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BILATERAL NSF/BIO-BBSRC.  
ABI INNOVATION. MULTI-SCALE GENE FUNCTION 

PREDICTION USING BIOLOGICAL NETWORKS 
1. Specific Aims 
In recent years, the numerous large-scale sequencing projects combined with fast sequencing 
techniques have generated enormous amounts of sequence data. This has led to the 
identification of thousands of previously unseen genes (e.g. protein coding and non-coding 
RNAs). A fundamental goal is therefore to identify the function of uncharacterized genes on a 
genomic scale. It is difficult to design functional assays for genomic elements that have not 
been previously described. Also applying experimental approaches on a genome-wide scale, 
using the vast array of functional assays already available is expensive and unfeasible. Thus, a 
major challenge in bioinformatics is to devise algorithmic methods that, given a gene or 
ncRNA, can suggest a hypothesis for its function that can then be validated experimentally.  

In this project, we shall focus on understanding the various aspects of the gene function as 
well as the key elements that define and determine it. Our goal is to build a general system 
that, given a gene (protein coding or ncRNA), can predict its function. This multi-scale 
prediction will be carried out exploiting the structure and information recorded in biological 
networks. 

This project will be developed as a bilateral collaboration between the groups of Dr Mark 
Gerstein (US NSF PI) at Yale University and Dr Alberto Paccanaro (UK BBSRC PI) at Royal 
Holloway University of London. The two PIs have a long history of successful collaborations 
on many network based approaches for biological problems. They have developed methods 
for predicting networks from heterogeneous biological datasets including genome features, 
protein function prediction and semantic similarity between genes as well as numerous 
software tools to address these problems. 

 AIM 1: We plan to develop a computational framework to identify and characterize gene 
functions using logic-circuit models and regulatory networks. Specifically we propose to 
develop a method to analyse logic operations of small regulatory triplets using a two-in-one-
out logic gate model. We will use a binarized gene expression data to score how well each 
triplet matches each of all 16 possible logic gates. A high score implies that the logic 
operation describes accurately the interactions between elements forming the regulatory 
triplet. As such a similarity in logic gate matches between various triplets implies a similarity 
in function between the corresponding elements. 

AIM 2: We will develop a computational workflow to infer phenotypic function using as 
input network neighbourhoods and data mining. For this we will use semi-supervised 
machine-learning techniques on a graph model that can explain the association between the 
data. Here we make the assumption that attributes associated to characterized-entities can be 
extended to other uncharacterized entities depending on their level of “connectedness” in the 
graph model. In this project the graphs will be constituted by large-scale biological networks. 
Thus for any given genome we will construct a relational network and predict phenotypes of 
uncharacterized genes using the guilt by association principle.  

AIM 3: We plan to integrate our results from AIM 1, specifically synthesizing the circuit 
elements and their domains of influence within a regulatory network into logic modules, with 
phenotypic function predictions from AIM 2 to better demarcate regions of the network 
associated with distinct phenotypic functions. Here we will develop a iterative computational 
method to optimize the phenotypic predictions. All the developed algorithms for both 
network analysis and phenotype prediction will be integrated into a comprehensive software 
package that will be made available as a stand-alone application. We also aim to develop 
web-based tools providing a friendly and easy to use interface for phenotype function 
prediction using biological networks and logic circuit models.  
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2. Previous NSF Support: 2009-2014 
A number of years ago, the principal investigator, Dr Gerstein, received an NSF 
award titled “Development of an Arabidopsis Proteome Chip” (2/1/2008-1/31/2010; DBI 
0723722; awarded amount $335,817.00).   

Intellectual Merit 

Global identification of molecules associated with the proteome require large-scale 
measurements of biochemical activities of various protein-molecule interactions. Here, the 
experimental collaboration amounted to the development of a proteome microarray chip that 
is able to interrogate 10,000 ORFs of the plant Arabidopsis Thaliana.  

Broader Impact  

The Gerstein Lab was involved in the microarray analyses, and the development of an online 
repository for the expression clones, protocols and reagents, available to the scientific 
community.  The work from this project resulted in a successful publication \cite{19095804}. 

3. Background and Preliminary Results 
3.1 General Background   

The past decade has seen fast grow of genomic data becoming available providing a rich and 
fertile medium for the study of gene function. Numerous clues regarding the various aspects 
of gene function are hidden in a vast array of gene expression, metabolite expression and 
protein-protein interaction data. However, as gene databases grow in size the diversity among 
the sequences increases and classical homology based methods become less effective 
\cite{16772267}. Thus the scientists tried new approaches to mine this data for improving the 
function predictions. As many of these types of data have a natural representation as networks 
the scientific community has focused on developing methods that make use of network 
topology for functional inference. 

One of the earliest approach was lead by Marcotte et al. \cite{10573421}. The authors built a 
network where each node corresponded to a protein in the S. cerevisiae genome, and the links 
between two proteins represented correlated evolution (through phylogenetic profiles), 
patterns of domain fusion, co-expression and protein-protein interaction. Treating these links 
as independent, their method consisted in assigning to an uncharacterized protein the function 
shared by the proteins it was connected to. Since this work appeared, other approaches have 
been developed, which use networks topologies to infer functional annotation. Most of them 
use networks built from protein-protein interaction data and they could be broadly divided 
into two categories. A first group of methods breaks the networks into modules and then 
identifies the function of an unknown protein based on the function of the known member in 
its module (e.g. \cite{12538875,15374873,14517352}). A second group of methods, similar 
to Marcotte’s, assign a function to a protein by directly considering the function of its 
neighbours (e.g. \cite{12740586,14980019,12855458,15961472}). 

3.2 Background on Networks   
3.2.1 Networks Biology: A Growing Field 

Biological systems are mediated by interactions between thousands of molecules. Network-
based statistical models are particularly useful in unlocking the complex organization of 
biological systems. In the last decade, biological network analysis has blossomed into a new 
scientific discipline. Examples are numerous, ranging from protein–protein to genetic 
interaction networks \cite{17473168}. Usually, networks are depicted as graphs with nodes 
and edges, where nodes denote biological entities such as proteins or genes, and edges 
represent interactions between nodes.  

