
(?) Comparative Netomics - lessons from cross-disciplinary network comparison 
 
Throughout the history of science, advancements of biology were catalyzed by discoveries in 
other disciplines. For instance, the maturation of X-ray diffraction facilitated the discovery of the 
double helix, and later on the characterization of structures of thousands of different proteins. In 
the era of systems biology, attentions have shifted from individual molecular components to their 
interactions at a system level. New functional genomics assays, in particular ones based on high-
throughput sequencing (*Seq) [1], enables biologists to probe thousands of ‘omes [2] – the 
comprehensive collections of constituents. One may wonder which discipline will contribute the 
most to biology in this new scientific paradigm [3]. While the influx of ideas in the age of 
reductionism was most originated from specific areas in physics or chemistry, to understand 
biology via a systems perspective, the new wave of catalysts actually come from areas of science 
that are far apart, as different as engineering, behavioral science, sociology, but centered on the 
concept of network [4]. 
 
Network is by no mean new to biologists [5]. Metabolic pathways have been studied for decades. 
But more recently, as a result of the advancements of high-throughput techniques, simple 
pathways are expanded to intertwined wiring diagrams. While many of us have been astonished 
by the complexity of such networks, few are able to gain any intuition from the hairballs [6]. While 
the term “biological network” is used rather loosely in literature for all networks originated from 
any subfields of biology, say food web, here in this essay, we focus our attention to molecular 
networks coming from genomics or systems biology because it is in general harder to gain 
intuitions in such networks. We want to argue that, intuitions as well as mathematical formalisms 
developed in commonplace networks from other disciplines are able to catalyze our 
understanding of biology, and therefore it is instructive to initiate comparison between biological 
networks with networks in other disciplines. 
 
Comparison depends on the nature of networks 
Though underlying networks of various systems may resemble one another, comparing a bio-
molecular network with a complex network from a distant field, say a social network, sounds like 
comparing apples to oranges. What kinds of comparison could truly deepen our understanding? 
We believe the focus of comparison should depend on the types of information captured in 
networks. It is well regarded that the characteristics of a cellular system cannot be explained by 
the characteristics of individual components – the whole is greater than the sum of its parts. The 
essence of network is to describe the interactions between components of the parts-list (genes, 
proteins, small molecules etc.). For instance, many networks are defined based on various kinds 
of mechanistic interactions and specific goals of performance. These networks essentially capture 
different facets of the complex organization of an organism, for instance, a regulatory network 
describes part of the cellular information processing, a metabolic network traces the chemistry of 
metabolites, and the protein-protein interaction network captures cell signaling as well as 
providing a manual on how to assemble molecular machines. Such networks closely resemble, 
and should be compared with networks that perform specific functions like networks from 
engineering or technological systems. In this context, biologists could gain intuitions by examining 
the underlying skeletons of cross-disciplinary complex systems in the same ground as the 
interactions between molecular components in cells. Nevertheless, in many cases, an edge 
represents a certain level of coarse-graining. For example, a simple protein-protein interactions 
network usually does not capture the structural or temporal properties of binding. While more 
detailed mechanistic interactions could indeed be defined in this case [7][8], the framework may 
no longer be useful if too many details are incorporated. The scenario is analogous to classical 
mechanics; writing down the equations of all the particles is in principle possible but not really 
helpful. As a result, many networks are defined in a phenomenological sense. For instance, in a 
genetic interaction networks [9], two genes are connected based on the phenotypes of double 
knockout experiments; or in a disease networks [10], a gene and a disease are connected via the 
statistical association between analysis of genomic variants and the occurrence of the disease. It 
is useful for biologists to notice that such networks, which represent mathematical abstraction of 
complex relationships, share common graphical structures arise in many practical problems. For 
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instance, mathematical machinery used in the bipartite network between genes and diseases can 
resonate with movie recommendation scheme building on a similar bipartite network between 
users and movies. Toward this end, by comparing similar network formalisms, biologists will 
benefit from an algorithmic or method development standpoint. 
 
