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BILATERAL NSF/BIO-BBSRC.  
ABI INNOVATION. MULTI-SCALE GENE FUNCTION PREDICTION 

USING BIOLOGICAL NETWORKS 
1. Specific Aims 
In recent years, the numerous large-scale sequencing projects combined with fast sequencing 
techniques have generated enormous amounts of sequence data. This has led to the 
identification of thousands of previously unseen genes (e.g. protein coding and non-coding 
RNAs). A fundamental goal is therefore to identify the function of uncharacterized genes on a 
genomic scale. It is difficult to design functional assays for genomic elements that have not 
been previously described. Also applying experimental approaches on a genome-wide scale, 
using the vast array of functional assays already available is expensive and unfeasible. Thus, 
currently a major challenge in bioinformatics is to devise algorithmic methods that, given a 
gene or ncRNA, can predict a hypothesis for its function that can then be validated 
experimentally.  

In this project, we shall focus on understanding the various aspects of the gene function as 
well as the key elements that define and determine it. Our goal is to build a general system 
that, given a gene (protein coding or ncRNA), can predict its function. This multi-scale 
prediction will be carried out exploiting the structure of biological networks.[[CSDS2edit]] 

This project will be developed as a bilateral collaboration between the groups of Dr Mark 
Gerstein (US NSF PI) at Yale University and Dr Alberto Paccanaro (UK BBSRC PI) at Royal 
Holloway University of London. The two PIs have a long history of successful collaborations 
on many network based approaches for biological problems. They have developed methods 
for predicting networks from heterogeneous biological datasets including genome features, 
protein function prediction and semantic similarity between genes as well as numerous 
software tools to address these problems. 

 AIM 1: We plan to develop a computational framework to identify and characterize gene 
functions using logic-circuit models and regulatory networks. Specifically we propose to 
develop a method to analyse logic operations of small regulatory triplets using a two-in-one-
out logic gate model. We will use a binarized gene expression data to score how well each 
triplet matches each of all 16 possible logic gates. A high score implies that the logic 
operation describes accurately the interactions between elements forming the regulatory 
triplet. As such a similarity in logic gate matches between various triplets implies a similarity 
in function between the corresponding elements. 

AIM 2: We will develop a computational workflow to infer phenotypic function using as 
input network neighbourhoods and data mining. For this we will use semi-supervised 
machine-learning techniques on a graph model that can explain the association between the 
data. Here we make the assumption that attributes associated to characterized-entities can be 
extended to other uncharacterized entities depending on their level of “connectedness” in the 
graph model. In this project the graphs will be constituted by large-scale biological networks. 
Thus for any given genome we will construct a relational network and predict phenotypes of 
uncharacterized genes using the guilt by association principle.  

AIM 3: We plan to integrate our results from AIM 1, specifically synthesizing the circuit 
elements and their domains of influence within a regulatory network into logic modules, with 
phenotypic function predictions from AIM 2 to better demarcate regions of the network 
associated with distinct phenotypic functions. Here we will develop a iterative computational 
method to optimize the phenotypic predictions. All the developed algorithms for both 
network analysis and phenotype prediction will be integrated into a comprehensive software 
package that will be made available as a stand-alone application. We also aim to develop 
web-based tools providing a friendly and easy to use interface for phenotype function 
prediction using biological networks and logic circuit models.  

Cristina Sisu� 31/7/14 14:14
Deleted:  
\cite{14564010,15998909,16413578,1901514
1},
Cristina Sisu� 31/7/14 14:14
Deleted: \cite{23353650,19402753} 
Cristina Sisu� 31/7/14 14:14
Deleted: \cite{17540677,24659104} 
Alberto Paccanaro� 31/7/14 11:42
Deleted: presumption 

Alberto Paccanaro� 31/7/14 11:43
Deleted: all the 

Alberto Paccanaro� 31/7/14 11:49
Comment [1]: Is this understandable? I 
wanted to avoid to sey "direct connection" 
because it is not so (if it were so, it would be 
trivial). 

Alberto Paccanaro� 31/7/14 11:45
Deleted: that are directly connected to them 
Alberto Paccanaro� 31/7/14 11:45
Deleted: a 
Alberto Paccanaro� 31/7/14 11:39
Deleted: a
Alberto Paccanaro� 31/7/14 11:39
Deleted: d
Alberto Paccanaro� 31/7/14 11:39
Deleted: model 
Alberto Paccanaro� 31/7/14 11:39
Deleted: for genes directly connected in the 
network
Alberto Paccanaro� 31/7/14 11:49
Deleted: Thus 
Alberto Paccanaro� 31/7/14 11:49
Deleted: recursive 



	   2	  

2. Previous NSF Support: 2009-2014 
A number of years ago, the principal investigator, Dr Gerstein, received an NSF 
award titled “Development of an Arabidopsis Proteome Chip” (2/1/2008-1/31/2010; DBI 
0723722; awarded amount $335,817.00).   

Intellectual Merit 

Global identification of molecules associated with the proteome require large-scale 
measurements of biochemical activities of various protein-molecule interactions. Here, the 
experimental collaboration amounted to the development of a proteome microarray chip that 
is able to interrogate 10,000 ORFs of the plant Arabidopsis Thaliana.  

Broader Impact  

The Gerstein Lab was involved in the microarray analyses, and the development of an online 
repository for the expression clones, protocols and reagents, available to the scientific 
community.  The work from this project resulted in a successful publication \cite{19095804}. 