Cellular networks are organized in the form of interacting modules, whereby nodes in a 
module tend to have a larger density of edges connecting them. For example, the genes within 
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a module of a genetic regulatory network are co-regulated. Graph models can reveal 
interesting new features of the analysed biological system 
\cite{11034217,10521342,10935628,12202830,12399590,16730024}, while network 
topologies can be used to address fundamental biological questions   
\cite{18421347,15190252,12134151,17274682,19372386,16311037}. 

3.2.2 Preliminary Results on Networks  

The Gerstein and the Paccanaro labs have carried out projects in biological networks for over 
a decade. We have made extensive contributions in the analysis of genomic data using 
network frameworks \cite{14564010}.  In particular, we have integrated regulatory networks 
with gene expression to uncover different kinds of dynamic sub-networks/modules 
\cite{15372033}.  We also developed methods to analyze the regulatory networks of a variety 
of species from yeast to human, using a wide range of data \cite{22125477,20439753, 
22955619,21177976}. In this project we will leverage our experience in network biology, 
construction, prediction and analysis to create new tools for phenotypic function prediction. 

Networks and Function  

Biological networks, normally large in scale, are organized with topological structures in the 
form of interacting modules. Drs Gerstein and Paccanaro have previously collaborated in 
developing various methods to identify the functional modules of biological networks. For 
example, we developed a method to extract metabolic modules from metagenomic data, 
enabling the identification of pathways that are expressed under different environmental 
conditions \cite{19164758}. We have also developed a way to identify nearly complete, fully 
connected modules (cliques) present in network interactions \cite{16455753} and we have 
been using networks to map various kinds of functional genomics data \cite{22955619}. For 
example, by mapping gene-expression data onto the regulatory network of yeast, we 
identified different sub-networks that are active in different conditions \cite{1537203}. More 
recently we have developed OrthoClust \cite{KKY2014}, a universal computational 
framework that integrates co-association networks of individual species (using gene orthology 
relationships) enabling the identification of species-specific or conserved gene clusters. In the 
proposed project we aim to use and build upon our expertise in this area to identify 
phenotypic function modules in various species. 

Network Construction and Analysis 

We have developed several methods to construct networks based on various genome features 
by combining heterogeneous biological datasets \cite{14564010,12350343,15998909, 
16413578}. We extended this work by developing new machine learning techniques 
\cite{19656385} to increase the prediction power. In 2008, our work placed first in the 
Dialogue for Reverse Engineering Assessments and Methods (DREAM, www.the-dream-
project.org) competition for the in silico network prediction challenge. In addition, we have 
participated in many experimental network determination projects, to refine and keep our 
methodologies at the cutting edge \cite{16449570,16554755,14704431}.  

Recently, we have completed the ambitious goal of constructing draft regulatory networks for 
humans and model organisms based on the mod/ENCODE datasets 
\cite{21177976,21430782,22955619,21430782}. These integrated networks consist of three 
major types of regulation: TF-gene, TF-miRNA and miRNA-gene, showing rich statistical 
patterns. We have successfully completed this challenge through the development of novel 
approaches for identifying individual proximal and distal edges, as well as creating new 
miRNA target prediction algorithms \cite{19122651,22039215,20126643,22950945}.  

We also have developed a number of tools \cite{15145574,17447836} to analyse the 
organization and structure of biological networks including identifying the importance of a 
node in a single network and identifying the modular structure inherent within several 
biological networks.  
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Nodes in networks tend to work together as small structures called network motifs. We found 
that in many of the regulatory networks we constructed in human, worm and fly, the small 
modular motifs have been evolutionarily reused to create complex transcriptional regulatory 
networks. The feed-forward loop is over represented in these networks and is used to filter the 
input stimuli regulating the transcriptional machinery across different hierarchical levels to 
modulate the expression level of different genes. We are going to use this information to test 
our proposed logic circuit based network analysis algorithm described in AIM 1. 

Web Tools for Network Analysis 

We have developed numerous network analysis web tools such as TopNet \cite{14724320}, 
tYNA \cite{17021160}, and PubNet \cite{16168087}. These tools have been widely used by 
the research community to analyze network topology—i.e., to calculate hubs, “betweenness”, 
shortness of paths and degree of modularity. 	  
Integrating Networks with Other Biological Data  

To further illustrate the value of the network concept, we have also combined network 
analyses with many other types of biological data and explored the dynamics of networks. We 
introduced the concept of "interologs" and "regulogs", and showed how to compare 
interaction networks between and within organisms \cite{15173116}. In addition, we 
developed a method to study the biological network rewiring. We noted that biological 
networks show a decreased rate of change over large time intervals. However, different types 
of biological networks consistently rewire at different rates \cite{21253555}. 

Recently, we used networks to improve our understanding of genomic variants 
\cite{24092746}. In \cite{23505346}, we built a multi-layered network that incorporated 
information from heterogeneous data sources such as protein-protein interactions and 
metabolic, phosphorylation, signaling, genetic, and regulatory networks. In general, 
population variants are more likely to be deleterious when they occur in genes or in 
regulatory elements associated with hubs in the multi-layered networks, indicating that a 
gene’s interactions likely influence the selective pressures on acting on it \cite{24092746}. 
We built a workflow model to prioritize noncoding mutations in disease variants based on 
these patterns of negative selection in functional variants.  

We have also developed numerous frameworks to quantify difference between networks in a 
unified fashion by looking at the degree of wiring between the networks. On a special note we 
have contrasted patterns in biological networks with was is found in the designed network of 
a computer operarting system (the Linux call graph) \cite{20439753}. 