Comparison reveals common mechanisms and principles 
Since the burgeoning of studying networks in various disciplines, efforts have been made on 
explaining some of the striking similarity in terms of organization of underlying networks in 
biological and other complex systems. An early example is the emergence of the scale-free 
degree distribution in a protein-protein interactions network. The pattern of organization could be 
explained by the duplication divergence model [11], which is essentially the same as the 
preferential attachment model proposed originally to explain the same pattern in many other 
networks [12]. More recently, it has been shown that components in both bacterial genomes as 
well as large-scale computer software projects form multilayered dependency networks (enzyme 
A is used to decompose the output metabolites of enzyme B; the installation of package A 
depends on the installation of package B) leading to the same power-law components-usage 
frequency distribution [13]. In general, the existence of such universal mechanisms is rather rare. 
Nevertheless, comparisons with commonplace networks do provide intuitions for biologists. For 
instance, many biological networks possess an intrinsic direction of information flow, such as 
signaling networks where information propagates from G-Protein coupled receptors to 
transcription factors [14], forming a hierarchical network organization. The hierarchical 
organization in biological networks resemble certain the chain of command in human society, like 
in military context and corporate hierarchy [15]. For instance, more influential transcription factors 
(regulators whose expression are more highly correlated with the expression of target genes) 
tend to be better connected and higher in the hierarchy [16]. Moreover, the cooperative regulatory 
factors in a transcriptional regulatory network tend to be in the middle layer [17]. This situation is 
well studied in management science, where in certain corporate settings middle managers 
interact the most with peers to manage subordinates below them [18]. Such observations reflect a 
democratic hierarchy as opposite to a conventional autocratic organization [19]. 
 
Of particular interest for hierarchical organization is the so-called bow-tie structure, meaning the 
intermediate layers have fewer components than the input and output layers. For example, in 
developmental genetic regulatory network, information propagates from genes controlling the 
initial stage of development (the input) to genes controlling detailed cell differentiation and 
morphogenesis (output) [20][21]. The intermediate layer refers to a small set of input-output 
genes integrating complex spatiotemporal information and trigger development of an entire 
program of cell differentiation [22]. In the networking architecture of the Internet, on the other 
hand, various protocols in the input/link layer (ARP, RARP, NDP etc) and various application 
protocols in the application/output layer (HTTP, FTP,DHCP etc) are essentially connected by 
IPv4, the primary protocols in the internet layer. A recent paper provided a first mechanism to 
understand its evolution by explicitly modeling information flow in feed-forward networks as a 
cascade of matrix multiplications (similar to neural networks in machine learning context) [23]. It 
showed that a bow-tie structure emerged if the goal matrix is rank deficient, i.e. the information 
can be compressed.  
 
Lying at the heart of deciphering biological networks mediated by mechanistic interactions is the 
mapping between architecture and function. Toward this direction, comparison with various 
technological networks is particularly insightful. As an example, consider a biochemical oscillator. 
Two essential elements of an oscillator are a negative feedback loop and a source of time delay. 
Nevertheless, oscillators of various purposes (e.g. for circadian rhythms or for cell cycle) or from 
various organisms are not identical but have a certain level of variation because additional design 
objectives or strategies are involved. Just like not all electronic devices use the same oscillator 
design, the importance of design objectives is not new at all in engineering systems. The striking 
similarity between biological systems and technological systems has long been identified. A 
decade ago, Uri Alon pointed out several common design principles in biological and engineering 
networks such as modular organization and robustness to perturbation [24]. Robustness is 
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obviously a preferred design objective because it makes a system tolerate intrinsic or extrinsic 
stochastic fluctuations. Modularity, on the other hand, makes a system more evolvable. For 
instance in software design, modular programming that separates functionality of a program into 
independent modules connected by interface is widely practiced [25]. The same is for biological 
networks because modules can be readily reused to adapt new functions. Because of the 
fundamental importance of such design objectives, an insightful network comparison should be 
rooted in the common design objectives rather than merely network topology. 
 
