
 1 

 
Working title 
Role of noncoding variants in cancer 
  
 
Outline of main text: 
 
Abstract (~100 words) 
Tumor genomes contain numerous somatic sequence variants. These include single nucleotide 
mutations, small insertions and deletions and larger sequence rearrangements. A large majority 
of these variants occur in noncoding parts of the genome. Noncoding variants can effect gene 
expression to variable extents and may have major functional consequences causing tumor 
progression. Although most previous studies have focused on the identification of functional 
variants in protein-coding genes, many recent studies suggest that the repertoire of noncoding 
somatic variants contains driver events playing an important role in tumor growth. Furthermore, 
numerous noncoding germline variants are known to play a role in cancer susceptibility. In many 
instances, tumor growth relies on an intricate balance between inherited germline and acquired 
somatic variants. In this review, we discuss the current understanding of the role of noncoding 
somatic and germline variants in cancer. 
 
Introduction 
In this part we will discuss that this topic is very timely because whole-genome sequencing of 
tumors is possible now and there is huge interest in knowing what the variants mean. We will 
discuss the following points: [[EKtoMG: The points that Mark R. raised here are discussed in 
conclusions/perspective and I elaborated them more. I think it is ok to discuss them in 
conclusions/perspectives. What do you think ??]]. 
 
1) Noncoding regions play varied roles in cancer – e.g. besides sequence variants in these 
regions, epigenetic changes and expression changes of noncoding RNAs can also drive cancer. 
We will make the reader aware that our article focuses only on sequence variants in noncoding 
parts. 
 
2) We will discuss that noncoding mutations are much more abundant than coding by providing 
a sense of the scale of genomic coverage. [[EKtoMG: I agree with Mark R. that we can include 
this idea in the figure]] 
 
3) We will discuss that many germline mutations in promoters and enhancers are known to be 
causal for inherited diseases and we are just beginning to explore the role of noncoding somatic 
mutations in oncogenesis. Recent studies show that small changes in gene expression caused 
by noncoding mutations can have large phenotypic impact (e.g. a SNP in enhancer causing 
20% change in KITLG expression is responsible for blond hair color). Thus, the combined effect 
of small changes in expression due to noncoding mutations in cancer might be huge. In relation 
to this, the current idea of binary classification of somatic mutations, i.e. drivers and passengers, 
may not necessarily be true. This is because the tendency of mutation to cause tumor growth 
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may not be the extreme 100% (driver) or 0% (passenger) but rather anywhere in between. 
While some somatic variants may have a direct role (such as TERT promoter mutations found in 
many different cancer types), others may indirectly modulate important cancer pathways (such 
as genomic rearrangements perturbing androgen receptor binding sites in a subset of prostate 
cancers1, 2). We discuss various examples under ‘Known cases of somatic variants playing a 
role in tumor development and growth’ that illustrate this point.  
 
4) We will also discuss germline variants that have been associated with increased cancer 
susceptibility, specially the cases where there is an intricate relationship between germline 
polymorphisms and somatic variants. 
 
 
Main sections 
 
1) Noncoding annotations. 

a) What are the various noncoding annotations: transcription factor binding sites, DNase 
I hypersensitivity sites, noncoding RNAs, etc. We will discuss that the dynamic nature of 
the epigenome (including various histone marks and DNA methylation) leads to 
differential activity of regulatory regions in different cellular states. We will also discuss 
large-scale efforts to annotate functional elements in the genome, such as ENCODE 3 
and Roadmap Epigenomics project 4. This section will also include a discussion of 
evolutionary conserved regions in noncoding genome e.g. ultraconserved elements 5 
and ultrasensitive regions 6. 
b) Regulatory regions are often cell-type/tissue specific and thus sequence variants in 
these regions are more likely to exhibit tissue-specific effects. 
c) Multiple approaches are currently used to link cis-regulatory regions to their target 
genes. For example: different variations of chromosome conformation capture 
technology 7, 8, correlation of transcription factor (TF) binding and expression across 
multiple cell lines 9, etc. The resulting linkages can then be studied as a comprehensive 
regulatory network 10. 
 

2) Genomic sequence variants. 
a) What are various types of sequence variants: single nucleotide substitutions, small 
insertion and deletions (indels), and larger structural variants (SVs). 
b) There are many differences in patterns of somatic variants and inherited germline 
variants: (i) A higher fraction of somatic variants contain large genomic rearrangements. 
Chromosomal aneuploidy is also often observed in cancer cells. (ii) Tumor heterogeneity 
makes interpretation of somatic variants more complicated. (iii) Various phenomena, 
such as kataegis 11, chromoplexy 12 and chromothripsis 13 are characteristic only of 
somatic cancer variants. 

 
3) Known cases of somatic variants playing a role in tumor development and growth. 
A discussion of how mutations could effect gene expression, e.g. point mutations in transcription 
factor binding motifs and miRNAs, small insertions or deletions and larger structural variants. 
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This discussion will be combined with examples listed below which we will also display in a 
Table. 

a) Promoters: Recurrent TERT promoter mutations observed in many different cancer 
types14-17.  
b) Enhancers: ‘Enhancer hijacking’ in medulloblastoma where somatic SVs juxtapose 
coding sequences of GFI1 or GFI2 proximal to active enhancers 18. 
c) UTRs: Fusion of 5’ UTR of TMPRSS2 with ETS genes frequently observed in prostate 
cancer 19. 
d) Other TF binding sites: Genomic rearrangements significantly associated with 
androgen receptor binding sites in a subset of prostate cancers 1, 2. 
e) ncRNAs:  
-- Expression change of ncRNA can be due to somatic variants like CNVs of ncRNAs. 
For example: MALAT1, which is frequently up-regulated in cancer, was found to be 
significantly mutated in bladder cancer 20 and amplification of long ncRNA, lncUSMycN, 
contributes to neuroblastoma progression 21, 22. 
-- Pseudogene deletion can effect competition for miRNA binding with the parent gene, 
which in turn could effect expression of the parent gene 23.  
-- Mutations in miRNA binding sites can also effect their binding, e.g. mutations in miR-
31 binding site can effect androgen receptor regulation in prostate cancer 24. 

