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ABSTRACT
Visualization of high-dimensional data such as text docu-
ments is widely applicable. The traditional means is to find
an appropriate embedding of the high-dimensional repre-
sentation in a low-dimensional visualizable space. As topic
modeling is a useful form of dimensionality reduction that
preserves the semantics in documents, recent approaches
aim for a visualization that is consistent with both the orig-
inal word space, as well as the semantic topic space. In
this paper, we address the semantic visualization problem.
Given a corpus of documents, the objective is to simultane-
ously learn the topic distributions as well as the visualization
coordinates of documents. We propose to develop a semantic
visualization model that approximates L2−normalized data
directly. The key is to associate each document with three
representations: a coordinate in the visualization space, a
multinomial distribution in the topic space, and a directional
vector in a high-dimensional unit hypersphere in the word
space. We join these representations in a unified generative
model, and describe its parameter estimation through vari-
ational inference. Comprehensive experiments on real-life
text datasets show that the proposed method outperforms
the existing baselines on objective evaluation metrics for vi-
sualization quality and topic interpretability.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining

Keywords
semantic visualization; topic model; generative model; spher-
ical space; spherical semantic embedding; dimensionality re-
duction; L2-normalized vector;

1. INTRODUCTION
Visualization is an important and widely applicable tool

for exploratory analysis of high-dimensional data. There
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are various aspects to the study of visualization (e.g., inter-
face, interactivity). Of special interest to data mining and
machine learning is the dimensionality reduction aspect of
visualization, i.e., finding a low-rank representation in two
or three dimensions that preserves as much as possible the
properties of the data. These low-rank representations are
visualized on a scatterplot, a simple format to reveal the re-
lationship structures among data points. The current state-
of-the-art visualization approaches are formulated as finding
coordinates whose distances in the visualization space “re-
flect” the corresponding distances in the original space [12].

While a scatterplot is useful for identifying visualizable
structures among data points, it has relatively limited ex-
planatory power, because the reduced dimensions have no
prescribed semantics. Another type of dimensionality reduc-
tion that is focused more on interpretability is topic model-
ing [17, 5], where the objective is to reduce each document’s
original representation (e.g., word counts) into a probability
distribution over Z (a user-defined quantity) topics. Each
topic is associated with a distribution over words. Hence,
the reduced dimensions (i.e., topics) have interpretable se-
mantics, revealed by the most important words in each topic.
However, topic model is not designed for visualization. In a
2D simplex, we can visualize topic distributions for only 3
topics, which is impractical, because Z is frequently much
higher than that (though lower than the vocabulary size).

We are therefore interested in semantic visualization, de-
fined as modeling visualization coordinates and topics in
an integrated manner [19]. This integration has important
benefits not available to either visualization or topic model
on their own. On the one hand, it allows the infusion of
the scatterplot visualization with topic modeling semantics.
Each coordinate in the visualization space can now be as-
sociated with both a topic distribution, as well as a list of
the most important words. This complements structural ob-
servations (e.g., clustering) with semantic explanations (the
relevant topics and words). On the other hand, we envision
that visualization may eventually serve as a user-friendly in-
terface to explore and tune an underlying topic model, in a
way that allows steering the topic model interactively.

In this paper, we propose a semantic visualization model
for data with spherical representation. This refers to data
whose instances can each be represented as a vector of unit
length in a high-dimensional hypersphere [1], with dimen-
sionality commensurate with the number of features. In
other words, we are dealing with L2-normalized feature vec-
tors as input. One important category of such data that we
focus on in this work is text document. A document can be
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naturally represented as a normalized term vector, as done
in the classical vector space model [32]. Stated more for-
mally, the input to the problem is a corpus of documents
D = {d1, d2, . . . , dN}, where every dn is represented by an
L2-normalized term vector νn. We seek to learn, for each dn,
a probability distribution θn over Z topics (semantic), and
a coordinate xn on a low-dimensional space (visualization).
While we frame the discussion here in terms of documents
and words, our technique is applicable to other data types
for which both visualization and semantic interpretability
are important, as long as they can be expressed in terms of
spherical representation (i.e., L2−normalized vectors).

Previous Approach. Jointly modeling topics and visu-
alization coordinates is pioneered by PLSV [19] (reviewed
briefly in Section 3). It is aimed at dyadic data, whereby
every observation involves a couple (d,w) of word w’s oc-
currence in document d. The observations for a document
can be summarized as an integer vector of word counts
in N|V |, where V is the vocabulary. Like its topic model-
ing predecessors [17, 5], PLSV uses the word count vectors
to maximize the likelihood of generating individual words
based on the learned latent multinomial distribution over
words {P(w|dn)}w∈V . Here, P(w|dn) is obtained from top-
ics’ word distribution P(w|z) and document’s topic distri-

bution P(z|dn), i.e., P(w|dn) =
∑Z
z=1 P(w|z)P(z|dn).

The stated aim of most visualization approaches is to re-
cover a low-dimensional manifold embedded within the high-
dimensional space of the original data [22, 31, 16, 12]. Key
to manifold learning is the capacity for approximating the
similarities and differences among data instances [2]. In this
respect, multinomial modeling of dyadic data has a couple
of downsides [30]. For one thing, it primarily models word
presences, but does not directly model word absences. The
likelihood of a document is defined over only words present
in the document. For another thing, it is also sensitive to
document lengths. If one document were to contain two
copies of each word in another document, the two documents
would have different likelihoods, even though the word dis-
tributions in the two documents are effectively identical.