Comparison highlights the commonality and difference between tinkerer and engineer 
The comparison of biological networks and technological networks should best be performed 
under the light of evolution. As Alon highlighted by the phase “the tinkerer as an engineer” [24], it 
is remarkable that “good-engineering solutions” are found in biological systems evolved by 
random tinkering. Indeed, comparison between biological and technological networks should 
manifest the nature of the two very different approaches: evolution as a tinkerer starting with bits 
and pieces and trying to connect random nodes, whereas technological networks are essentially 
blueprints drawn by engineers. Biologists often tend to distinguish the two approaches cautiously 
so as to avoid the notion of intelligent design – the existence of an intelligent cause that construct 
living organisms on purpose. Nevertheless, the distinction is not clear-cut. Both biological 
networks and man-made technological networks like roadways and circuits are complex adaptive 
systems, there are plenty of examples showing that many great innovations are results of trial 
and error, and all technological systems are subjected to selection like users requirements. In a 
recent review, Wagner summarized nine commonalities between biological and technological 
innovation, such as descent with modification, extinction and replacement, and horizontal transfer 
[26]. To a certain extent, an engineer is a tinkerer. 
 
The parallel between tinkerer and engineer points to a common framework to unite them. Wagner 
further proposed an analogy between the genotype space for a biological system and the design 
space for a technological system. These spaces contain all the possible networks in the 
corresponding systems. In biology, many attempts have been made to search for solutions of 
common functional problems such as adaptation, oscillation and cell polarization [27]. Similar 
studies were performed in the context of circuit design, where a set of logic gates was evolved via 
rewiring in order to perform a predefined computational task [28][29]. These studies suggested 
that in both kinds of systems, the solution networks are close together in the genotype/design 
space. As each solution in genotype/design has multiple neighbors, robustness of a solution to 
mutation facilitate the evolvability of these systems [30][31]. Indeed, it has been demonstrated 
that electronic circuits can be evolved to fulfill a fluctuating evolutionary goal [28]. Similarly, 
metabolic networks of bacteria living in multiple habitats are evolved to decompose multiple food 
sources [32][33]. Both of these networks show a level of modular organization. While both 
biological and technological networks are shaped by similar underlying design objectives that 
impose further constraints to the solutions, there is no way to optimize all objectives and thus 
tradeoffs are unavoidable in both biological and technological systems. This is essentially the 
conventional wisdom – there’s no free lunch [34][35]. 
 
Despite the similarity, tinkerers and engineers take different views in balancing different 
constraints and tradeoffs. Their optimal choices are exhibited the topology of their corresponding 
networks. Taking software engineering as an example, software engineers tend to reuse certain 
code. However, the robustness of software will be reduced if a piece of code is highly called by 
many different processes. Analysis of the evolution of a canonical software system, the Linux 
kernel, revealed that the rate of evolution of functions (routines) is distributed in a bimodal fashion 
and thus a significant fashion of functions are updated often [36]. Therefore, unlike biological 
systems in which the majority of components are rather conserved and thus prefer a more 
independent organization to maintain robustness, software engineers pay the price of reusability 
and robustness by constantly tweaking the system. Indeed, further analysis of the underlying 
network of Linux kernel, the so-called call graph, showed that more central components at the call 
graph require more fine-tuning. In other words, unlike biological networks whose hubs tend to 
evolve slowly because of the number of constraints, software system is very similar to a roadway 
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system; bottlenecks under high usage like George Washington Bridge require more upgrade and 
more construction. While intentional tweaking on bottlenecks sounds obvious for technological 
systems, it is not always possible. In the above example of internet architecture, while there are 
frequent innovations at the input layer that interact with a variety of networking hardware and 
output layers that connect with many different software applications, the internet layer with very 
few protocols is the bottleneck under heavy constraints and such protocols can hardly be 
replaced [37]. The observed rapid innovation at the top and bottom layers but constraint at the 
middle may shed light on a remarkably pattern in developmental genetic regulatory network. 
Different species exhibit different patterns at the early and late stages of embryo development, 
but highly similar during the phylotypic stage – the so-called hourglass phenomenon [38].  
 