3.3 Background on Logic Circuit Models in Biological Networks 

Gene expression is a complex process controlled by regulatory factors on multiple 
dimensions. An increasing number of recent experimental and computational studies suggest 
that gene transcription is regulated cooperatively by numerous factors (i.e. TFs and miRNAs) 
\cite{24009496,22955619}. These studies analyse the relationships between the regulatory 
factors (RFs) from various aspects such as protein-protein interactions, sequence motifs in 
cis-regulatory modules, co-associations of TFs in binding sites, and co-expressions of TF 
target genes \cite{14627835,22705667,21828005}. However, previous studies focused solely 
on the identification of the wiring relationships between RFs (e.g. co-binding, co-association 
and co-expression) leaving untouched the cooperative patterns that drive the biological 
functions behind the wiring diagrams. In AIM 1 we are going to take advantage of the 
available knowledge base building upon it a general framework for characterizing regulatory 
networks using logic circuit models on a genome-wide scale. 

3.4 Background for Phenotypic Function Prediction  

Even for genes whose molecular function and cellular roles are known, understanding their 
role in affecting a certain phenotype remains a challenge. Apart from the Mendelian single 
gene traits, a substantial portion of the phenotypes we observe in nature are an effect of 
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complex interplays between numerous genes in addition to various environmental factors. 
Such ‘complex traits’ are hard to predict and the development of methods for uncovering 
genotype-phenotype relationships has been identified as one of the major post-genomic 
challenges \cite{9790834}. 

Comparative genomics has been proposed for uncovering such gene-trait relationships 
\cite{9790834,9598967}. This approach begins by constructing phenotypic profiles, which 
indicate which organism exhibits a particular phenotype – this is similar to the concept of 
phylogenetic profiles \cite{10200254}. Then causal relationships between genes and traits 
can be deduced from the co-occurrence of genes and phenotypes across a large number of 
genomes. The underlying principle is that species sharing a phenotype are likely to utilize 
orthologous genes in the involved biological process. These ideas were applied to predict 
genes involved in well characterised traits such as hyperthermophily \cite{12683966} and 
flagellar motility \cite{12546786}. Several approaches have been developed for this 
comparative analysis. For example, Tamura et al. \cite{18467347} proposed a rule based data 
mining algorithm to associate Clusters of Orthologues Groups of proteins (COGs) with 
phenotypes; Slonim et al. \cite{ 6732191}  proposed an information-theoretic approach to 
extract preferentially co-inherited clusters of genes having significant association with an 
observed phenotype. Paccanaro and Gerstein have developed a correlation-based method 
\cite{17038185} that was able to discover genotype-phenotype associations combining 
phenotypic information from a biomedical informatics database, GIDEON, with the 
molecular information contained in Clusters of Orthologous Groups of proteins (COGs) 
\cite{12969510}. 

HERE ADD THE CONCEPT OF PHENOLOG (AP) 

Much research has also been carried out recently trying to characterize and predict disease 
phenotypes. Inherited diseases that are phenotypically similar to one another share disease-
associated cellular components: they are linked by common molecular machinery whose 
normal functioning is somehow perturbed \cite{17502601}. In other words, the disease 
modules of phenotypically similar diseases should be located closely on the interactome. 
Paccanaro Lab has recently developed a measure that quantifies the distance between diseases 
at the molecular level by using exclusively their phenotype – we use the textual description of 
the diseases, as there is an abundance of high-quality descriptions of disease phenotypes. 
Briefly, our method mines this extensive biomedical literature to produce an accurate, 
compact and structured description of the diseases based on an ontology. This description 
allows a systematic comparison of pairs of diseases resulting in an accurate similarity score. 
We have tested our measure by correlating it with the experimentally verified disease 
similarities at molecular level and we showed that it performs significantly better than the 
current state of the art. Importantly, our method proves that textual descriptions of phenotypes 
combined with well-structured vocabularies from ontologies provide valuable and under-
exploited information for a systematic analysis of phenotype. In AIM 3 we shall exploit and 
build upon this important result in order to characterize and predict general organism 
phenotypes. 

4. Research Plan and Methods  
4.1 AIM 1: Developing a Method to Infer Gene Cellular Role Using Logic Circuit 

Models and Biological Networks 

Our aim is to develop a novel method of inferring a gene cellular role from the analysis of 
biological networks. More specifically, we will integrate regulatory networks with gene 
expression data. This will allow us to analyse the interactions between the regulatory factors 
and target genes using a logic operations based algorithm. We expect the results to highlight 
common behaviour patterns between various RFs as well as groups of genes under similar 
regulatory constraints. We aim to integrate this algorithm into a robust network analysis tool 
(see AIM 3) that will be available both as an online tool as well as a stand-alone application 
that can be downloaded and used on various input datasets. 
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4.1.1 Logic Circuit Models in Biological Networks 

At a high level, the gene regulatory network can be regarded as an electronic circuit, with TFs 
and miRNAs acting as resistors and capacitors. Just as wiring different circuit elements can 
generate various electrical functions, connecting various regulatory factors as functional 
modules will result in different biological functions. Thus, in order to obtain a comprehensive 
map of gene regulation, it is necessary to go beyond identifying the wiring relationships 
among individual RFs. Here we propose to develop a method that will allow scientists to 
study RFs cooperative patterns, and the regulatory functional modules resulting from them. 

Our idea is based on the fact that in numerous cases gene regulation can be regarded as a 
logic process where RFs are the input variables while the target gene expression is the output 
\cite{12782112,19180174,14530388,21414487,22927416,23412653, 21885784}. In this 
respect, a common regulatory triplet, with two RFs regulating the same gene, can be formally 
described by a two-in-one-out logic gate. 

The three basic logic operations (AND, OR, and NOT) are just a small subset of the large 
variety of logic scenarios possible, combinatorial logics extending well beyond them 
\cite{14530388}. For example, for any two-in-one-out scenario, there are 16 possible logic 
gates. In order to capture all possible combinatorial cooperations between regulatory factors 
we need a comprehensive model. Previous studies took advantage of binarized regulatory 
data provided by perturbation experiments (i.e. TF knock-outs) and used a Boolean model to 
capture this logic processing \cite{Somogyi}. However, previous efforts focused only on a 
small set of genes, missing the genome-wide identification and characterization of logic 
operations in gene regulation.  