Proposed Approach. Spherical representation could
address the above-mentioned issues, leading towards better
approximation of similarities among documents, and thus
towards better manifold learning and visualization. In the
spherical space, relationships between documents are mea-
sured as cosine similarity ∈ [0, 1], which is the angular dis-
tance between two directional unit vectors. Firstly, two doc-
uments would have higher cosine similarity, not only if some
words in common are present, but also if some other words
in common are absent. Secondly, the normalization of all
documents to unit vectors effectively neutralizes the impact
of document lengths. Moreover, there is indicative evidence
from the literature that a spherical approach will be promis-
ing in terms of dimensionality reduction. For instance, the
spherical topic model SAM [30] performs significantly better
than the multinomial topic model LDA [5], when used as a
dimensionality reduction technique.

There are further advantages to spherical representation.
For one thing, there is a greater degree of flexibility in ad-
mitting different L2-normalized representations, e.g., term
frequency tf or tf-idf or other feature vectors. For another
thing, there is a greater degree of expressiveness, as an L2-
normalized vector can have both positive and negative ele-
ments, representing the degrees of word presences and ab-

sences respectively. Inspired by [30], this expressiveness en-
genders a change in the topic definition, from multinomial
word distribution to a unit term vector. Given a topic, we
no longer associate a word with a probability value, but
rather with a real value that expresses the word’s presence
or absence (the sign) and relative importance (the weight).

Contributions. Our problem formulation is novel be-
cause to the best of our knowledge, we are the first to address
semantic visualization for spherical representation (first con-
tribution). We propose a generative model called SSE, which
stands for Spherical Semantic Embedding. In Section 2.1, we
develop the full generative process of SSE (second contribu-
tion). To learn its parameters, we describe an estimation
based on variational inference in Section 2.2 (third contribu-
tion). In Section 3, we review related work in visualization
and topic modeling. In Section 4, we validate SSE through
experiments on publicly available real-life datasets, show-
ing significant gains in visualization quality and topic inter-
pretability (fourth contribution). We conclude in Section 5.

2. SPHERICAL SEMANTIC EMBEDDING

2.1 Generative Model
Document Representations. We associate each docu-

ment with representations in three different spaces. Table 1
provides a list of notations for reference.

• We model the visualization space as a Cartesian plane,
where relationships can be visualized spatially in terms
of Euclidean distances. This space is low-dimensional,
and without loss of generality, we assume it has two
dimensions (2D). Each document dn is associated with
2D coordinates xn. This is consistent with visualiza-
tion techniques oriented towards dimensionality reduc-
tion [16, 12].

• We model the topic space as a (Z − 1)-simplex, where
Z is the number of topics. This is consistent with
the practice in most topic models [17, 5, 30]. Each
document dn occupies a point θn in the simplex, which
codes for a multinomial distribution over the topics
{P(z|dn)}Zz=1.

• We model the word space as a (|V | − 1)-dimensional

unit sphere in R|V |, where V is the vocabulary. Each
document dn is associated with a directional, unit-
length vector νn. For instance, νn could be a tf-idf
vector, or other L2-normalized vector. This is consis-
tent with the vector space model [32], and spherical
models [1, 30].

Of the three representations of dn, only νn is observed,
while xn and θn are latent. A key step towards integrat-
ing visualization and topic modeling is to define a mapping
between the spaces to ensure a consistency among the repre-
sentations. In defining the mapping, we associate each topic
z with representations in both the visualization space φz
and the word space τz. The coordinate φz reveals where a
topics is in the visualization space, allowing users to observe
the relationships between documents and topics. The word
vector τz reveals the topic semantics in terms of the relative
importance of various words within τz.

Visualization Space to Topic Space. As both docu-
ments and topics have coordinates in the visualization space,
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Notation Description
dn a specific document
xn coordinate of dn in the visualization space
θn topic distribution of dn
θn,z probability of topic z in document dn
νn the observed L2-normalized word vector of dn
z a specific topic
φz coordinate of topic z in the visualization space

τz L2-normalized word vector of topic z
V the vocabulary (the set of words in the lexicon)
N total number of documents in the corpus
Z total number of topics (user-defined)

Table 1: Notations

their relationship can be expressed in terms of distances
||xn − φz||. Intuitively, the closer is xn to a topic’s φz, the
higher is θn,z or the probability of topic z for document
dn. One framework to relate variables based on distances is
Radial Basis Function or RBF [7], which defines a function
λ(||xn − φz||) in terms of how far a data point (e.g., xn) is
from a center (e.g., φz). The function λ may take on various
forms, e.g., Gaussian, multi-quadric, polyharmonic spline.

RBF network [3] is frequently used to build a function ap-
proximation. We use an RBF network as a “kernel” for the
mapping between coordinates and topic distributions. To
express θn as a function of xn, we consider the normalized
architecture of RBF network, with three layers. The input
layer consists of one input node (xn). The hidden layer con-
sists of Z number of normalized RBF activation functions.
Each is centered at φz and computes λ(||xn−φz ||)∑Z

z′=1
λ(||xn−φz′ ||)

. The

linear output layer consists of Z output nodes. Each output
node yz(xn) corresponds to θn,z, which is a linear combina-
tion of the RBF functions, as shown in Equation 1. Here,
wz,z′ is the weight of influence of the RBF function of z′ on

the θn,z, with the constraint
∑Z
z′=1 wz,z′ = 1.