3. Background and Preliminary Results 
3.1 General Background   
The past decade has seen fast grow of genomic data becoming available providing a rich and 
fertile medium for the study of gene function. Numerous clues regarding the various aspects 
of gene function are hidden in a vast array of gene expression, metabolite expression and 
protein-protein interaction data. However, as gene databases grow in size the diversity among 
the sequences increases and classical homology based methods become less effective 
\cite{16772267}. Thus the scientists tried new approaches to mine this data for improving the 
function predictions. As many of these types of data have a natural representation as networks 
the scientific community has focused on developing methods that make use of network 
topology for functional inference. 

One of the earliest approach was lead by Marcotte et al. \cite{10573421}. The authors built a 
network where each node corresponded to a protein in the S. cerevisiae genome, and the links 
between two proteins represented correlated evolution (through phylogenetic profiles), 
patterns of domain fusion, co-expression and protein-protein interaction. Treating these links 
as independent, their method consisted in assigning to an uncharacterized protein the function 
shared by the proteins it was connected to. Since this work appeared, other approaches have 
been developed, which use networks topologies to infer functional annotation. Most of them 
use networks built from protein-protein interaction (PPI) data and they could be broadly 
divided into two categories. A first group of methods breaks the networks into modules and 
then identifies the function of an unknown protein based on the function of the known 
member in its module (e.g. \cite{12538875,15374873,14517352}). A second group of 
methods, similar to Marcotte’s, assign a function to a protein by directly considering the 
function of its neighbours (e.g. \cite{12740586,14980019,12855458,15961472}). 

3.2 Background on Networks   
3.2.1 Networks Biology: A Growing Field 
Biological systems are mediated by interactions between thousands of molecules. Network-
based statistical models are particularly useful in unlocking the complex organization of 
biological systems. In the last decade, biological network analysis has blossomed into a new 
scientific discipline. Examples are numerous, ranging from protein–protein to genetic 
interaction networks \cite{17473168}. Usually, networks are depicted as graphs with nodes 
and edges, where nodes denote biological entities such as proteins or genes, and edges 
represent interactions between nodes.  

Cellular networks are organized in the form of interacting modules, whereby nodes in a 
module tend to have a larger density of edges connecting them. Biologically, the genes within 
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a module of a genetic regulatory network are co-regulated. Graph models can reveal 
interesting new features of the analysed biological system 
\cite{11034217,10521342,10935628,12202830,12399590,16730024}, while network 
topologies can be used to address fundamental biological questions   
\cite{18421347,15190252,12134151,17274682,19372386,16311037}. 

3.2.2 Preliminary Results on Networks  
The Gerstein lab has carried out projects in biological networks for over a decade. We have 
made extensive contributions in the analysis of genomic data, especially with regard to 
network prediction and analysis\cite{14564010}.  We have also integrated regulatory 
networks with gene expression to uncover different kinds of dynamic sub-networks 
\cite{15372033}.  We developed methods to analyze the regulatory networks of a variety of 
species from yeast to human, including networks constructed from ENCODE, modENCODE 
and MCF7 data \cite{22125477,20439753,22955619,21177976}. 

Network Construction 

We have developed several methods to construct networks based on various genome features 
\cite{14564010}. We extended this work by combining several heterogeneous biological 
datasets \cite{12350343,15998909,16413578} and developing new machine learning 
techniques \cite{19656385} to increase the prediction power. In 2008, our work placed first 
in the Dialogue for Reverse Engineering Assessments and Methods (DREAM, www.the-
dream-project.org) competition for the in silico network prediction challenge. In addition, we 
have participated in many experimental network determination projects, to refine and keep 
our methodologies at the cutting edge \cite{16449570,16554755,14704431}.  

Recently, we have completed the ambitious goal of constructing draft regulatory networks for 
humans and model organisms based on the mod/ENCODE datasets 
\cite{21177976,21430782,22955619,21430782}. These integrated networks consist of three 
major types of regulation: TF-gene, TF-miRNA and miRNA-gene, showing rich statistical 
patterns. We have successfully completed this challenge through the development of novel 
approaches for identifying individual proximal and distal edges, as well as creating new 
miRNA target prediction algorithms. 

Leveraging the richness of the next-generation sequencing we have developed several 
computational approaches to help construct and analyze proximal and distal regulatory 
networks \cite{19122651,22039215,20126643,22950945}. When analyzed together, the 
proximal and distal regulatory network elements provide the complete multi dimensional 
image of the transcriptional regulatory network. For instance, the human regulatory network 
uniquely displays distinct preferences for binding at proximal and distal regions. The 
proximal-distal binding preference is a property of the intergenic space in the human genome, 
which is much larger relative to the genomes of other model organisms. Furthermore, in the 
human regulatory network, the less connected TFs are more likely to exhibit allele-specific 
binding and gene expression.  

More recently, we built a regulatory map for 24 nuclear receptors and 14 breast-cancer-
associated TFs that are expressed in the breast cancer cell line MCF-7. The resulting network 
reveals a highly interconnected regulatory matrix with extensive “crosstalk” between NRs 
and other breast-cancer-associated TFs. We show that large numbers of factors bind in a 
coordinated fashion to target regions throughout the genome. The highly occupied targets are 
associated with active chromatin state and hormone-responsive gene expression.  

Network Analysis 

Biological networks, normally large in scale, are organized with topological structures in the 
form of interacting modules. Statistics such as 'eccentricity' and 'betweenness' are helpful to 
explain the connectivity and behaviour of nodes in a network. We have developed a number 
of tools \cite{15145574,17447836} to analyse the organization and structure of biological 
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networks including identifying the importance of a node in a single network and identifying 
the modular structure inherent within several biological networks. 