Here we propose the development of a novel approach that will allow a comprehensive 
analysis of all possible regulatory logic operations from a genome-wide perspective. 

4.1.2 Development of the Logic Circuit Models Approach 

Our algorithm will be based on logic operations and will use data from regulatory networks 
(defined by regulatory factors and their target genes) and binarized gene expression datasets 
across multiple samples. The binarized gene expression data (on – 1 and off – 0) is the direct 
result of the network’s regulatory factors activity on the target genes. Since there are 
numerous methods that allow binarization of data, we aim to make our method compatible to 
any type of binarized input to meet the user’s interest. Next, we shall decompose the 
regulatory network into modules formed by triplets consisting of 2 RFs and a common target 
gene T. The algorithm could be summarised into the following steps (Figure 1). 

• Step 1: Input gene regulatory network consisting of regulatory factors and their target 
genes; 

• Step 2: Identify all RF1-RF2-T triplets where RF1 and RF2 co-regulate the target gene T; 
• Step 3: Given a particular triplet (RF1, RF2 and T) query the binarized gene expression 

data 
• Step 4: Match the triplet’s gene expressions against all possible two-in-one-out logic gates 

based on the binary values; 
• Step 5: Find the consistent logic gate(s) that best matches the expressions and calculate 

the consistency score. Test the score significance against random effects; 
• Repeat Step 3-5 for all triplets in the regulatory network. 

The main idea of this method is to describe each regulatory module (triplet) using a particular 
type of logic gate – i.e. the logic gate that matches best the binarized expression data for that 
triplet across all samples. If such a logic gate is found, we would claim that the regulatory 
triplet is defined by a consistent logic gate. The statistical significance of the consistent logic 
gate selection will be tested by computing a consistency score (Figure 2) following the steps 
below: 
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• Create the truth table. For each pair of regulatory factors three are four possible inputs 
(0,0), (0,1), (1,0) 
and (1,1). For each 
input there are two 
possible outcomes 0 
or 1. All the 
possible 
combinations 
between the four 
inputs and the 
output create a truth 
table.  

• Given a RF1-RF2-T 
triplet, match output 
T (0 or 1) for each 
of four input 
combinations of 
RF1 and RF2, and 
find the logic gate(s) 
that describes best 
the truth tables. 

• Calculate the 
consistency score: 
For any triplet with 
m binary inputs and 
any gate g the gate 
consistency score 
of the triplet is, 
S(g)=(n1 +n2 +n3 
+n4)/m, where ni as 
number of vectors 
matching one of the 
possible 
input/output 
combinations . 

 Also in order to validate the 
consistent logic gate given a 
triplet of (RF1, RF2, T), we 
would have to calculate its 
significances over the 16 logic 
gates’ scores. For this we use the 
following hypothesis: we 
suppose that the given triplet 
matches the kth logic gate, Gk. 
We shall replace the target gene, 
T by a randomly selected gene N 
times (N=1000), and calculate its 
significance score, as 
p(Gk)=(number of matched 
logic gates=Gk)/N. A high 
significance score would imply 
that random effects may cause 

the matched logic gate. We 
believe that it would be sensible 

Figure 1 Logic circuit based method workflow. 

Gene 20 samples

RF1=TF 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

RF2=TF 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T=Gene 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1

0

0

0 1

0

1

0 1

1

0

0 1

1

1

0 1

RF1

RF2

T

5             0 4            1 5            0 1            4

RF1=TF 1 0 0 1 1

RF2=TF 2 0 1 0 1

T=Gene 1 0 0 0 1

AND
TF1

TF2

Gene 1
Consistency score:

5+4+5+4
5+4+5+4+1+1 =0.9

Figure 2 Consistency score calculation 
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to select the consistent logic gates within top 2% of consistency and significance scores. 

In the case where there is no consistent logic gate found, we would claim that the triplet is 
inconsistent with all logic gates. Such negative results would suggest that the activity 
relationship between the two RFs cannot be described by a standard logic operation. A 
possible biological  explanations would be that the cooperative patterns of two RFs might 
follow a more complex mechanism, which can’t be simply modelled as Boolean logics. 
Another reason can be that the target gene is regulated by more than two RFs, thus a higher-
order logic circuit model with multiple inputs (>2) would be required in order to capture the 
RF logics to the target. Finally, the target gene expression may also be impacted by stochastic 
signals, which can’t be described as deterministic models such as logic gates. 

All the triplets that can be described by logic gates could be further mapped onto other 
biological networks. As such the logic gates information would bring a new dimension to the 
interaction between regulatory elements and targets.  

4.2 AIM 2: Inferring Phenotypic Functions Through Network Mining (Using Graph 
Models and Latent Variables) 

[[AP: I NEED TO WRITE A COUPLE OF SECTIONS IN THE BACKGROUND, to which I refer to here. These will describe 
the experimental data available and the phenotype ontologies we will use. But first we need to decide on the organisms.]]  
The vast array of available data brings a fresh perspective in the area of gene function 
prediction, offering clues about gene-phenotype associations. Integrating various datasets 
(from wet-lab experiments \cite{toADD} to phenotype ontologies \cite{toADD}) we believe 
that we can make statistically significant large-scale phenotypical inferences.  

The data available for phenotypic function prediction can be divided into two categories. 
While some types of data translate directly into a probability of a given phenotype, other 
types of data describe instead a “relatedness” in the phenotypes associated to two genes in the 
same genome. For example, detecting a phenolog provides a probability P that a gene has 
phenotype F. On the other hand, finding a certain correlation between the profiles of the 
expression of genes X and Y gives a certain probability Q that the two genes have related 
phenotypes. We shall refer to these two types of data as “unary relations” and “binary 
relations” respectively (see Table 1). 