θn,z = yz(xn) =

∑Z
z′=1 wz,z′ · λ(||xn − φz′ ||)∑Z

z′=1 λ(||xn − φz′ ||)
(1)

While Equation 1 is the general form, to instantiate a
specific mapping function, we need to determine both the
assignment of wz,z′ and the form of the function λ. In this
work, we will experiment with a special case (λ is Gaussian
and wz,z′ = 1 when z = z′ and 0 otherwise), which yields
the function in Equation 2, where Φ refers to the collective
set of φz’s. This specific function has appeared previously
in the baseline [19] that we will compare to, and this design
decision helps to establish parity for comparative purposes.
In future work, we will explore other function instantiations.

θn,z = P(z|xn,Φ) =
exp( 1

2
||xn − φz ||2)∑Z

z′=1 exp( 1
2
||xn − φz′ ||2)

(2)

Topic Space to Word Space. For dn, we also need to
bridge θn to its word space representation νn. As introduced
previously, each topic z also has a word space representation
τz. Because θn is essentially a topic distribution, we adopt a
similar practice as in conventional topic model, which repre-
sents a document’s word distribution as a weighted average
(based on topic distribution) of the topics’ word distribu-
tions. In our context, it means taking a weighted average
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Figure 1: Graphical Model of SSE

of the topics’ spherical unit vectors τz’s, weighted by θn,z,
followed by L2-normalization to return the mean vector to

unit length, i.e., τn =
∑Z

z=1 θn,z ·τz
||
∑Z

z=1 θn,z ·τz ||
.

To avoid overfitting, instead of equating νn to τn, we as-
sume a probabilistic process where νn is drawn from a dis-
tribution centered at τn. Because νn and τn are both direc-
tional vectors, we turn to directional statistics [25]. In par-
ticular, von Mises-Fisher (vMF) distribution [24] was previ-
ously used to model documents [1, 30]. Equation 3 specifies
the probability density function (p.d.f.) for a random unit
vector ν, given mean directional vector µ, and concentra-
tion parameter κ. Note how the p.d.f. is parameterized by
the cosine similarity µT ν between the mean direction µ and
ν, which is effectively the angular distance between the two
unit vectors. The higher the κ, the more concentrated the
distribution is around µ. The distribution is unimodal for
κ > 0, and is uniform for κ = 0. CD is the normaliza-
tion constant, defined in Equation 4, where Ir denotes the
modified Bessel function of the first kind and order r.

vMF(ν;µ, κ) = CD(κ) exp(κµT ν) (3)

CD(κ) =
κD/2−1

(2π)D/2ID/2−1(κ)
(4)

We can then express νn as a draw from a vMF distribution
with mean direction τn, i.e., νn ∼ vMF(τn, κ).
Generative Process. We join the three representations

into a generative model, with graphical representation as in
Figure 1. The generative process of SSE is as follows:

1. Draw the corpus mean direction: µ ∼ vMF(m,κ0)

2. For each topic z = 1, . . . , Z:

• Draw z’s coordinate: φz ∼ Normal(0, β−1I)

• Draw z’s spherical direction: τz ∼ vMF(µ, ξ)

3. For each document dn, where n = 1, . . . , N :

• Draw dn’s coordinate: xn ∼ Normal(0, γ−1I)

• Derive dn’s topic distribution:

θn,z = P(z|xn,Φ) =
exp(− 1

2
||xn−φz ||2)∑Z

z′=1
exp(− 1

2
||xn−φz′ ||2)

• Derive dn’s spherical average: τn =
∑Z

z=1 θn,z ·τz
||
∑Z

z=1 θn,z ·τz ||

• Draw dn’s spherical direction: νn ∼ vMF(τn, κ)

In Step 1, we draw the corpus mean direction µ. In Step
2, we draw, for each topic, a visualization coordinate φz
and a spherical direction τz. In Step 3, we draw, for each
document, a visualization coordinate xn, which we use to
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compute topic distribution θn as a function of document
and topics’ coordinates. θn together with different topics’
τz’s are used to compute the weighted average of topics’
directions, denoted τn. After normalizing τn to a unit-length
vector, we draw νn from a vMF with mean τn. Though the
observed νn is usually positive (e.g., tf-idf ), the latent τn
may contain negative elements, which reflect unlikely words.

2.2 Parameter Estimation
To estimate the parameters in SSE, we employ variational

EM with maximum a posteriori (MAP) estimation. The un-
known parameters are the coordinates for documents (collec-
tively χ = {xn}) and for topics (collectively Φ = {φz}), the
directional vectors for topics (collectively T = {τz}) and the
hyperparameters ξ,m. Given a corpus D, which are repre-
sented as L2−normalized term vectors V = {νn}Nn=1, we in-
fer the posterior distribution P(T , µ|V, χ,Φ, β, γ, ξ,m, κ0, κ)
of the directional vectors for topics (collectively T = {τz})
and the corpus mean direction µ.

