
Comparative Netomics - lessons from cross-disciplinary network comparison  
 
Throughout the history of science, we have seen many examples in which the advancements of 
biology have been catalyzed by discoveries in other disciplines. For instance, the maturation of X-
ray diffraction facilitated the discovery of double helix, and later on the characterization of 
structures of thousands of different proteins. In the era of systems biology, attentions have been 
shifted from individual molecular components to their interactions in a system level. New 
functional genomics assays, in particular ones based on high-throughput sequencing (*Seq) [1], 
enables biologists to probe thousands of ‘omes [2] – the comprehensive collections of 
constituents. One may wonder from which discipline will biology be benefited most in such a new 
scientific paradigm [3]. While the influx of ideas in the age of reductionism was most originated 
from specific areas in physics or chemistry, to understand biology via a systems perspective, the 
new wave of catalysts actually come from areas of science vary far apart, as different as 
engineering, behavioral science, sociology, but centered on the concept of network [4]. 
 
Network is by no mean new to biologists [5]. Metabolic pathways have been studied for decades. 
But more recently, as a result of the advancements of high-throughput techniques, simple 
pathways are expanded to intertwined wiring diagrams published in high profile journals. While 
many of us have been astonished by the complexity of such networks, few are able to gain any 
intuition from the hairballs [6]. While the term “biological network” is used rather loosely in 
literature for all networks originated from any subfields of biology, say food web, here in this 
essay, we focus our attention to molecular networks coming from genomics or systems biology 
because it is in general harder to gain intuitions in such networks. We want to argue that, 
intuitions as well as mathematical methods developed in commonplace networks from other 
disciplines are able to catalyze our understanding of biology. Indeed, not only capturing the 
unique flavor of systems biology, the concept of network essentially describes the interactions 
between individual constituents-who is interacting with whom-in any complex system. The simple 
description thus enables one to examine the underlying skeletons of cross-disciplinary complex 
systems in the same ground as the interactions between molecular components in cells. While 
biologists want to gain insights on the complex interactions between molecular components, the 
common network language makes ideas and methods developed to understand the organization 
of complex systems in diverse fields more accessible to biologists, and vice versa. To leverage 
the interdisciplinary connections, it is instructive to initiate comparison between biological 
networks with networks in other disciplines. 
 
Two classes of network comparison 
Though underlying networks of various systems may resemble one another, comparing a bio-
molecular network with a complex network from a distant field, say a social network, sounds 
comparing apples to oranges. What kinds of comparison could truly deepen our understanding? 
We believe the focus of comparison should depend on the nature of networks. Transcriptional 
regulatory networks, metabolic networks or protein-protein interaction networks are examples of 
widely studied molecular networks. They essentially capture different facets of the complex 
organization of an organism, for instance, a regulatory network describes part of the cellular 
information processing, a metabolic network traces the chemistry of metabolites, and the protein-
protein interaction network captures cell signaling as well as providing a manual on how to 
assemble molecular machines. Despite the intrinsic difference, they all refer to specific goals of 
performance mediated by actual mechanistic interactions. Such networks closely resemble, and 
should be compared with networks that perform specific functions like networks from engineering 
or technological systems. There is another class of biological networks with examples like genetic 
interaction networks [7] or disease networks [8]. The former example is a sophisticated metrics 
summarizing results of double knockout experiments whereas the later describes the statistical 
association between genes and diseases as a result of GWAS and analysis of various genomics 
variants. Such networks do not show mechanistic interactions but a mathematical abstraction of 
complex relationships. From an algorithmic or method development standpoint, they share 
common graphical structures arise in computational social science, for instance mathematical 
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machinery used in the bipartite network between genes and diseases can resonate with movie 
recommendation scheme building on a similar bipartite network between users and movies.  
 
Comparison of design principles 
Lying at the heart of deciphering biological networks mediated by mechanistic interactions is the 
mapping between architecture and function. As an example, consider a biochemical oscillator. 
Two essential elements of an oscillator are a negative feedback loop and a source of time delay. 
Nevertheless, oscillators of various purposes (e.g. for circadian rhythms or for cell cycle) or from 
various organisms are not identical but have a certain level of variation because additional design 
objectives or strategies are involved. Just like not all electronic devices use the same oscillator 
design, the importance of design objectives is not new at all in engineering systems. The striking 
similarity between biological systems and technological systems has long been identified. A 
decade ago, Uri Alon pointed out several common design principles in biological and engineering 
networks such as modular organization and robustness to perturbation [9]. Robustness is 
obviously a preferred design objective because it makes a system tolerate intrinsic or extrinsic 
stochastic fluctuations. Modularity, on the other hand, makes a system more evolvable. For 
instance in software design, modular programming that separates functionality of a program into 
independent modules connected by interface is widely practiced [10]. The same is for biological 
networks because modules can be readily reused to adapt new functions. Because of the 
fundamental importance of such design objectives, an insightful network comparison should be 
rooted in the common design objectives rather than merely network topology, Nevertheless, in 
many cases, common topological patterns are the reflection of common underlying design 
objectives or strategies. 
 