 
4) Germline inherited variants in noncoding regions that alter cancer susceptibility or patient 
survival. 

a) There is an enrichment of GWAS variants, including those associated with cancer 
susceptibility, in the noncoding genome; as we sequence more populations we will 
identify variants that are common in those populations and related to cancer 
susceptibility. We will discuss the following examples and summarize them in a Table: 

(i) SNPs in enhancers on chr 8q24 upstream of MYC are related with increased 
risk for multiple cancer types 25. 
(ii) A SNP in RFX6 gene intron effects HOXB13 binding and is linked to 
increased prostate cancer susceptibility 26. 
(iii) A SNP in miR-27a gene reduces susceptibility to gastric cancer 27. 
(iv) A common SNP in TERT promoter modifies the effects of somatic TERT 
promoter mutations in bladder cancer on patient survival 28. 
(v) Splice site mutation in the intron of BRCA2 has implications for familial breast 
cancer 29. 
 

(b) eQTL analysis has been used to interpret risk loci 30, 31. We will also discuss why 
usually there is no eQTL analysis for somatic variants (since cancer is heterogeneous so 
these variants are rare). Cryptic effects of noncoding mutations have also been noted 
where germline variants exhibit allelic effects in tumor 32. 
 

These examples illustrate how the effect of noncoding mutations and interplay between 
germline and somatic variants can be complex. We will discuss the relevance of two hit 
hypothesis (where one allele is disabled by a germline variant and the other by somatic variant) 
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for noncoding regions. We will also use the above examples to discuss how the notion of driver 
mutations may not be binary since somatic mutations can influence cancer growth to varied 
extent based on the presence of other germline and somatic variants. 
 
5) Different types of cancer  

(a) Discussion of total numbers of mutations and numbers of noncoding vs coding 
mutations in different types of cancer. For example, tumors of self-renewing tissues 
(such as colorectal) contain more mutations than non-self-renewing ones (such as 
glioblastomas and pancreatic cancers) 33. 
(b) Summary of cancers where driver mutations have been identified in protein-coding 
genes vs those where causal mutations have not been identified. In cases where causal 
mutations have not been identified, the answer might lie in the noncoding genome since 
most previous studies have focused on canonical coding mutations. 

 
6) Computational methods to identify noncoding somatic variants with functional consequences. 

(a) Discussion of currently available computational methods to identify noncoding driver 
mutations from whole-genome sequencing data, for example, FunSeq 6, CADD 34 and 
GWAVA 35. We will also depict these in a Table with associated website links. 

 
7) Experimental approaches to understand the functional effects of noncoding mutations 
Finally, we will discuss experimental ways to test which noncoding mutations have functional 
effects (e.g. genome editing using CRISPR, luciferase reporter assays, high-throughput assays, 
etc). We will also discuss the scale and cost of all the techniques and summarize them in a 
Table. 
 
 
 
Conclusions/perspective 
(a) Cancer arises because of accumulation of multiple mutations -- some of these drivers could 
be noncoding. There is a bias in literature for driver noncoding mutations because people 
haven’t explored these regions for cancer drivers to the same extent, for example most studies 
have been focusing on exomes including the majority of TCGA studies. There is an increased 
realization of this and there is an ongoing collaborative effort between TCGA and ICGC called 
Pan-Cancer Analysis of Whole Genomes (PCAWG), which will try to identify important 
noncoding mutations in ~2500 tumor and matched normal whole-genomes. 
 
(b) There is a debate in the community about whether we should look at noncoding/whole 
genomes vs exomes. Studies of somatic noncoding mutations are currently mostly for research 
purposes, as opposed to regular clinical use. This is primarily because current therapeutic 
approaches attempt to target proteins. It is possible that alternate methodologies, such as 
genome editing using CRISPR, may be used in future (e.g. CRISPR/Cas9 mediated editing has 
been used for HIV in cell lines 36 and muscular dystrophy in mice 37). However, noncoding 
germline variants associated with increased cancer susceptibility should be important for risk 
assessment and potentially for preventive approaches. 
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(c) In relation to (b), it is very important to know the links between cis-regulatory regions and 
their target genes. Although many approaches exist (as discussed under ‘Main sections’), this 
remains a very active and important area of research, especially the development of high-
throughput choromosomal capture technologies. 
 
(d) Even when the links between regulatory regions and target genes are known, it is important 
to study effects of mutations in all elements controlling gene expression – thus network 
approaches will be important to understand the role of noncoding mutations in cancer. We might 
also be able to identify new pathways or novel participants in known pathways that are 
important in cancer. 
 
  
Proposed display items 
(1) Table of noncoding annotations 
(2) Table of somatic sequence variants important in cancer 
(3) Table of germline sequence variants related to altered cancer susceptibility 
(4) Table of computational methods to prioritize noncoding mutations with functional effects 
(5) Table of experimental techniques to validate them 
(6) Schematic for role of various noncoding annotations and sequence variants in them in 
oncogenesis  
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