We approximate the posterior using the following varia-
tional distribution:

q(T , µ|µ̃, ξ) = q(T |µ̃, ξ)q(µ|m̃, κ0)

where q(τz) = vMF(τz|µ̃, ξ), q(µz) = vMF(µz|m̃z, κ0) and
the variational parameters are µ̃, m̃. Given this variational
distribution q, we have a lower bound L(µ̃, m̃) on the log
likelihood with priors over the document and topic visual-
ization coordinate xn, φz, as follows:

L(µ̃, m̃) = Eq
[

log p(V, T , µ)
]
− Eq

[
log q(T , µ|µ̃, ξ)

]
+

N∑
n=1

log p(xn) +

Z∑
z=1

log p(φz)

= Eq
[

log p(V|T , χ,Φ)
]

+ Eq
[

log p(T |µ, ξ)
]

+ Eq
[

log p(µ)
]
− Eq

[
log p(T |µ̃, ξ)

]
− Eq

[
log p(µ|m̃, κ0)

]
+

N∑
n=1

log p(xn) +

Z∑
z=1

log p(φz)

In the E-step, we optimize the lower bound L(µ̃, m̃) with
respect to the variational parameters µ̃, m̃. In the M-step,
the lower bound is optimized with respect to the parameters
χ,Φ, ξ,m. We alternate E and M-steps until some appropri-
ate convergence criterion is reached. We use gradient-based
numerical optimization method such as the quasi-Newton
method to update µ̃, χ,Φ, ξ.

E-step. Let ρn = E
[
τn
]T
νn where n ∈ {1...N} ranges

over the documents. Taking the gradients of L(µ̃, m̃) w.r.t
µ̃, we have:

5µ̃zL = AV (ξ)AV (κ0)ξm̃z + κ
N∑
n=1

5µ̃zρz

where Ap(c) denotes the mean resultant length of a vMF
distribution of dimension p with concentration c. Since
E
[
τn
]

does not have a closed form, following [30] we ap-
proximate it as:

E
[
τn
]
≈ E

[ Z∑
z=1

θn,z · τz
]
E
[
||

Z∑
z=1

θn,z · τz ||2
]−1/2

We refer to E
[
||
∑Z
z=1 θn,z · τz||

2
]

as Sn. ρn will be approx-
imated as:

ρn ≈ AV (ξ)S
−1/2
n (µ̃θn)T νn

where

Sn = (1−AV (ξ)2)
∑
z

θ2nz +AV (ξ)2||µ̃θn||2

Taking the gradients of ρn w.r.t µ̃j , yields:

5µ̃j
ρn = AV (ξ)

( θn,jνn√
Sn
−

(µ̃θn)T νn

2S
3/2
n

.5µ̃j
Sn
)

where

5µ̃j
Sn = 2AV (ξ)2θn,j µ̃θn

The variational corpus mean m̃ has a closed form update
rule:

m̃ ∝ κ0m+AV (ξ)ξ

Z∑
z=1

µ̃z

M-step. In the M-step, taking gradients of L(µ̃, m̃) w.r.t
ξ, we have:

5ξL = (5ξAV (ξ)ξ+AV (ξ))(AV (κ0)m̃T
∑
z

µ̃z−Z)+κ

N∑
n=1

5ξρn

where

5ξρn =
(
5ξ AV (ξ)S

−1/2
n −

1

2
AV (ξ)S

−3/2
n 5ξ Sn

)
(µ̃θn)T νn

and

5ξSn = 2AV (ξ)5ξ AV (ξ)(||µ̃θn||2 −
∑
z

θ2nz)

The corpus meanm has a closed form update rule as follows:

m ∝
∑
z

µ̃z

Taking the gradients of L(µ̃, m̃) w.r.t xn, we have:

5xnL = κAV (ξ)
(
−
5xnSn
2S

3/2
n

µ̃θn +
µ̃5xn θn√

Sn

)T
νn − γxn

where

5xnSn = 2(1−AV (ξ)2)
∑
z

5xnθnzθnz+2AV (ξ)2θTn µ̃
T µ̃5xn θn

Taking the gradients of L(µ̃, m̃) w.r.t φz, we have:

5φzL = κAV (ξ)
(
−
5φzSn

2S
3/2
n

µ̃θn +
µ̃5φz θn√

Sn

)T
νn − βφz

where

5φzSn = 2(1−AV (ξ)2)
∑
z′
5φzθnz′θnz′+2AV (ξ)2θTn µ̃

T µ̃5φzθn

3. RELATED WORK
Visualization. The dimensionality reduction aspect of

visualization is related to such techniques as PCA [20], ICA
[11], and Fisher’s Linear Discriminant [14], which are fre-
quently used for feature selection. However, they are not de-
signed specifically for visualization, and are concerned more
with the relationship between the dimensions (orthogonality
or independence), rather than the relationship between in-
stances. Moreover, due to linear projection, PCA and vari-
ants do not capture intrinsic non-linearities well, such as
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Figure 2: Graphical Model of PLSV

when the data is embedded as a low-dimensional non-linear
manifold [2] (frequently-made assumption in visualization).

Therefore, visualization is often formulated as manifold
embedding, where the objective is to preserve the relation-
ship among data instances in the low-dimensional represen-
tation. In most cases, this relationship is expressed in terms
of pairwise distance, such as in MDS [22], LLE [31], and
Isomap [33]. Recent approaches employ probabilistic for-
mulations, such as PE [18] and t-SNE [12], which we use as
baselines. Yet, rather than distances, others seek to preserve
the neighborhood information (e.g., SOM [21], GTM [4]).