While networks originated from technological systems are particularly analogous to biological 
networks, under certain specific design objectives, comparison could be further broadened to 
include networks from other disciplines. An interesting example is related to how information is 
transferred between input and output nodes in a network. Many biological networks possess an 
intrinsic direction of information flow, for instance signaling networks where information 
propagates from G-Protein coupled receptors to transcription factors [11], and developmental 
gene regulatory networks where information propagates from genes controlling the initial stage of 
development to genes controlling detailed cell differentiation and morphogenesis [12][13]. The 
former example refers to the spatial organization, whereas the later is defined in a temporal 
fashion. The later is similar for the regulatory networks in general; more influential transcription 
factors (regulators whose expression are more highly correlated with the expression of target 
genes) tend to be better connected and higher in the hierarchy [14]. The hierarchical organization 
in biological networks resemble certain the chain of command in human society, like in military 
context and corporate hierarchy [15]. For instance, cooperative regulatory factors in a 
transcriptional regulatory network tend to be in the middle layer [16]. The situation is well studied 
in management science, where in certain corporate settings middle managers interact the most 
with peers to manage subordinates below them [17]. Such observations reflect a democratic 
hierarchy as opposite to a conventional autocratic organization [18]. Of particular interest for 
hierarchical organization is the so-called bow-tie structure, meaning the intermediate layers have 
fewer components than the input and output layers. A recent paper provided a first mechanism to 
understand its evolution by explicitly modeling information flow in feed-forward networks as a 
cascade of matrix multiplications (similar to neural networks in machine learning context) [19]. It 
showed that a bow-tie structure emerged if the goal matrix is rank deficient, i.e. the information 
can be compressed. Of course, there are still plenty of interesting observations without 
explanation. For example, in developmental genetic regulatory network, the intermediate layer 
refers to a small set of input-output genes integrating complex spatiotemporal information (the 
input) and trigger development of an entire program of cell differentiation (the output) [20]. In the 
networking architecture of the Internet, on the other hand, various protocols in the input/link layer 
(ARP, RARP, NDP etc) and various application protocols in the application/output layer (HTTP, 
FTP, SMTP, DHCP etc) are essentially connected by IPv4, the primary protocols in the internet 
layer. While there are frequent innovations at the input layer that interact with a variety of 
networking hardware and output layers that connect with many different software applications, the 
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internet layer is the bottleneck with under heavy constraints in which there are very few protocols 
and they can hardly be replaced [21]. Remarkably, the rapid innovation at the top and bottom 
layers but constraint at the middle happens in developmental genetic regulatory network. 
Different species exhibit different patterns at the early and late stages of embryo development, 
but highly similar during the phylotypic stage – the so-called hourglass phenomenon [22]. 
 
Revisiting tinkerer versus engineer 
The parallel between biological networks and technological networks should best be examined 
under the light of evolution. As Alon highlighted by the phase “the tinkerer as an engineer” [9], it is 
remarkable that “good-engineering solutions” are found in biological systems evolved by random 
tinkering. Indeed, comparison between biological and technological networks should manifest the 
nature of the two very different approaches: evolution as a tinkerer starting with bits and pieces 
and trying to connect random nodes, whereas technological networks are essentially blueprints 
drawn by engineers. Biologists often tend to distinguish the two approaches cautiously so as to 
avoid the notion of intelligent design – the existence of an intelligent cause that construct living 
organisms on purpose. Nevertheless, the distinction is not clear-cut. Both biological networks and 
man-made technological networks like roadways and circuits are complex adaptive systems, 
there are plenty of examples showing that many great innovations are results of trial and error, 
and all technological systems are subjected to selection like users requirements. In a recent 
review, Wagner summarized nine commonalities between biological and technological innovation, 
such as descent with modification, extinction and replacement, and horizontal transfer [23]. To a 
certain extent, an engineer is a tinkerer. 
 
The parallel between tinkerer and engineer points to a common framework to unite them. Wagner 
further proposed an analogy between the genotype space for a biological system and the design 
space for a technological system. These spaces contain all the possible networks in the 
corresponding systems. In biology, many attempts have been made to search for solutions of 
common functional problems such as adaptation, oscillation and cell polarization [24]. Similar 
studies were performed in the context of circuit design, where a set of logic gates was evolved via 
rewiring in order to perform a predefined computational task [25][26]. These studies suggested 
that in both kinds of systems, the solution networks are close together in the genotype/design 
space. As each solution in genotype/design has multiple neighbors, robustness of a solution to 
mutation facilitate the evolvability of these systems [27][28]. Indeed, it has been demonstrated 
that electronic circuits can be evolved to fulfill a fluctuating evolutionary goal [25]. Similarly, 
metabolic networks of bacteria living in multiple habitats are evolved to decompose multiple food 
sources [29][30]. Both of these networks show a level of modular organization. While both 
biological and technological networks are shaped by similar underlying design objectives that 
impose further constraints to the solutions, there is no way to optimize all objectives and thus 
tradeoffs are unavoidable in both biological and technological systems. This is essentially the 
conventional wisdom – there’s no free lunch [31][32]. 
 