Nodes in networks tend to work together as small structures called network motifs. We found 
that in many of the regulatory networks we constructed in human, worm and fly, the small 
modular motifs have been evolutionarily reused to create complex transcriptional regulatory 
networks. The feed-forward loop is over represented in these networks and is used to filter the 
input stimuli regulating the transcriptional machinery across different hierarchical levels to 
modulate the expression level of different genes. 

Networks and Cellular Function 

Cellular networks are organized in the form of interacting modules, whereby nodes in a 
module tend to have a larger density of edges connecting them. Biologically, the genes within 
a module of a genetic regulatory network are co-regulated. We developed various methods to 
identify the functional modules of various networks. For example, by mapping gene-
expression data onto the regulatory network of yeast, we identified different sub-networks 
that are active in different conditions \cite{1537203}. We developed a method to extract 
metabolic modules from metagenomic data, enabling us to identify pathways that are 
expressed under different environmental conditions \cite{19164758}. We have also 
developed a way to identify nearly complete, fully connected modules (cliques) present in 
network interactions \cite{16455753} and we have been using networks to map various kinds 
of functional genomics data \cite{22955619}. More recently we have developed OrthoClust, 
a general computational framework that integrates the co-association networks of individual 
species by utilizing the orthology relationships of genes between species. It generates clusters 
that can be classified as either conserved or species-specific. 

Integrating Networks with Other Biological Data   

To further illustrate the value of the network concept, we have also combined network 
analyses with many other types of biological data. Recently, we used networks to improve our 
understanding of genomic variants \cite{24092746}. In \cite{23505346}, we built a multi-
layered network that incorporated information from heterogeneous data sources such as 
protein-protein interactions and metabolic, phosphorylation, signaling, genetic, and regulatory 
networks. In general, population variants are more likely to be deleterious when they occur in 
genes or in regulatory elements associated with hubs in the multi-layered networks, indicating 
that a gene’s interactions likely 
influence the selective pressures 
on acting on it \cite{24092746}. 
We built a workflow model to 
prioritize noncoding mutations in 
disease variants based on these 
patterns of negative selection in 
functional variants.  

We have also developed 
numerous frameworks to quantify 
difference between networks in 
an unified fashion by looking at 
the degree of wiring between the 
networks. On a special note we 
have contrasted patterns in 
biological networks with was is 
found in the designed network of 
a computer operarting system (the 
Linux call graph) 
\cite{20439753} 

Figure 2. Measuring network rewiring by comparing networks of 
species pairs.  A. Types of biological networks with currently available 
data for different species are collected. Selected types of 
commonplace networks with multiple time-point data are also 
collected. B. For each network type, we perform edge rewiring analysis 
for pairs of species. Three types of nodes are first identified as CNs, 
GNs and LNs. Four types of rewired edges are then identified and 
counted including gain/loss edges between CNs (red) and those 
involving GNs or LNs (green). Rewiring rate from comparing the 
networks is calculated. 
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Networks Evolution and Rewiring  

We have also explored the evolution of networks and studied the conservation and variability 
of differ-rent parts of the network.  We defined "interologs" and showed how to compare 
interaction net-works between organisms. We also defined "regulogs" for transferring 
regulatory relation-ships between organisms \cite{15173116}. In addition, we developed a 
method to study network rewiring on all currently available biological networks (Figure 2). 
We noted that biological networks show a decreased rate of change over large time intervals. 
However, different types of biological networks consistently rewire at different rates 
\cite{21253555}. 
 
Web Tools for Network Analysis 

We have developed numerous network analysis web tools such as TopNet \cite{14724320}, 
tYNA \cite{17021160}, and PubNet \cite{16168087}. These tools have been widely used by 
the research community to analyze network topology—i.e., to calculate hubs, “betweenness”, 
shortness of paths and degree of modularity.  

3.3 Background on Logic Circuit Models in Biological Networks 
Gene expression is a complex process controlled by regulatory factors on multiple 
dimensions. An increasing number of recent experimental and computational studies suggest 
that gene transcription is regulated cooperatively by numerous factors (i.e. TFs and miRNAs) 
\cite{24009496,22955619}. These studies analyse the relationships between the regulatory 
factors (RFs) from various aspects such as protein-protein interactions, sequence motifs in 
cis-regulatory modules, co-associations of TFs in binding sites, and co-expressions of TF 
target genes \cite{14627835,22705667,21828005}. However, previous studies focused solely 
on the identification of the wiring relationships between RFs (e.g. co-binding, co-association 
and co-expression) leaving untouched the cooperative patterns that drive the biological 
functions behind the wiring diagrams.  

3.4 Background for Phenotypic Function Prediction  
Even for genes whose molecular function and cellular roles are known, understanding their 
role in affecting a certain phenotype remains a challenge. Apart from the Mendelian single 
gene traits, a substantial portion of the phenotypes we observe in nature are an effect of 
complex interplays between numerous genes in addition to various environmental factors. 
Such ‘complex traits’ are hard to predict and the development of methods for uncovering 
genotype-phenotype relationships has been identified as one of the major post-genomic 
challenges \cite{9790834}. 

Comparative genomics has been proposed for uncovering such gene-trait relationships 
\cite{9790834,9598967}. This approach begins by constructing phenotypic profiles, which 
indicate which organism exhibits a particular phenotype – this is similar to the concept of 
phylogenetic profiles \cite{10200254}. Then causal relationships between genes and traits 
can be deduced from the co-occurrence of genes and phenotypes across a large number of 
genomes. The underlying principle is that species sharing a phenotype are likely to utilize 
orthologous genes in the involved biological process. These ideas were applied to predict 
genes involved in well characterised traits such as hyperthermophily \cite{12683966} and 
flagellar motility \cite{12546786}. Several approaches have been developed for this 
comparative analysis. For example, Tamura et al. \cite{18467347} proposed a rule based data 
mining algorithm to associate Clusters of Orthologues Groups of proteins (COGs) with 
phenotypes; Slonim et al. \cite{	   6732191}  proposed an information-theoretic approach to 
extract preferentially co-inherited clusters of genes having significant association with an 
observed phenotype. Paccanaro and Gerstein have developed a correlation-based method 
\cite{17038185} that was able to discover genotype-phenotype associations combining 
phenotypic information from a biomedical informatics database, GIDEON, with the 
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molecular information contained in Clusters of Orthologous Groups of proteins (COGs) 
\cite{12969510}. 