The related work mentioned above has not incorporated
the intermediate topic space. The problem of semantic vi-
sualization is introduced by PLSV [19]. We briefly review
PLSV, whose graphical model is shown in Figure 2. The gen-
erative process of PLSV is as follows. For each topic z, we
draw its word distribution ηz from a Dirichlet with parame-
ter α, as well as its coordinate φz from Normal distribution
with mean 0 and variance β−1. In turn, for each document
dn, we draw its coordinate from Normal with mean 0 and
variance γ−1. To generate each of the Mn words in dn,
we draw a topic z based on Equation 2, and then draw a
word from the selected topic’s word distribution ηz. The
key difference between SSE and PLSV is the representation
of a document. Where SSE models the generation of an L2-
normalized vector, PLSV models the multinomial generation
of words w. We compare to PLSV in Section 4.

We also describe a few other works in semantic visual-
ization that are related, though not directly comparable.
LDA-SOM [26] is a pipeline of LDA [5] followed by SOM
[21], whose output is a topographic map not directly compa-
rable to our scatterplot. Semafore [23] introduces manifold
regularization to semantic visualization, which is orthogonal
to the direction pursued in this paper (spherical representa-
tion), as manifold regularization could be applicable to both
multinomial as well as spherical representations. CCG [29]
is a topic model based on a latent grid space. It seeks to im-
prove topic models, and is not designed specifically for docu-
ment visualization. For one thing, the grid cells are discrete
(unlike PLSV or SSE with continuous visualization space).
For another, each document is associated with multiple grid
cells, and it is not clear how to visualize such documents.

While semantic visualization deals with visualizing the re-
lationship of documents based on topic modeling, another
orthogonal direction is to visualize the topics themselves,
such as the prevalence of topics in a corpus [34, 15], or the
dominant keywords in topics [9, 10]. These works tend to
be on the HCI aspects, such as user interfaces [13], rather
than on dimensionality reduction or statistical modeling.

Topic Model. Probabilistic topic modeling is popular-
ized by PLSA [17], and eventually by LDA [5], which pro-
vides a fully Bayesian generative model. These probabilistic
models associate each document with a multinomial distri-

bution over topics, and indirectly a multinomial distribution
over words, effectively a simplex representation.

Recognizing the usefulness of L2−normalized representa-
tions, SAM [30] introduces a topic model, which associates
each document with a multinomial distribution of topics,
and a directional unit vector in a spherical word space. With
SAM, SSE shares a similar modeling of topics in the spher-
ical space. The key difference is that SAM models only
topics, whereas SSE also needs to model visualization in ad-
dition to topics. This requires a fundamental change in how
a document’s topic distribution is derived. Unlike SAM, in
SSE the topic distribution θn is not drawn from a Dirichlet.
Instead, to reflect the visualization objective, θn is expressed
as a function of visualization coordinates (see Equation 1).

4. EXPERIMENTS
We conduct comprehensive experiments to evaluate the

effectiveness of SSE, in terms of the quality of its outputs
(primarily visualization, but also topic model).

4.1 Experimental Setup
Datasets. We rely on three publicly-available1, real-life

datasets [8]. 20News consists of newsgroup documents (in
English) belonging to twenty classes. Reuters8 consists of
newswire articles (in English) from eight classes. Cade12
consists of web pages (in Brazilian Portuguese) classified
into twelve classes. These datasets are chosen because they
represent benchmark datasets for document clustering and
classification tasks. Each document in the dataset has a
known class label. Because the semantic visualization task
is unsupervised, these labels are not required for learning.
However, they represent an objective ground truth, which
we would use to evaluate visualization quality. In addition,
they cover diverse document types, and different languages.

Following the practice in [19], we create balanced datasets
by randomly sampling 50 documents from each class, result-
ing in, for each sample, 1000 documents for 20News, 400
for Reuters8, and 600 for Cade12. These are of comparable
sizes to those used in [19]. Moreover, because the algorithms
are statistical, we draw five independent samples from each
dataset, and run each sample five times. Hence, for each set-
ting, the reported result is an average of 25 runs. Vocabulary
sizes are similar among samples of the same dataset, with a
maximum of 5455 for 20News, 1972 for Reuters8, 7622 for
Cade12. These are the dimensionalities of the word space.
L2-normalized Representation. SSE admits different

options for the L2 representation of a document. The option
that is most well-recognized in the information retrieval lit-
erature is tf-idf. We experimented with several alternatives,
such as word count or term frequency (tf ), and found tf-idf
to give the best results. This echoes the finding in [30], which
concluded that tf-idf was a better document representation
than tf. Thus, we will use tf-idf in the experiments.

4.2 Comparative Methods
The comparative methods, and their attributes, are sum-

marized in Table 2. SSE is our proposed method. A proper
comparison is to another approach that jointly models visu-
alization and topics, i.e., PLSV [19], which we use as the pri-
mary baseline. For completeness, we include other baselines

1http://web.ist.utl.pt/acardoso/datasets/
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Visualization Topic Joint Spherical
model model representation

SSE X X X X
PLSV X X X
t-SNE X X
PE (SAM) X X X
PE (LDA) X X

Table 2: Comparative Methods

in visualization (t-SNE, PE). While not direct competitors,
they allow us to highlight certain aspects of our model.