Comparison leverages mathematical machineries 
Apart from networks mediated by mechanistic interactions, many networks in the literature are 
essentially two-dimensional projection of high-dimensional data. As big data across disciplines 
are often signified by the combinatorial explosion of high dimensional features, it is not surprising 
that network algorithms developed in one discipline can readily be applied in biology, for instance, 
the idea of “guilt by association” is widely used in genomics for inferring functions of a protein or a 
non-coding element based on the function of its neighbors in a network, the same idea is also 
widely used in social media like Facebook to suggest friends. Perhaps the best example is 
probably the PageRank algorithm. Idea originated from Katz centrality in social network analysis 
[39], PageRank algorithm was first used by Google to rank documents based on linkages in a 
self-consistent way. The algorithm was then adopted in food webs to determine extinction [40] 
and later in an algorithm called NetRank that rank prognostic relevance for patients with cancers 
[41]. More interestingly, the idea of PageRank was able to solve the global network alignment 
problem, which was applied in biological context in order to detect functional orthology across 
species [42]. 
 
Networks across disciplines, despite of different origins, actually present very similar challenges. 
For instance, being noisy and incomplete makes procedures like link prediction and denoising 
necessary. Difficulties lie at the proper learning of network organization. Generative models of 
networks, say stochastic block models [43], are very popular in computational social science. 
Nevertheless, such models are not widely used in biological context yet, presumably because of 
the lack of gold standard for validation. Another trend of network analysis is the notion of 
multiplex networks where multiple layers of networks form an interconnected structure. The idea 
is originated in social network analysis because an individual may participate in multiple social 
circles: family, friends, colleagues, or in online setting: Facebook, Linkedln and Twitter. The same 
is true in biological context because of the existence of multiple relational connections (co-
expression, genetic interactions etc.) between components in networks. A similar multiplex 
generalization in network analysis is the so-called temporal networks, which consider the slices of 
networks taking place at different time points together as a single mathematical structure [44]. 
Again, the current application focuses on online social networks because genome-wide data in 
biological systems are still not dynamics enough. However, as the number of time points 
increases, say in RNA-Seq experiments, algorithms developed in social contexts can be easily 
applied to integrate the slices of co-expression networks. 
 
Nevertheless, biology motivates an alternate definition of temporal network. Networks from 
different species essentially capture a sense of temporal changes. In this definition, pairs of 
orthologous genes can be used to connect networks from different species, forming a multiplex 
structure. The notion has recently been used to integrate co-association across different species 
in order to detect conserved and specific functional modules [45]. Another mathematical 
formalism was developed to measure the evolutionary rewiring rate between networks across 
species in analogous to quantifying sequence evolution [46]. It was shown that metabolic 
networks rewire at a slower rate compared to various regulatory networks. The formalism can be 
applied to networks in social or technological contexts in general. 
 
Conclusion 
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Biology is a subject with a strong tradition of doing comparison. One hundred years ago, biologist 
compared the phenotypes of different species. Since the discovery of DNA, biologists have been 
comparing the sequences of different genes, and then all sorts of ‘omes across species. To 
nourish a system-level understanding and to leverage the tremendous amount of high-throughput 
data, may be it is a time to extend our tradition even further to compare with networks from other 
complex systems as well as other disciplines. Comparison of biological networks with 
technological networks, and the similarity between tinkerers and engineers point toward biological 
circuits that solve common functional problems – effectively a toolbox for synthetic biology [27]. 
Comparison of mathematical formalisms used in mining biological networks and various social 
networks point to further integration of two classes of data. Such integration is getting more and 
more important as datasets that combine genotypes, phenotypes and information like 
connections between individuals will become popular, for example, the Framingham study. 
Indeed, various scientific disciplines form a network in the intellectual universe where knowledge 
emerges when things connect. 
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