HERE ADD THE CONCEPT OF PHENOLOG (AP) 

Much research has also been carried out recently trying to characterize and predict disease 
phenotypes. Inherited diseases that are phenotypically similar to one another share disease-
associated cellular components: they are linked by common molecular machinery whose 
normal functioning is somehow perturbed \cite{17502601}. In other words, the disease 
modules of phenotypically similar diseases should be located closely on the interactome. 
Paccanaro Lab has recently developed a measure that quantifies the distance between diseases 
at the molecular level by using exclusively their phenotype – we use the textual description of 
the diseases, as there is an abundance of high-quality descriptions of disease phenotypes. 
Briefly, our method mines this extensive biomedical literature to produce an accurate, 
compact and structured description of the diseases based on an ontology. This description 
allows a systematic comparison of pairs of diseases resulting in an accurate similarity score. 
We have tested our measure by correlating it with the experimentally verified disease 
similarities at molecular level and we showed that it performs significantly better than the 
current state of the art. Importantly, our method proves that textual descriptions of phenotypes 
combined with well-structured vocabularies from ontologies provide valuable and under-
exploited information for a systematic analysis of phenotype. In AIM 3 we shall exploit and 
build upon this important result in order to characterize and predict general organism 
phenotypes. 

4. Research Plan and Methods  
4.1 AIM 1: Developing a Method to Infer Gene Cellular Role Using 

Logic Circuit Models and Biological Networks 
Our aim is to develop a novel method of inferring a gene cellular role from the analysis of 
biological networks. More specifically, we will integrate regulatory networks with gene 
expression data. This will allow us to analyse the interactions between the regulatory factors 
and target genes using a logic operations based algorithm. We expect the results to highlight 
common behaviour patterns between various RFs as well as groups of genes under similar 
regulatory constraints. We aim to integrate this algorithm into a robust network analysis tool 
(see AIM 3) that will be available both as an online tool as well as a stand-alone application 
that can be downloaded and used on various input datasets. 

4.1.1 Logic Circuit Models in Biological Networks 
At a high level, the gene regulatory network can be regarded as an electronic circuit, with TFs 
and miRNAs acting as resistors and capacitors. Just as wiring different circuit elements can 
generate various electrical functions, connecting various regulatory factors as functional 
modules will result in different biological functions. Thus, in order to obtain a comprehensive 
map of gene regulation, it is necessary to go beyond identifying the wiring relationships 
among individual RFs. Here we propose to develop a method that will allow scientists to 
study RFs cooperative patterns, and the regulatory functional modules resulting from them. 

Our idea is based on the fact that in numerous cases gene regulation can be regarded as a 
logic process where RFs are the input variables while the target gene expression is the output 
\cite{12782112,19180174,14530388,21414487,22927416,23412653, 21885784}. In this 
respect, a common regulatory triplet, with two RFs regulating the same gene, can be formally 
described by a two-in-one-out logic gate. 

The three basic logic operations (AND, OR, and NOT) are just a small subset of the large 
variety of logic scenarios possible, combinatorial logics extending well beyond them 
\cite{14530388}. For example, for any two-in-one-out scenario, there are 16 possible logic 
gates. In order to capture all possible combinatorial cooperations between regulatory factors 
we need a comprehensive model. Previous studies took advantage of binarized regulatory 
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data provided by perturbation experiments (i.e. TF knock-outs) and used a Boolean model to 
capture this logic processing \cite{Somogyi}. However, previous efforts focused only on a 
small set of genes, missing the genome-wide identification and characterization of logic 
operations in gene regulation.  

Here we propose the development of a novel approach that will allow a comprehensive 
analysis of all possible regulatory logic operations from a genome-wide perspective. 

4.1.2 Development of the Logic Circuit Models Approach 
Our algorithm will be based on logic operations and will use data from regulatory networks 
(defined by regulatory factors and their target genes) and binarized gene expression datasets 
across multiple samples. The binarized gene expression data (on – 1 and off – 0) is the direct 
result of the network’s 
regulatory factors 
activity on the target 
genes. Since there are 
numerous methods that 
allow binarization of 
data, we aim to make 
our method compatible 
to any type of binarized 
input to meet the user’s 
interest. Next, the 
regulatory network is 
decomposed into 
regulatory modules 
formed by triplets 
consisting of 2 RFs and 
a common target gene 
T. The algorithm could 
be summarised into 
steps (Figure 3). 

• Step 1: Input gene 
regulatory network 
consisting of 
regulatory factors 
and their target 
genes; 

• Step 2: Identify all 
RF1-RF2-T triplets 
where RF1 and RF2 
co-regulate the 
target gene T; 

• Step 3: Given a 
particular triplet 
(RF1, RF2 and T) query the binarized gene expression data 

• Step 4: Match the triplet’s gene expressions against all possible two-in-one-out logic gates 
based on the binary values; 

• Step 5: Find the consistent logic gate(s) that best matches the expressions and calculate 
the consistency score. Test the score significance against random effects; 

• Repeat Step 3-5 for all triplets in the regulatory network. 