PLSV [19] is a semantic visualization method based on
multinomial modeling for dyadic data. Therefore, it is the
proper baseline to SSE, allowing us to investigate the effects
of SSE’s modeling of spherical representation. For PLSV,
we use the same settings as in the original paper [19] (β =
0.1N and γ = 0.1Z, which we apply to SSE as well). We
implement PLSV on our own (its authors have not made
their implementation available), and verify that the results
are similar to those reported in the original paper [19].

t-SNE [12] stands for t-distributed Stochastic Neighbor
Embedding. It is one of the state-of-the-art approaches in
visualizing high-dimensional data. Its input are feature vec-
tors in the original dimensions, which in our context are the
L2-normalized tf-idf vectors. The idea behind t-SNE is to
preserve the pairwise distances in the high dimensions in the
visualization space. In addition to benchmarking against di-
rect visualization, including t-SNE allows us to investigate
the effects of topic model on visualization, by comparing
SSE against an approach with the same input (tf-idf vec-
tors) and output (visualization), but which does not have
an intermediate topic space. We use the R implementation2

of t-SNE with default settings and perplexity 40 as in [12].
PE [18] stands for Parameteric Embedding. It is also

one of the state-of-the-art approaches in visualization, but is
aimed at visualizing discrete probability distributions (e.g.,
class or topic distributions). PE cannot stand alone, as it
needs to be coupled with a method that produces topic dis-
tributions. Including PE allows us to investigate the effects
of modeling visualization and topic model jointly, as op-
posed to obtaining topic model separately before feeding it
into PE. To produce the topic distributions, we experiment
with two other topic models, as follows. PE (LDA) cou-
ples PE with LDA [5], which operates in the simplex word
space. For LDA, we use the implementation3 by its first au-
thor D. Blei. PE (SAM) couples PE with SAM [30], which
operates in the spherical word space. For SAM, we use the
implementation4 by an author A. Waters with default set-
tings (κ0 = 10, κ = 5000, which we apply to SSE as well).
[19] showed that PE with PLSA [17] is inferior to PLSV.

For visualization, we will be comparing SSE against PLSV,
t-SNE, PE (SAM) and PE (LDA). We also investigate the
topic models, comparing SSE against PLSV, and the two
topic models used with PE, i.e., SAM and LDA. As input,
for models with spherical representation (see Table 2), we
use tf-idf vector (as explained in Section 4.1). For the multi-
nomial models, we use their regular inputs (word counts).

2http://cran.r-project.org/web/packages/tsne/
3http://www.cs.princeton.edu/ blei/lda-c
4https://github.com/austinwaters/py-sam

4.3 Visualization Quality
Metric. The utility of a scatterplot visualization is in al-

lowing the user to perceive similarities between documents
through their distances in the visualization space. Our em-
phasis is on the strength of the dimensionality reduction,
rather than on the user interface aspect. Evaluating dimen-
sionality reduction through user studies is hard on the eval-
uator, may be overly subjective and not repeatable across
evaluators. On the other hand, there exists established met-
rics to measure dimensionality reduction objectively.

One such approach is to rely on the available class labels
as ground truth. Intuitively, documents of the same class
are more likely to be similar than documents from different
classes. A good visualization will “encode” this intuition, by
placing documents of the same class nearby, and documents
of different classes apart in the visualization space. Since
dimensionality reduction means that the lower-dimensional
representation still preserves the “properties” of the data,
we can measure how well a visualization output reflects this
intuition, by employing each document’s visualization coor-
dinates as a reduced “feature vector” in a classification task.

The choice of the classification method is not germane,
because it is the feature vector that is being evaluated. In
favor of simplicity, we employ kNN classification. For each
document, we hide its class label, and predict a label by ma-
jority voting among its k-nearest neighbors as determined
by Euclidean distance on the visualization space. The accu-
racy at k or accuracy(k) is the fraction of documents whose
predicted label based on kNN matches the true label. The
higher the accuracy, the better is a visualization at encoding
the class information. 1 is the highest possible accuracy, and
0 the lowest. The same metric was also used in [19].

For relative comparison, we set k = 50, i.e., measuring
accuracy(50), which is appropriate, as the datasets contain
50 documents from each class. Setting k << 50 may not suf-
ficiently penalize a visualization that splits documents of the
same class into multiple small clusters in different localities.

Vary Number of Topics Z. We now compare the
performance of various methods. In Figure 3, we plot the
accuracy(50) as we vary the number of topics Z from 10 to
50. The three sub-plots (a), (b), and (c) correspond to the
three datasets 20News, Reuters8, and Cade12 respectively.

In terms of SSE’s performance as the number of
topics varies: (#1) As the number of topics Z increases,
initially there is an improvement in accuracy, most notably
between Z = 10 and Z = 30. Thereafter, accuracies either
remain flat or drop slightly as Z increases further. The best
performance by SSE is 0.66 on 20News (at Z = 30), 0.77
on Reuters8 (at Z = 20), and 0.41 on Cade12 (at Z = 30).
(#2) SSE achieves a drastic reduction in dimensional-

ity from thousands (vocabulary size) to two (visualization),
while preserving the relationship between data points. The
above accuracies as measured in the reduced dimensional-
ity (visualization) approach closely the accuracies of kNN
when using the full dimensionality (i.e., tf-idf input vectors),
which are 0.73 on 20News, 0.85 on Reuters8, and 0.52 on
Cade12. This shows that SSE’s low-dimensional representa-
tion has high approximation ratios of 90% for 20News and
Reuters8 and 78% for Cade12 in kNN accuracies, underlin-
ing the quality of dimensionality reduction achieved.