Table 1. Phenotypic function prediction input data types. 
Binary relations have a natural 
representation as graphs. Recently there has 
been a lot of interest in the machine 
learning community on methods for making 
inferences on graphs. We propose to 
leverage the on these ideas and develop 
theoretical graph-based methods for large-
scale phenotypical inference. The approach 

makes use of the phenotypical label associated with some genes to infer phenotypes of 
uncharacterized ones (semi-supervised learning).  

In a typical situation, for a given genome there will be genes which have already been 
associated with a given phenotype, and genes whose associated phenotype is still unknown. 
We begin by constructing graphs, in which the nodes represent the genes and each edge 
represents a (binary) relation between the two genes it connects, e.g. co-expression. Each 
edge is labelled with a value that quantifies the relation it represents (e.g. their level of co-
expression); similarly each node is labelled with their known phenotypical assignment or 
“NA” otherwise.  

The two different types of relations described above will be treated differently for inference: 
binary relations will allow the characterization of the unknown genes by diffusing the 
information of the labelled nodes over the graph, through the links; while unary relations will 
be thought of as representing a “tendency” (or a prior probability) of a gene to be associated 
with a given phenotype. 

Data Type Example 
UNARY 
RELATIONS 

Experimental evidence 
Phenolog (homology) 

BINARY 
RELATIONS 

Gene expression 
Protein expression 
Protein-protein interaction 
Genetic interaction 
Pathway information 
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We shall now give an intuition of how the diffusion process will work. Let us think of the 
graph as having a physical implementation as a network of water wheels connected by 
underground pipes in which water flows: for each node (gene) we have a wheel, and for each 
edge (binary relation) we have a pipe connecting the corresponding wheels. The pipes have 
different sizes according to the edge label, thus allowing different amounts of water to flow 
through them, depending on the strength of the relation. Each different phenotypical 
assignment of genes in the dataset is represented by a salt of a specific colour. When a salt is 
dropped in a wheel, it colours the water in it, and we shall assume that waters of different 
colour don’t mix. The diffusion process consists in dropping the coloured salt of each known 
gene in its corresponding wheel, and then letting the coloured water be transported by the 
pipes. No salt is dropped in the wheels corresponding to the uncharacterized gene. However, 
the water in these wheels will also eventually become coloured due to the coloured waters 
coming from the pipes. After the coloured waters have been allowed to circulate in the pipes 
for some time, the amounts of different coloured waters arriving at such unlabelled wheels 
will provide the basis for a probabilistic distribution of assignments over the phenotypical 
classes for the corresponding uncharacterized genes. It is important to notice that the whole 
process can naturally take into account genes having multiple phenotypes, as salts of different 
colours can be poured into the same wheel. 

In summary, the diffusion of information over graphs offers a natural framework for 
integrating datasets which are themselves graphs. This process produces evidence for 
phenotypical assignments which can then be integrated with the evidence coming from the 
unary relations using a statistical method, such as for example a Bayesian model. The strength 
of the methodology proposed here lies in its ability to use diverse sets of noisy data, and to 
combine them to obtain sound statistical inferences of gene phenotypes; the weak signals 
contained in each dataset is enhanced by integrating the data. 

4.2.1 Algorithm Development 

The phenotype inference method will contain several parameters that will be learned from the 
data. Here we assume that, for a given genome, this will be done by applying various machine 
learning techniques (as described below) to subsets of genes for which the phenotypic 
assignment is known (training sets). The method development will have to solve two main 
issues: (i) how to integrate information coming from different experimental sources; and (ii) 
how to properly diffuse the information over the graphs. The study of solutions for these two 
problems will constitute most of the algorithmic research of AIM 2. In the remaining of this 
section we shall analyze each one in turn, proposing some possible ideas for their solution. 

Integration of Information from Different Experimental Sources 

As anticipated earlier, a possible method for integrating the various types of information is 
using a statistical Bayesian model. Using the Naïve Bayes assumption, we can rewrite the 
likelihood of the combined vector of evidences given the phenotype as a product of each 
evidence given the phenotype. That is, the posterior probability distribution of the phenotypic 
assignment given the evidence, P(Fi | E1…En), is defined as: 
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where (E1 … En) is the combined vector of n different evidences or features (Ej), and Fi 
represents the i-th phenotypical assignment. Here, each Ej represents evidence coming either 
from a unary relation (e.g. a phenolog) or a binary relation (e.g. co-expression). Since unary 
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and binary relations must be treated differently, their likelihood model P(Ej|Fi) will be built in 
a different way from the training set.  
For unary relations, the likelihood models, P(Ej|Fi), can be approximated directly by using 
maximum likelihood estimates, that is by using the frequencies of the features in the training 
set (or alternatively using more robust “smoothed” estimates). In other words, for each value 
of a given feature, we calculate the ratio of how many times the genes with phenotype i have 
that value of the feature to the total number of genes with that phenotype (in case of 
continuous features, these must first be discretized). 

In order to estimate a likelihood model for a given binary relation we first need to build a 
graph, and then we need to run the diffusion process (described in the next sub-section). The 
graph will be fully connected and will have a node for each gene. The values for the edges 
controlling the diffusion process would be a non-linear mapping of the experimental data 
which would be learned1 from the training set using, for example, Support Vector Machines. 
Thus, for each binary relation there would be a different graph and the diffusion process 
would be carried out separately. The result of each diffusion process, corresponding to the 
amount of different phenotypic labels, will constitute the feature for that binary relation. The 
likelihood models for the binary relations will be approximated by the frequencies of these 
features in the training set. The prior probabilities of phenotypic assignment, P(Fi), will also 
be approximated by the relative numerosity of the different phenotypic classes in the training 
set. Thus having obtained likelihood models for both unary and binary relations and estimates 
for the priors, we can obtain a phenotypical assignment by computing the numerator of the 
above equation (notice that the denominator is independent on the phenotypical class). 