The main idea of this method is to describe each regulatory module (triplet) using a particular 
type of logic gate – i.e. the logic gate that matches best the binarized expression data for that 
triplet across all samples. If such a logic gate is found, we would claim that the regulatory 

Figure 3 Logic circuit based method workflow. 
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triplet is defined by a consistent logic gate. The statistical significance of the consistent logic 
gate selection will be tested by computing a consistency score (Figure 4) following the steps 
below: 

• Create the truth table. For each pair of regulatory factors three are four possible inputs 
(0,0), (0,1), (1,0) and (1,1). For each input there are two possible outcomes 0 or 1. All the 
possible combinations between the four inputs and the output create a truth table.  

• Given a RF1-RF2-T triplet, match output T (0 or 1) for each of four input combinations of 
RF1 and RF2, and find the logic gate(s) that describes best the truth tables. 

• Calculate the consistency score: For any triplet with m binary inputs and any gate g the 
gate consistency score of the triplet is, S(g)=(n1 +n2 +n3 +n4)/m, where ni as number of 
vectors matching one of the possible input/output combinations . 

Also in order to validate the consistent logic gate given a triplet of (RF1, RF2, T), we would 
have to calculate its significances over the 16 logic gates’ scores. For this we use the 
following hypothesis: we suppose that the triplet matches the kth logic gate, Gk. We replace 
the target gene, T by a randomly selected gene N times (N=1000), and calculate its 
significance score, as p(Gk)=(number of matched logic gate=Gk)/N. A high significance 
score would imply that random effects may cause the matched logic gate. We suggested to 
select the consistent logic gates within top 2% of consistency and significance scores. 

In the case where there 
is no consistent logic 
gate found, we would 
claim that the triplet is 
inconsistent with all 
logic gates. Such 
negative results would 
suggest that the activity 
relationship between the 
two RFs cannot be 
described by a standard 
logic operation. A 
possible biological  
explanations would be 
that the cooperative 
patterns of two RFs 
might follow a more 
complex mechanism, 
which can’t be simply 

modelled as Boolean logics. Another reason can be that the target gene is regulated by more 
than two RFs, thus a higher-order logic circuit model with multiple inputs (>2) would be 
required in order to capture the RF logics to the target. Finally, the target gene expression may 
also be impacted by stochastic signals, which can’t be described as deterministic models such 
as logic gates. 

All the triplets that can be described by logic gates can be further mapped onto other 
regulatory networks. As such the logic gates information would bring a new dimension to the 
interaction between regulatory elements and targets.  

4.1.3 Model Validation – Cooperative Behaviour For Yeast TFs 
As an initial application to test the effectiveness of the proposed method, we will use logic 
circuit models to study the cooperation between yeast TFs during cell cycle. In our 
preliminary study we were able to identify ~39k TF-TF-target triplets from 176 different TFs 
using TF-target assignments in \cite{15343339,19690563}. We aim to use our logic circuit 
based method to characterize the TF-TF-target logics during yeast cell cycle across 59 time 

Gene 20 samples

RF1=TF 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

RF2=TF 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T=Gene 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1

0

0

0 1

0

1

0 1

1

0

0 1

1

1

0 1

RF1

RF2

T

5             0 4            1 5            0 1            4

RF1=TF 1 0 0 1 1

RF2=TF 2 0 1 0 1

T=Gene 1 0 0 0 1

AND
TF1

TF2

Gene 1
Consistency score:

(5+4+5+4)/(5+4+5+4+1+1) =0.9
6LJQLÀFDQFH�VFRUH:

replace T by random gene 1000 times=0.01  
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points and identify all the consistent logic gates. The identification of the dominant 
consistent-gates gives clues about how the TFs are acting to regulate the expression of their 
target gene. For example, the “AND” triplets suggest that both TFs have to be present to 
activate the expression of their target gene. 

In order to validate the biological relevance of the TF co-opeartivity results we will leverage 
the vast amount of data available from yeast TF knockout experiments. The knockout 
experiments provide information regarding the fold changes in gene expression as a result of 
deleting a single TF \cite{17417638,20385592}. As such, if a target gene is regulated by two 
cooperative TFs in an “AND” relationship, deletion of either TF may corrupt the co-
operativity impacting the gene expression. Thus in order to validate our method we expect to 
see a direct correlation between triplets with high significant scores at “AND” gate and 
experimentally determined negative expression fold changes. On the other hand for non-
cooperative TFs such as “T=RF1” or “T=RF2” gates, where one TF (dominant) solely 
controls the target gene expression, we would expect a to find supporting evidence suggesting 
that deletion of the dominant TF has a grater effect on the gene expression than the removal 
of the non-dominant TF. 

4.2 AIM 2: Inferring Phenotypic Functions Through Network Mining 
(Using Graph Models and Latent Variables) 

[[AP: I NEED TO WRITE A COUPLE OF SECTIONS IN THE BACKGROUND, to which I refer to here. These will describe 
the experimental data available and the phenotype ontologies we will use. But first we need to decide on the organisms.]]  
The vast array of available data brings a fresh perspective in the area of gene function 
prediction, offering clues about gene-phenotype associations. Integrating various datasets 
(from wet-lab experiments \cite{toADD} to phenotype ontologies \cite{toADD}) we believe 
that we can make statistically significant large-scale phenotypical inferences.  

The data available for phenotypic function prediction can be divided into two categories. 
While some types of data translate directly into a probability of a given phenotype, other 
types of data describe instead a “relatedness” in the phenotypes associated to two genes in the 
same genome. For example, detecting a phenolog provides a probability P that a gene has 
phenotype F. On the other hand, finding a certain correlation between the profiles of the 
expression of genes X and Y gives a certain probability Q that the two genes have related 
phenotypes. We shall refer to these two types of data as “unary relations” and “binary 
relations” respectively (see Table 1). 
Table 1. Phenotypic function prediction input data types. 