(#3) The varying accuracies across datasets indicate their
relative difficulties, with 20News in between Reuters8 (the
least difficult) and Cade12 (the most difficult).
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Figure 3: Visualization Quality: Vary Number of Topics Z
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Figure 4: Visualization Quality: Vary Number of Neighbors k

In terms of SSE’s comparison to baselines: (#1)
SSE has significantly higher accuracies than PLSV (the main
baseline). In relative terms, SSE improves upon PLSV’s ac-
curacy by 30–48% on 20News, by 12–16% on Reuters8, and
by 22–36% on Cade12. This indicates that spherical repre-
sentation of word space helps to improve the visualization.

(#2) SSE outperforms the visualization method t-SNE
that also takes in tf-idf vectors as input. t-SNE’s accuracy
is not affected by the number of topics. A direct visual-
ization technique, t-SNE is competitive, outperforming the
other baselines for 20News and Cade12. However, it per-
forms worst for Reuters8 (more on this later). SSE shows
significantly higher accuracies than t-SNE in the majority
of cases (except for very low number of topics Z = 10), with
improvements up to 14% on 20News, 54% on Reuters8,
and 14% on Cade12. Since t-SNE shares the spherical rep-
resentation of documents but does not model topics, the
outperformance by SSE could be attributed in part to the
approach of modeling topics with visualization.

(#3) SSE also outperforms PE (SAM) by a large margin.
Since SSE and SAM share a spherical representation of top-
ics in the word space, this outperformance by SSE can be
attributed to jointly modeling topics and visualization. This
is further suported by how PLSV (which also jointly mod-
els topics and visualization) outperforms PE (LDA), even as
they share multinomial modeling of topic words.

Vary Number of Neighbors k. In Figure 4 we inves-
tigate the effects of different neighborhood size k’s at spe-
cific settings of topics (Z = 30 for 20News, Z = 20 for
Reuters8, and Z = 30 for Cade12). These are Z settings

where SSE performs best, but similar observations can be
drawn for other Z settings. The focus here is on the number
of neighbors, rather than on the relative comparison against
the baselines again, so we apply the same Z for all methods.

(#1) As k increases from 10 to 50, the accuracy(k) tends
to decrease. This is expected because a small k is very con-
servative, where we are only concerned with the immediate
neighbors, which tend to be very similar. As k increases, the
neighborhood considered in the kNN is larger, with a higher
chance of having neighbors of a different class.

(#2) The gradients of the decrease vary among meth-
ods. Most methods, such as SSE, are relatively stable. This
stability across different k’s is a good sign, indicating that
documents of the same class are placed in the same general
locality. The most affected is t-SNE, with the greatest dif-
ference in accuracies between k = 10 and k = 50. The sharp
difference indicates that t-SNE may splinter documents of
the same class into several clusters in different localities,
such that neighbors at low k are still of the same class, but
neighbors at higher k are of different classes. This is indeed
the case, as seen in the qualitative comparison (Section 4.5).

In summary, the experiments show that SSE overall
produces a significant gain in visualization quality over the
baselines, as measured in terms of its accuracy in kNN clas-
sification with coordinates as features.

4.4 Topic Interpretability
We also investigate whether the gain in visualization comes

at the expense of the topic model. We compare SSE with
baselines PLSV, LDA, and SAM in terms of topic model.
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Figure 5: Topic Interpretability (PMI Score)

Metric. There are several evaluation methods for topic
models proposed in the literature. One is perplexity [5],
which measures the log-likelihood on unseen test data. Per-
plexity is intrinsic, i.e., dependent on the specific probability
model, and may be inappropriate when comparing models
with drastically different probability models, e.g., PLSV or
LDA that uses multinomial models, versus SSE or SAM that
uses vMF distributions. We thus need an extrinsic evalua-
tion that compares these models using external validation.

In our setting, interpretability is important, because the
topic model serves to provide semantics to the visualization
of the data at hand. To human subjects, interpretability is
closely related to coherence [28], i.e., how much the top key-
words in each topic are “associated” with each other. After
an extensive study of evaluation methods for coherence, [28]
identifies Pointwise Mutual Information (PMI) as the best
measure, in terms of having the greatest correlation with
human judgments. We therefore adopt PMI as a metric.

PMI is based on term cooccurrences. For a pair of words

wi and wj , PMI is defined as log
p(wi,wj)

p(wi)p(wj)
. For a topic, we

average the pairwise PMI’s among the top 10 words of that
topic. For a topic model, we average PMI across the top-
ics. Intuitively, PMI is higher (better), if each topic features
words that are highly correlated with one another.

Key to PMI is the use of an external corpus to estimate
p(wi, wj) and p(wi). Following [27], we use Google Web 1T
5-gram Version 1 [6], a corpus of n-grams generated from 1
trillion word tokens. p(wi) is estimated from the frequencies
of 1-grams. p(wi, wj) is estimated from the frequencies of
5-grams, as recommended in [27]. We show the PMI for the
English-based 20News in Figure 5(a) and Reuters8 in Fig-
ure 5(b). Cade12 is not included because we do not possess
a large-scale n-gram corpus for Brazilian Portuguese.