Finally we note that together with the overall prediction made by the integrated system, the 
biologists will also have access to the separate predictions coming from the different 
experimental datasets. In other words, the user would have the possibility of knowing what 
data supports the phenotypical assignment, e.g. evidence coming from co-expression data or 
from phenologs. This type of “explanation” can be very important for the biologists when 
reasoning about the prediction given by the system. Also, the Bayesian model outlined here is 
not the only possible way for integrating the information coming from the different types of 
data. Data from unary relations can be included directly, while for each binary relation we 
would go through the additional step of the diffusion process. However, once the diffusion 
process has generated a feature for a binary relation, then all the features can be collected into 
a vector and a unique probability distribution of phenotypical assignments can be obtained as 
a non-linear mapping of this vector. Such non-linear mapping would also be learned from a 
well characterized training set. Here we have outlined a Bayesian model as a possible method 
for learning this non-linear mapping, but various other machine learning techniques will be 
tested in order to choose the best solution.  

The Diffusion of Experimental Information for Phenotypical Assignments  

We have already formalized several different approaches that can be used to diffuse the 
phenotypic label information over the graphs. Here we describe three promising methods that 
will probably be considered during the project: 

Method 1. This approach consists in simply diffusing the phenotypical labels by simulating 
Markov random walks on the graph. Given a graph, we can derive the Markov transition 
matrix that controls the Markov diffusion process, and used it to diffuse the normalized 
vectors of known phenotypic assignments over the graph. Using similar approaches, 
Paccanaro has recently obtained excellent results clustering protein sequences 
\cite{16547200}.. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This technique for building the graph is similar to the method that we have already successfully applied to obtain 
a unique protein-protein interaction network from several independent protein-protein interaction datasets obtained 
using different experimental techniques in Yeast \cite{16554755}. 
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Method 2. This approach consists in projecting the nodes of the graph onto points in a (low 
dimensional) space in such a way that the distance between any two points is related to how 
well connected the two nodes are in the original graph. In other words, we project the nodes 
in such a way that for any two nodes, the higher the number of short paths existing between 
them in the original graph, the smaller their distance in the projected space (here the length of 
a path in a graph is defined as the sum of the values that label the edges along the path). Once 
the genes have been projected into this space, we need to discriminate between the distinct 
phenotypical classes. This could be done by learning an appropriate discriminative function 
using some training data; or by learning a separate probabilistic model for the points in each 
phenotypical category. 

This type of projection, sometimes called Diffusion Maps, has been recently successfully 
applied to solve problems from Computer Vision: lip-reading and image-sequence alignment 
\cite{15899970}. We have used these ideas with very good results for predicting protein-
protein interactions using the topological properties of networks of interactions observed 
experimentally \cite{AlbertoPac}. 

Method 3. Finally a third approach is to map the problem of phenotypical assignment onto 
that of learning a particular classification on a Riemannian manifold. This approach has been 
shown to be very successful in a variety of classification problems, in the context of semi-
supervised learning, by Belkin et al \cite{Belkin}. The authors modelled the manifold where 
the data lies as a weighted graph G. Next, they showed that any function on G can be 
decomposed as a weighted sum of eigenfunctions of the graph Laplacian L, and they learned 
such coefficients from the training data. For the problem of phenotypical assignment, data 
from binary relations are already in the form of graphs, and therefore we need to learn the 
values for the weights for the eigenfunctions of the graph Laplacian. This can be seen as 
another way to diffuse information, as the Laplacian matrix is related to the Markov random 
walk \cite{16547200}. 

4.3 AIM 3: Optimizing Phenotypic Function Prediction Using Logic Circuit Models on 
Biological Networks 

We will integrate the results of AIM 1 and AIM 2 in order to improve the phenotypic function 
predictions. To do this, we will first validate the proposed algorithms taking advantage of the 
vast amount of data available for S. cerevisiae.  If our models successfully match the expected 
results, we will use the phenotypic prediction from AIM 2 and refine them by leveraging on 
the objective classification of genes based on regulatory logic gate preferences resulted from 
AIM 1. For this we need to define two entities: (i) phenotypic distance and (ii) coherent logic 
gene modules. 

Finally we shall integrate all the developed algorithms into a robust software package that we 
shall use to make function predictions in different organisms such as C. elegans, D. 
melanogaster, A. thaliana, and H. sapiens leveraging phenotype data available from 
PhenomicDB (http://www.phenomicdb.de).  

4.3.1 Model Validation  

Cooperative Behaviour For Yeast TFs Using Logic Circuits 

As an initial application to test the proposed logic circuit based method, we will study the 
cooperation between yeast TFs during cell cycle. We will use TF-TF-target triplets from the 
TF-target assignments in \cite{15343339,19690563}. We aim to use our logic circuit based 
method to characterize the TF-TF-target logics during yeast cell cycle across various time 
points and identify all the consistent logic gates. The identification of the dominant 
consistent-gates gives clues about how the TFs are acting to regulate the expression of their 
target gene. For example, the “AND” triplets suggest that both TFs have to be present to 
activate the expression of their target gene. 
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In order to validate the biological relevance of the TF co-opeartivity results we will make use 
of yeast TF knockout experiment data. The knockout experiments provide information 
regarding the fold changes in gene expression as a result of deleting a single TF 
\cite{17417638,20385592}. As such, if a target gene is regulated by two cooperative TFs in 
an “AND” relationship, deletion of either TF may corrupt the co-operativity impacting the 
gene expression. Thus in order to validate our method we expect to see a direct correlation 
between triplets with high significant scores at “AND” gate and experimentally determined 
negative expression fold changes. On the other hand for non-cooperative TFs such as 
“T=RF1” or “T=RF2” gates, where one TF (dominant) solely controls the target expression, 
we would expect a to find supporting evidence suggesting that deletion of the dominant TF 
has a grater effect on the gene expression than the removal of the non-dominant one. 