Binary relations have a natural 
representation as graphs. Recently there has 
been a lot of interest in the machine 
learning community on methods for making 
inferences on graphs. We propose to 
leverage the on these ideas and develop 
theoretical graph-based methods for large-
scale phenotypical inference. The approach 

makes use of the phenotypical label associated with some genes to infer phenotypes of 
uncharacterized ones (semi-supervised learning).  

In a typical situation, for a given genome there will be genes which have already been 
associated with a given phenotype, and genes whose associated phenotype is still unknown. 
We begin by constructing graphs, in which the nodes represent the genes and each edge 
represents a (binary) relation between the two genes it connects, e.g. co-expression. Each 
edge is labelled with a value that quantifies the relation it represents (e.g. their level of co-
expression); similarly each node is labelled with their known phenotypical assignment or 
“NA” otherwise.  

The two different types of relations described above will be treated differently for inference: 
binary relations will allow the characterization of the unknown genes by diffusing the 

Data Type Example 

UNARY RELATIONS Experimental evidence 
Phenolog (homology) 

BINARY RELATIONS 

Gene expression 
Protein expression 
Protein-protein interaction 
Genetic interaction 
Pathway information 
Linkage maps ?  
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information of the labelled nodes over the graph, through the links; while unary relations will 
be thought of as representing a “tendency” (or a prior probability) of a gene to be associated 
with a given phenotype. 

We shall now give an intuition of how the diffusion process will work. Let us think of the 
graph as having a physical implementation as a network of water wheels connected by 
underground pipes in which water flows: for each node (gene) we have a wheel, and for each 
edge (binary relation) we have a pipe connecting the corresponding wheels. The pipes have 
different sizes according to the edge label, thus allowing different amounts of water to flow 
through them, depending on the strength of the relation. Each different phenotypical 
assignment of genes in the dataset is represented by a salt of a specific colour. When a salt is 
dropped in a wheel, it colours the water in it, and we shall assume that waters of different 
colour don’t mix. The diffusion process consists in dropping the coloured salt of each known 
gene in its corresponding wheel, and then letting the coloured water be transported by the 
pipes. No salt is dropped in the wheels corresponding to the uncharacterized gene. However, 
the water in these wheels will also eventually become coloured due to the coloured waters 
coming from the pipes. After the coloured waters have been allowed to circulate in the pipes 
for some time, the amounts of different coloured waters arriving at such unlabelled wheels 
will provide the basis for a probabilistic distribution of assignments over the phenotypical 
classes for the corresponding uncharacterized genes. It is important to notice that the whole 
process can naturally take into account genes having multiple phenotypes, as salts of different 
colours can be poured into the same wheel. 

In summary, the diffusion of information over graphs offers a natural framework for 
integrating datasets which are themselves graphs. This process produces evidence for 
phenotypical assignments which can then be integrated with the evidence coming from the 
unary relations using a statistical method, such as for example a Bayesian model. The strength 
of the methodology proposed here lies in its ability to use diverse sets of noisy data, and to 
combine them to obtain sound statistical inferences of gene phenotypes; the weak signals 
contained in each dataset is enhanced by integrating the data. 

4.2.1 Algorithm Development 
The phenotype inference method will contain several parameters that will be learned from the 
data. Here we assume that, for a given genome, this will be done by applying various machine 
learning techniques (as described below) to subsets of genes for which the phenotypic 
assignment is known (training sets). The method development will have to solve two main 
issues: (i) how to integrate information coming from different experimental sources; and (ii) 
how to properly diffuse the information over the graphs. The study of solutions for these two 
problems will constitute most of the algorithmic research of AIM 2. In the remaining of this 
section we shall analyze each one in turn, proposing some possible ideas for their solution. 

Integration of Information from Different Experimental Sources 
As anticipated earlier, a possible method for integrating the various types of information is 
using a statistical Bayesian model. Using the Naïve Bayes assumption, we can rewrite the 
likelihood of the combined vector of evidences given the phenotype as a product of each 
evidence given the phenotype. That is, the posterior probability distribution of the phenotypic 
assignment given the evidence, P(Fi | E1…En), is defined as: 
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where (E1 … En) is the combined vector of n different evidences or features (Ej), and Fi 
represents the i-th phenotypical assignment. Here, each Ej represents evidence coming either 
from a unary relation (e.g. a phenolog) or a binary relation (e.g. co-expression). Since unary 
and binary relations must be treated differently, their likelihood model P(Ej|Fi) will be built in 
a different way from the training set.  
For unary relations, the likelihood models, P(Ej|Fi), can be approximated directly by using 
maximum likelihood estimates, that is by using the frequencies of the features in the training 
set (or alternatively using more robust “smoothed” estimates). In other words, for each value 
of a given feature, we calculate the ratio of how many times the genes with phenotype i have 
that value of the feature to the total number of genes with that phenotype (in case of 
continuous features, these must first be discretized). 

In order to estimate a likelihood model for a given binary relation we first need to build a 
graph, and then we need to run the diffusion process (described in the next sub-section). The 
graph will be fully connected and will have a node for each gene. The values for the edges 
controlling the diffusion process would be a non-linear mapping of the experimental data 
which would be learned1 from the training set using, for example, Support Vector Machines. 
Thus, for each binary relation there would be a different graph and the diffusion process 
would be carried out separately. The result of each diffusion process, corresponding to the 
amount of different phenotypic labels, will constitute the feature for that binary relation. The 
likelihood models for the binary relations will be approximated by the frequencies of these 
features in the training set. The prior probabilities of phenotypic assignment, P(Fi), will also 
be approximated by the relative numerosity of the different phenotypic classes in the training 
set. Thus having obtained likelihood models for both unary and binary relations and estimates 
for the priors, we can obtain a phenotypical assignment by computing the numerator of the 
above equation (notice that the denominator is independent on the phenotypical class). 