Despite the similarity, tinkerers and engineers take different views in balancing different 
constraints and tradeoffs. Their optimal choices are exhibited the topology of their corresponding 
networks. Taking software engineering as an example, software engineers tend to reuse certain 
code. However, the robustness of software will be reduced if a piece of code is highly called by 
many different processes. Analysis of the evolution of a canonical software system, the Linux 
kernel, revealed that the rate of evolution of functions (routines) is distributed in a bimodal fashion 
and thus a significant fashion of functions are updated often [33]. Therefore, unlike biological 
systems in which the majority of components are rather conserved and thus prefer a more 
independent organization to maintain robustness, software engineers pay the price of reusability 
and robustness by constantly tweaking the system. Indeed, further analysis of the underlying 
network of Linux kernel, the so-called call graph, showed that more central components at the call 
graph require more fine-tuning. In other words, unlike biological networks whose hubs tend to 
evolve slowly because of the number of constraints, software system is very similar to a roadway 
system; bottlenecks like George Washington Bridge require more upgrade and more 
construction. 
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Comparison in terms of mathematical approaches 
Apart from networks mediated by mechanistic interactions, many networks in the literature are 
essentially two-dimensional projection of high-dimensional data. As big data across disciplines 
are often signified by the combinatorial explosion of high dimensional features, it is not surprising 
that network algorithms developed in one discipline can readily be applied in biology, for instance, 
the idea of “guilt by association” is widely used in genomics for inferring functions of a protein or a 
non-coding element based on the function of its neighbors in a network, the same idea is also 
widely used in social media like Facebook to suggest friends. Perhaps the best example is 
probably the PageRank algorithm. Idea originated from Katz centrality in social network analysis 
[34], PageRank algorithm was first used by Google to rank documents based on linkages in a 
self-consistent way. The algorithm was then adopted in food webs to determine extinction [35] 
and later in an algorithm called NetRank that rank prognostic relevance for patients with cancers 
[36]. More interestingly, the idea of PageRank was able to solve the global network alignment 
problem, which was applied in biological context in order to detect functional orthology across 
species [37]. 
 
Networks across disciplines, despite of different origins, actually present very similar challenges. 
For instance, being noisy and incomplete makes procedures like link prediction and denoising 
necessary. Difficulties lie at the proper learning of network organization. Generative models of 
networks, say stochastic block models [38], are very popular computational social science. 
Nevertheless, such models are not widely used in biological context yet, presumably because of 
the lack of gold standard for validation. Another trend of network analysis is the notion of 
multiplex networks where multiple layers of networks form an interconnected structure. The idea 
is originated in social network analysis because an individual may participate in Facebook, 
Linkedln and Twitter. The same is true in biological context because of the existence of multiple 
relational connections (co-expression, genetic interactions etc.) between components in 
networks. The multi-layers notion has recently been used to integrate co-association across 
different species in order to detect conserved and specific functional modules [39]. A similar 
generalization in network analysis is the so-called temporal networks, which consider the slices of 
networks taking place at different time points together as a single mathematical structure [40]. 
Again, the current application focuses on online social networks because genome-wide data in 
biological systems are still not dynamics enough. However, as the number of time points 
increases, say in RNA-Seq experiments, algorithms developed in social contexts can be easily 
applied to mine the resultant co-expression networks. 
 
Conclusion 
Biology is a subject with a strong tradition of doing comparison. One hundred years ago, biologist 
compared the phenotypes of different species. Since the discovery of DNA, biologists have been 
comparing the sequences of different genes, and then all sorts of ‘omes between species. To 
nourish a system-level understanding and to leverage the tremendous amount of high-throughput 
data, may be it is a time to extend our tradition even further to compare with networks from other 
complex systems as well as other disciplines. Comparison of biological networks with 
technological networks, and the similarity between tinkerers and engineers point toward biological 
circuits that solve common functional problems – effectively a toolbox for synthetic biology [24]. 
Comparison of methods in mining biological networks and networks in computational social 
science is bridging the two distant fields, whereas efforts have been spent on the interface [41]. 
Indeed, various scientific disciplines form a network in the intellectual universe in which 
knowledge emerge when things connect. 
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