidemics. For exam-
ple, as described in Figure 1 (b), there are many measles patients
in NY and PA. Specifically, Figure 8 shows the original local-level
epidemic sequences of measles in (a) NY and (b) PA, and the re-
sults of our fittings. FUNNEL successfully captures yearly-periodic
patterns, the disease reduction effects, and, also, the local spikes of
each location (i.e., notice that the strengths of the external shock
effects differ state to state).
(P4) External shock events. Figure 6 shows that FUNNELFIT au-
tomatically detects some important external shock events, e.g.,

• (a) Diphtheria and (b) scarlet fever (i.e., children’s diseases)
have multiple external shocks, e.g., during World War II.

• (g) Flu has several major pandemics in 1929, 1941 etc., due
to immune dynamics and antigenic changes in the virus [20].

• (h) Epidemics of a milder form of smallpox occurred in North-
western states in 1937-39 due to low vaccination rates [5].

• (j) A major outbreak of Cryptosporidiosis, (i.e., water-borne
disease), was detected in Utah due to contaminated public
pools in 2007 [1].

(P5) Mistakes. One of the strong points of FUNNELFIT is its
robustness against noise. It can handle “mistake” points as well
as missing values (e.g., Figure 6 (i) typhoid fever, which contains
missing values in the 1940s, and a mistake value in 1953).

5.2 Model quality and scalability
Next, we discuss the quality of FUNNEL in terms of fitting ac-

curacy. We compared FUNNEL with the standard SIRS model and
SKIPS [29]. To evaluate the effect of the disease reduction param-
eters, we also compared with FUNNEL-R, (i.e., removing external
shocks and mistakes). Figure 9 (a) shows the root mean square
error between the original and predicted counts of the global se-
quences {x̄i(t)}

d,n
i,t . Similarly, Figure 9 (b) shows the results of

the local counts {xij(t)}
d,l,n
i,j,t , A lower value indicates a better fit-

ting accuracy. Note that the SIRS model cannot capture seasonal
dynamics, while SKIPS has the ability to capture periodic patterns.
Moreover, they are not intended to detect disease reductions, or ex-
ternal shocks. As shown in the figures, the SIRS model and SKIPS
failed to capture the complicated patterns of epidemics, while our
method achieved high fitting accuracy.

We also evaluated the scalability of FUNNELFIT, and verified
the complexity of our method, which we discussed in Lemma 1, in
section 4. Figure 10 shows the computational cost of FUNNELFIT

in terms of the dataset size. We varied the dataset size with respect
to (a) diseases d, (b) states l, and (c) duration n. As shown in
Figure 10, FUNNELFIT is linear with respect to data size.

6. DISCUSSION
Here, we describe important applications and potential directions

for our method.
FUNNEL at work - forecasting. Since FUNNEL has a very high fit-
ting accuracy on real epidemic data, the most practical application
would be forecasting. Figure 11 shows results of our forecasting in
relation to three different diseases. We trained the model parame-
ters by using the 2/3 values for each sequence (solid black lines in
the figure), and then forecasted the following years (solid red lines).
Note that the vertical axis uses a logarithmic scale.

We compared FUNNEL with the auto regressive (AR) model,
where we used the regression coefficients: r = 52 (i.e., one year),
26 (i.e., half year), and 8 (i.e., the same size as our base (6) + reduc-
tion (2) parameters). Also, since the original sequences are bursty
we took their logarithm for the AR forecast.

Our method achieves high forecasting accuracy while AR failed.
Specifically, for (a) influenza, and (b) cryptosporidiosis, FUNNEL

captured the future trend correctly, while AR was strongly affected
by multiple extreme spikes (e.g., in figure (b), there is a spike in
2007). Similarly, for (c) typhoid fever, which includes the disease
reduction pattern, missing/mistake values, FUNNEL successfully
forecasted the periodic patterns after the disease reduction effect.
Generality - epidemics on computer networks. Another promis-
ing step for FUNNEL would be its generalization to other domains
such as modeling computer viruses. Computer viruses have similar
characteristics to biological viruses [11]. For example, Figure 12
shows the fitting result of FUNNEL on publicly available reports
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Figure 12: FUNNEL is general: our model (solid lines) fits com-
puter virus data (in circles) very well. It captures rising spikes
and viruse reduction effects (i.e., anti-virus software). Note that
it shows the reported case count for each virus.

published by IPA, 9 which consists of annual reports on computer
virus infections in Japan (e.g., private companies and public schools)
covering more than ten years. The figure shows the original counts
for the top five viruses (circles) and our fittings (solid lines) from
2000 to 2010. Here are some interesting observations: (a) “Bad-
trans” and “Klez” spread in 2001-2002 by exploiting a security
hole in Microsoft Outlook. It spread very quickly due to the strong
infection effect, but it also decayed very quick thanks to anti-virus
software (i.e., the virus reduction effect); (b) “Netsky”, which spreads
via email attachment: there were huge infections in 2004, and it
gradually decreased over the next 10 years, but still remains. Also,
there is a weekly periodicity (i.e., less infection at weekends); (c)
“Mytob”, which spreads through corporate networks: there are some
local-level (i.e., intra-office) infections. Very recently, there have
been several worms (e.g., “Koobface”, “Fbphotofake”) that spread
quickly through social networking sites including Facebook and
Twitter, where they have a high potential population (# of users).

7. CONCLUSIONS
Our proposed method has the following appealing advantages:

1. It is sense-making: FUNNEL captures all essential aspects,
i.e., yearly periodicity, discontinuities, local sensitivities. It
can lead to disease clustering, find disease reduction effects
(e.g., vaccines) and external shocks, and perform forecasting.

2. It is automatic: FUNNELFIT requires no training set and no
hint regarding the number of parameters. Thanks to our cod-
ing scheme, it determines all of the above automatically.

3. It is scalable: FUNNELFIT scales very well, being linear on
the database size, (i.e., O(dln)).

4. It is general: We demonstrated the generality of FUNNEL,
by applying it to real epidemic datasets, including computer
virus infections, as well as human diseases.
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