Phenotype Prediction 

As a proof of principle, we shall validate our algorithm in yeast. We will investigate various 
solutions for diffusing information over graphs and integrating it with information from unary 
relations. These prototypes will be trained, i.e. some of their parameters will be fine tuned 
using a machine learning procedure as described above. The performance of the algorithms 
will then be evaluated “in silico” by means of test sets (by “cross-validation”). 

4.3.2 Computing the Phenotypic Distance 

Our earlier result on disease phenotypes (see earlier section) proves that that textual 
descriptions of phenotypes combined with well-structured vocabularies from ontologies can 
be extremely effective in characterizing phenotypes. Here, we shall build upon this important 
result in order to characterize and quantify the similarity between any two phenotype in a 
given organism. 

To do this, given a phenotype ontology, for each term, we shall begin by extracting its textual 
description. This will be followed by a text mining analysis in which we shall apply standard 
pre-processing techniques (stemming, stop word removal, etc) in order to get a list of terms 
from MESH ontologies (here we shall use only MESH ontologies which are appropriate for 
this case, such as, for example, “chemicals and drugs”). In this way a given phenotype will be 
represented by a set of MESH terms. A distance between two given phenotypes can then be 
calculated as a semantic distance on the MESH ontology between the sets of terms describing 
them. A possible variation of this approach will consist in learning a weighting for the 
different MESH terms. This will allow us to discount for often used and thus non-informative 
terms. 

4.3.3 Gene Logic Modules Classification 

Using logic circuit based algorithm we aim to characterize all regulatory network triplets 
(formed of two regulators and one target gene) using one of the sixteen logic gates. As a result 
we will classify different genes based on their logic gate preferences. We distinguish sixteen 
gene and regulators clusters based on the number of consistent logic gates that define the 
particular gene independent of regulators. The genes can also be divided based on the various 
types of logic gates that define the regulatory triplet.  We define a logic gene module as a 
group of genes that share the same consistent regulatory logic. The genes that cannot be 
assigned any consistent regulatory logic are grouped into a non-coherent logic module. 

4.3.4 Phenotypic Function Prediction Optimization 

In order to optimize the phenotype function prediction we will consider several approaches: 
Method 1. This approach will start with the assumption that all genes sharing the same logic 
module will have similar phenotypes. The optimization workflow is summarized 
schematically in Figure 3. First we divide all genes them into logic modules and assign known 
phenotypes as described above. Next we subdivide each logic module into groups of genes 
sharing the same phenotype and calculate the distance between each phenotypic module.  
Genes with distant phenotypes are extracted from all the logic modules and regrouped based 
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on their phenotypes. Within each newly formed 
phenotypic module, genes are regrouped based on 
their logic gate preferences. Genes that do not 
share the same logic gates with the majority of 
genes in the same phenotypic modules are 
extracted and regrouped based on their logic 
gates. At this point we obtain a similar structural 
classification as the one we started with and we 
repeat the same steps until all the genes are 
segregated into modules with consistent 
phenotypes and logic gates.    

This workflow leverages on the fact that each 
genes can be characterized by a variety of 
regulatory logic gates as well as numerous 
phenotypes. In majority of cases a dominant logic or phenotypic function can be defined. 
However, sometimes, the available data is not adequate enough to accurately describe the 
gene function, thus using a circular feedback loop approach we are able to predict the 
potential gene function.   

Method 2. We plan to expand the function prediction to a higher order level using the 
information provided by the logic circuit based method. Thus we aim to use the logic circuits 
as input for inferring phenotypic functions. In this approach we will replace the gene nodes in 
the biological networks with their corresponding consistent logic gates obtaining a logic gate 
network. Next we will attempt to diffuse the phenotype information on this newly formed 
network. As such we will be able to assign each logic gate a set of phenotypes that we’ll be 
able to extend to any gene of unknown phenotype belonging to that logic gate.  

4.3.5 Algorithm Implementation 

An important effort in this project will be devoted to the design  and the implementation of 
software tools for network analysis using logic operations, and phenotype prediction. These 
tools will incorporate all the algorithms developed as described in AIMs 1 and 2. To start we 
will create several prototypes using MATLAB (a numerical computing) as well scripting 
languages such as python. Next we will implement the methods in C/C++/Java, and  test and 
document the code to facilitate future improvements and development.  

These tools will be made freely available to the scientific community. There will be two 
versions: a suite of stand-alone applications and a web-based tool. 

Stand-alone Applications. The suite of stand-alone applications will enable the biologists to 
easily apply the algorithms through a user-friendly interface. These will be available for 
various operating system. Using these tools, the biologists will provide a list of genes, as well 
as sets of large scale experimental data for a certain organism. Using the data provided, the 
system will compute a predicted phenotype for each gene in the list.  Also the users will have 
the options to analyse their input regulatory networks using logic circuit models and build 
clusters of genes sharing similar logic gates. 

These tools will also be integrated into Cytoscape (http://www.cytoscape.org), as Java plug-
ins. This will allow the user to visualize relevant graphs. Such visualization will make the 
diffusion process transparent to the user, providing an explanation and a better understanding 
of predictions. 

Web-based Tool. A web-based tool will also be created. Using this tool the biologist will 
access a web interface where one can upload a list of genes and regulatory networks. The 
system will then report the phenotypes predicted for those genes, together with the evidence 
supporting the prediction, as well as depict clusters of genes that share regulatory patterns, e.g 
are regulate through similar logic operations.  

Figure 3 Phenotype prediction 
optimization 
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We expect that these software tools will have an important impact in the field and that they 
will become a very useful resource for the scientific community. 
Sustainability. The sustainability of the developed resources is very much contingent on the 
hardware and servers on which they are stored and run.. To this end, we intend to make use of 
new technologies such as web services and cloud computing. All the source code used in 
constructing the various software components will be made available from open access 
repositories (e.g sourceforge, github, and/or google code). The developed tools will be 
deployed onto our server pages as well as being uploaded on the Amazon cloud for easy 
access. 