Vary Number of Topics Z. From Figure 5, we draw the
following observations on topic interpretability. (#1) SSE
outperforms PLSV, and SAM outperforms LDA, in terms
of PMI scores, across various topic settings, on 20News
and Reuters8. It indicates that spherical models (SSE and
SAM) produce topics that are more coherent and inter-
pretable than multinomial models (PLSV and LDA). This
is consistent with the conclusion reached in [30], which con-
ducts an evaluation of coherence using human judges. This
concurrence helps to show that our automatic evaluation on
an external corpus is consistent with human judgments.

(#2) SSE performs similarly to SAM, with slightly higher
PMI scores on 20News, but comparable scores on Reuters8.
This can be explained by their common modeling of topics
in the spherical space. Since SSE also needs to deal with

visualization constraints, it is notable that the gains in vi-
sualization quality have not hurt, and have even sometimes
helped the topic model.

(#3) PLSV performs similarly to LDA on 20News, but
slightly worse on Reuters8, which is not surprising since
they both share a similar multinomial modeling of topics
but PLSV also faces constraints to fit the visualization task.

In summary, the experiments show that by incorporat-
ing spherical representation, SSE’s significant gain in visu-
alization does not come at the expense of the topic model.

4.5 Qualitative Comparison
To gain a sense of the visualization quality, we show exam-

ple visualization outputs for 20News and Reuters8. Cade12
is not shown here due to space constraint.

20News. The visualizations for 20News are shown in
Figure 6 for Z = 30 (best viewed in color). Each document
has a coordinate in the scatterplot. To aid identification,
documents are drawn with a colored marker based on their
class (see legend). Topics are drawn as black, hollow circles.

SSE’s visualization in Figure 6(a) shows better separation
of different classes. For instance, there are distinct blue clus-
ter and purple cluster on the right for rec.sport.hockey and
rec.sport.baseball classes respectively, green and red clusters
on the lower right for rec.motorcycles and rec.autos, etc. In-
terestingly, not only are documents of the same class placed
nearby, but related classes are also neighboring one another,
with recreational classes rec.* on the lower right, computer
classes comp.* on the lower left, science clases sci.* at the
center and upper left, while classes related to politics and
religion are on the upper right. Comparatively, PLSV in
Figure 6(b) suffers from greater crowding at the mid-section,
while t-SNE in Figure 6(c) from splintering of some classes
into multiple clusters (e.g., pink square documents denot-
ing talk.politics.mideast). PE (LDA) in Figure 6(d) and PE
(SAM) in in Figure 6(e) are weaker. The relative ranking
in visualization quality largely mirrors the earlier finding on
quantitative accuracy, with SSE being the best, followed by
t-SNE, PLSV, and then the two PE approaches.

To show that the SSE’s visualization is backed by a good
topic model, we show some topic words in Table 3. One
property of spherical representation is that each topic may
have both positive and negative words. We show the five
most positive words, and the five most negative words. Only
10 topics out of 30 are shown due to space constraint. Look-
ing at the positive words, we see that the topics cover some
classes very well, such as hockey, motorcycle, car, windows,
apple, christianity, religion, middle eastern politics, medicine,
and space. Looking at the negative words, we see that the
topics also define what classes they are not. Topic 0 is about
hockey, and not baseball. Topic 1 is about motorcycles, and
not cars. Topic 3 is about software, and not hardware.

Reuters8. The visualizations for Reuters8 are shown in
Figure 7 for Z = 20. Generally, it is an easier dataset, and
most methods perform better than for 20News. Compar-
atively, SSE still produces the clearest separation between
classes, and similar observations apply as before. In par-
ticular, the splintering issue with t-SNE is even clearer in
Figure 7(c). For instance, the money-fx class is splintered
into two navy-blue diamond clusters (lower left and upper
right) separated by other classes. This helps to explain why
t-SNE performs even worse (in relative terms) on Reuters8
than on other datasets.
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Figure 6: Visualization of 20News for Z = 30 topics (best viewed in color)
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Figure 7: Visualization of Reuters8 for Z = 20 topics (best viewed in color)
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Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9
5 Most Positive Weights

hockey bike car window apple jesus god israel doctor space
team dod engine software sale christ religion israeli patient launch
cup motorcycle mile product monitor christian truth arab treatment moon
playoff ride ford price computer god belief jew medicine flight
nhl rider mustang user price sin existence jewish symptom nasa

5 Most Negative Weights
pitch ford circuit video scsi-2 scholar reporter encryption objective algorithm
pitcher detector amp bus scsi-1 addition government armenian religion file
inning oort board slot burst wingate livesey algorithm jew driver
bullpen sensor lady wiretap scsi sea corruption science key nice
giant firearm 1983 ide 16-bit livesey theological armenia god motorcycle

Table 3: Positive and Negative Words in Each Topic for 20News by SSE for Z = 30 (a selection of 10)

5. CONCLUSION
In this work, we address the problem of semantic visu-

alization that jointly models visualization and topics. Our
model, Spherical Semantic Embedding or SSE is designed
for data with spherical representation, i.e., L2−normalized
term vectors. Its generative model associates each document
with a triplet of representations, namely: a coordinate in the
Euclidean visualization space, a multinomial topic distribu-
tion in the topic space, as well as a normalized term vector
in the spherical word space. Comprehensive experiments
on benchmark datasets show that SSE shows significantly
improved performance when compared to existing state-of-
the-art baselines in terms of visualization quality, as well as
topic interpretability.
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