Finally we note that together with the overall prediction made by the integrated system, the 
biologists will also have access to the separate predictions coming from the different 
experimental datasets. In other words, the user would have the possibility of knowing what 
data supports the phenotypical assignment, e.g. evidence coming from co-expression data or 
from phenologs. This type of “explanation” can be very important for the biologists when 
reasoning about the prediction given by the system. Also, the Bayesian model outlined here is 
not the only possible way for integrating the information coming from the different types of 
data. Data from unary relations can be included directly, while for each binary relation we 
would go through the additional step of the diffusion process. However, once the diffusion 
process has generated a feature for a binary relation, then all the features can be collected into 
a vector and a unique probability distribution of phenotypical assignments can be obtained as 
a non-linear mapping of this vector. Such non-linear mapping would also be learned from a 
well characterized training set. Here we have outlined a Bayesian model as a possible method 
for learning this non-linear mapping, but various other machine learning techniques will be 
tested in order to choose the best solution.  

The Diffusion of Experimental Information for Phenotypical Assignments  

We have already formalized several different approaches that can be used to diffuse the 
phenotypic label information over the graphs. Here we describe three promising methods that 
will probably be considered during the project: 

● The first approach consists in simply diffusing the phenotypical labels by simulating 
Markov random walks on the graph. Given a graph, we can derive the Markov transition 
matrix that controls the Markov diffusion process, and used it to diffuse the normalized 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This technique for building the graph is similar to the method that we have already successfully applied to obtain 
a unique protein-protein interaction network from several independent protein-protein interaction datasets obtained 
using different experimental techniques in Yeast (33). 
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vectors of known phenotypic assignments over the graph. Using similar approaches, 
Paccanaro has recently obtained excellent results clustering protein sequences (41). 

● Another approach consists in projecting the nodes of the graph onto points in a (low 
dimensional) space in such a way that the distance between any two points is related to how 
well connected the two nodes are in the original graph. In other words, we project the nodes 
in such a way that for any two nodes, the higher the number of short paths existing between 
them in the original graph, the smaller their distance in the projected space (here the length of 
a path in a graph is defined as the sum of the values that label the edges along the path). Once 
the genes have been projected into this space, we need to discriminate between the distinct 
phenotypical classes. This could be done by learning an appropriate discriminative function 
using some training data; or by learning a separate probabilistic model for the points in each 
phenotypical category. 

This type of projection, sometimes called Diffusion Maps, has been recently successfully 
applied to solve problems from Computer Vision: lip-reading and image-sequence alignment 
(42). We have used these ideas with very good results for predicting protein-protein 
interactions using the topological properties of networks of interactions observed 
experimentally (43). 

● Finally a third approach is to map the problem of phenotypical assignment onto that of 
learning a particular classification on a Riemannian manifold. This approach has been shown 
to be very successful in a variety of classification problems, in the context of semi-supervised 
learning, by Belkin et al (44). The authors modelled the manifold where the data lies as a 
weighted graph G. Next, they showed that any function on G can be decomposed as a 
weighted sum of eigenfunctions of the graph Laplacian L, and they learned such coefficients 
from the training data. For the problem of phenotypical assignment, data from binary 
relations are already in the form of graphs, and therefore we need to learn the values for the 
weights for the eigenfunctions of the graph Laplacian. This can be seen as another way to 
diffuse information, as the Laplacian matrix is related to the Markov random walk (41). 

4.2.2 Method Validation 
As a proof of principle, we shall validate our algorithm taking advantage of the vast amount 
of data available for S. cerevisiae. Various solutions for diffusing information over graphs 
and integrating it with information from unary relations will be investigated. Several 
prototypes will be implemented using MATLAB, a numerical computing environment and 
high level programming language. These prototypes will be trained, i.e. some of their 
parameters will be fine tuned using a machine learning procedure as described above. The 
performance of the algorithms will then be evaluated “in silico” by means of test sets (by 
“cross-validation”). 

Next we shall then assess the performance of our algorithms when they are applied to 
different organisms such as C. elegans, D. melanogaster, A. thaliana, and H. sapiens. The 
phenotype of each organism will be defined by its respective phenotype ontology. 

4.3 AIM 3: Optimizing Phenotypic Function Prediction Using Logic 
Circuit Models on Biological Networks 

We will integrate the results of AIM 1 and AIM 2 in order to improve the phenotypic function 
predictions. To do this, phenotypic prediction from AIM 2 will be refined by leveraging on 
the objective classification of genes based on regulatory logic gate preferences resulted from 
AIM 1. For this we need to define two entities: (i) phenotypic distance and (ii) coherent logic 
gene modules. 

4.3.1 Computing the Phenotypic Distance 
Our earlier result on disease phenotypes (see earlier section) proves that that textual 
descriptions of phenotypes combined with well-structured vocabularies from ontologies can 
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be extremely effective for the characterization of phenotypes. Here, we shall build upon this 
important result in order to characterize and quantify the similarity between any phenotype in 
a given organism. 