5. Broader Impacts  
5.1 Integration of Research into Education  
We propose to integrate the above described research activities into graduate and 
undergraduate education.  
Mark Gerstein is the Co-Director of the Computational Biology and Bioinformatics (CBB) 
PhD program (cbb.yale.edu) at Yale University, and he has been designing and teaching 
graduate courses in bioinformatics, genomics, and data mining for almost 20 years. These 
activities could easily be translated into class projects, which may help recruit undergraduates 
into Yale labs. In addition, we focus on students of underrepresented groups through a Yale 
program called “Science, Technology and Research Scholars” or STARS 
(science.yalecollege.yale.edu/stars-home), which includes Computer Science, Bioinformatics, 
and Genomics components. 
All the tools developed for gene function prediction will be integrated into 
Computational Biology and Bioinformatics 752 (Bioinformatics: Practical Application of 
Simulation and Data Mining), a course directed by Dr Gerstein, and taught to 
undergraduates and graduate students. The course is an introduction to the computational 
approaches used for addressing questions in genomics and structural biology. The function 
component of the course can be substantially improved by introducing the students to 
innovative tools to predict gene function using a variety of data. This resource represents the 
integration of many facets of bioinformatics, including functional data, biological network 
analysis, programming, as well as sets of algorithms applied to address questions about gene 
function discovery. It will also be integrated into final year projects, and as part of these 
projects, students will develop online libraries for gene function. The students will also have 
the opportunity to exchange ideas and expand their networking skills by attending the invited 
lectures and seminars that will be offered by Dr Paccanaro during his work visits at Yale. 

5.2 Workshops and Webinars: From Our Computers to Everyone’s  
As a “tool just as useful the consumer's ability to effectively use it” we plan to reach out to 
the scientific community and popularize our newly developed methods using reach media 
interactions such as webinars and hands-on workshops. Also we aim to present the developed 
algorithms at scientific conferences as well as “Open Day” events.  

As part of numerous consortia (e.g. Kbase, exRNA, 1000 Genomes, ENCODE), Dr Gerstein 
will also have the opportunity to disseminate the research findings and present, popularize 
and make available the developed tools to all his consortia colleagues and collaborators.   

6. Project Management Plan  
The research will be conducted by graduate students and early career personnel under the 
supervision of Dr Mark Gerstein (US NSF PI) at Yale University, and Dr Alberto Paccanaro 
at Royal Holloway University of London (UK BBSRC PI).  

In leading this collaborative project, we will draw on considerable experience we have had 
with other integrative collabroative projects. In particular, Dr Gerstein has been an integral 
part of the ENCODE Project as well as the modENCODE Project since its inception. Within 
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these he has had a number of leadership roles, as he has co-directed the Networks/Elements 
Group. He has co-led high profile papers focusing on networks and was the leader of the 
numerous collaborative papers.  

This project will integrate the biological networks expertise of Dr Gerstein with the of 
software development expertise of Dr Paccanaro and thus will bring a fresh new perspective 
to protein function prediction. Dr Gerstein and Dr Paccanaro have been collaborating for over 
ten years on many network-based approaches for problems in biology. To some degree the 
collaboration between the two labs will be cemented through knowledge exchange and work 
visits. As such Dr Sisu (Yale) will have a visiting scientist appointment in Dr Paccanaro’s lab 
and will work closely with his team to integrate the network analysis tool with phenotype 
predictions. Dr Sisu will also be the project manager and will be the contact person between 
the two labs. Also Dr Paccanaro will visit the Gerstein Lab and contribute invited lectures to 
the computational biology and bioinformatics course led by Dr Gerstein.  

Dr Gerstein will be responsible for the coordination, designing and development of tools 
associated with AIM 1 created by Dr Sisu and Dr Wang at Yale. Dr Paccanaro will be 
involved in the design and development of phenotype prediction tools associated with AIM 2. 
While these two aims are lead mostly by each lab independently, both groups will collaborate 
towards their completion. As such, Paccanaro group will help with model development and 
implementation for AIM 1, while Gerstein group will help with assessment of data quality, 
standardization and biological interpretation of AIM 2 results. The two groups will work 
closely together to facilitate the implementation of AIM 3.  

The overall progress of the project is summarized in yearly milestones as follows: 

Year 0-1.5 The Gerstein lab will work on the development of logic circuit models for network 
analysis (AIM 1). Dr Paccanaro will provide technical support for the correct implementation 
and optimization of the algorithm. The successful development of this method will be 
assessed by a pilot study on yeast regulatory network. The Paccanaro’s lab will focus on 
developing machine learning methods for phenotype function predictions (AIM 2). Similarly 
Dr Gerstein lab will provide scientific feedback and validation of the prediction results.  
Year 1.5-2. This time will be dedicated to the development of a robust and friendly interface 
for the network analysis and function prediction tools.  
Year 3. The work will be focused on the implementation of AIM 3. This year will also be 
dedicated to publishing collaborative papers describing the newly developed tools as well as 
the scientific advances resulted from their use.  

The two groups will also coordinate the analysis and writing of collaborative  manuscripts. To 
achieve this, we plan to implement regular conference calls between the two groups, but also 
open them to the larger networks and protein function community.  

We will also take advantage of the plethora of tools available to facilitate collaboration. To 
this end the software development between the two labs will be hosted on a communal 
subversion system, github. In order to guaranty a high standard of our tool, we will employ 
regular code reviews. Similarly we will use google drive and online whiteboard tools on a 
regular basis to enhance the sharing of ideas between the two groups. 

We will also work closely with other investigators from UK and US to identify additional 
regulatory networks datasets for integrative analysis, and coordinate the sharing of 
information with the larger biological research community. On a regular basis, the project 
results will be disseminated to a broad audience (from senior researchers to middle and high 
school teachers) through conferences, public workshops and webinars.  
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