To do this, given a phenotype ontology, for each term, we shall begin by extracting its textual 
description. This will be followed by a text mining analysis in which we shall apply standard 
pre-processing techniques (stemming, stop word removal, etc) in order to get a list of terms 
from MESH ontologies (here we shall use only MESH ontologies which are appropriate for 
this case, such as, for example, “chemicals and drugs”). In this way a given phenotype will be 
represented by a set of MESH terms. A distance between two given phenotypes can then be 
calculated as a semantic distance on the MESH ontology between the sets of terms describing 
them. A possible variation of this approach that we will test will consist in learning a 
weighting for the different MESH terms. This will allow us to discount for often used and 
thus non-informative terms. 

4.3.2 Gene Logic Modules Classification 
Using Lorergic we are able to characterize all regulatory network triplets (formed of two 
regulators and one target gene) using one of the sixteen logic gates. As a result we are able to 
classify different genes based on their logic gate preferences. We distinguish sixteen gene and 
regulators clusters based on the number of consistent logic gates that define the particular 
gene independent of regulators. The genes can also be divided based on the various types of 
logic gates that define the regulatory triplet.  We define a logic gene module as a group of 
genes that share the same principal regulatory logic. The genes that cannot be assigned any 
consistent regulatory logic are grouped into a non-coherent logic module. 

4.3.3 Phenotypic Function Prediction Optimization 
In order to optimize the phenotype function prediction we start with the assumption that all 
genes sharing the same logic module will have similar phenotypes. The optimization 
workflow can be summarized in the following steps: 

• Step 1: Assign all genes into logic modules as defined above (see 4.3.2). 
• Step 2: Assign all genes a phenotype function using the network mining algorithm as 

described in AIM 2 and subdivide the logic modules into phenotypic. 
• Step 3: Using logic modules as gold standard subdivide them into phenotypic modules 

grouping together genes with similar phenotypes.  
• Step 4: Calculate the phenotypic distance between all the phenotype groups in the logic 

modules. 
• Step 5: Define a maximum phenotypic distance threshold e.g. genes in the same logic 

module should not have phenotypes with distances larger than the selected threshold. 
• Step 6: Extract all genes from all logic modules that do not pass the phenotypic distance 

threshold and re-cluster them based on their shared phenotypes. 
• Step 7: Using phenotypic modules as gold standard divide these genes into submodules 

maximizing the identity between their logic gate preferences.  
• Step 8: Extract all the genes that do not share logic gate preferences from each phenotypic 

module and re cluster them based on their preferred logic. 
• Step 9: Repeat Steps 3-8 until all the genes have been assigned to coherent logic and 

phenotypic modules.  

This workflow leverages on the fact that each genes can be characterized by a variety of 
regulatory logic gates as well as numerous phenotypes. In majority of cases a dominant logic 
or phenotypic function can be defined. However, sometimes, the available data is not 
adequate enough to accurately describe the gene function, thus using a circular feedback loop 
approach we are able to predict the potential gene function.   

We also plan to expand the function prediction to a higher order level using the information 
provided by the logic circuit based method. As such a cluster of genes defined by the same 
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logic model would be assigned a phenotypic pattern leveraging the known phenotypes of the 
genes in the cluster. As such, when a new set of genes of unknown phenotype, are defined by 
the same logic model, their phenotype would be inferred based on the logic group they 
correspond to.  

4.3.4 Algorithm Implementation 
An important effort in this project will be devoted to the design and the implementation of 
software tools for network analysis using logic operations, and phenotype prediction. These 
tools will incorporate all the algorithms developed as described in AIMs 1 and 2. These tools 
will be made freely available to the scientific community. There will be two versions: a suite 
of stand-alone applications and a web-based tool. 

Stand-alone Applications. The suite of stand-alone applications will enable the biologists to 
easily apply the algorithms through a user-friendly interface. These will be available for 
various operating system. Using these tools, the biologists will provide a list of genes, as well 
as sets of large scale experimental data for a certain organism. Using the data provided, the 
system will compute a predicted phenotype for each gene in the list.  Also the users will have 
the options to analyse their input regulatory networks using logic circuit models and build 
clusters of genes sharing similar logic gates. 

These tools will also be integrated into Cytoscape (http://www.cytoscape.org), as Java plug-
ins. This will allow the user to visualize relevant graphs. Such visualization will make the 
diffusion process transparent to the user, providing an explanation and a better understanding 
of predictions. 

Web-based Tool. A web-based tool will also be created. Using this tool the biologist will 
access a web interface where one can upload a list of genes and regulatory networks. The 
system will then report the phenotypes predicted for those genes, together with the evidence 
supporting the prediction, as well as depict clusters of genes that share regulatory patterns, e.g 
are regulate through similar logic operations.  

We expect that these software tools will have an important impact in the field and that they 
will become a very useful resource for the scientific community.	  
Sustainability. The sustainability of the developed resources is very much contingent on the 
hardware and servers on which they are stored and run. The existing infrastructure at Yale 
and Royal Holloway has served investigators well, but we aim to improve the current setup 
by making it reliable and robust for supporting all the proposed tools, as well as more 
accessible to the scientific community. To this end, we intend to make use of new 
technologies such as web services and cloud computing. Specifically, we intend to use 
Amazon Web Services (AWS) for distributing most of developed tools, and intend to make 
use of the Amazon Elastic Compute Cloud EC2 (processing) and S3 (storage). 

Here, we summarize the various distinct components the function predictions tools, along 
with the means by which we intend to disseminate each: 

• Source code, as used in constructing the various software components will be made 
available from open access repositories, such as sourceforge, github, and/or google code.  

• Web-services (logic-circuit & phenotype prediction tools): each of the different servers 
would be encapsulated and made available as a virtual machines (see below for a 
description and the advantages of virtual machines), which may be downloaded from our 
servers, and then stored locally by the user. All the virtual machines will also be uploaded 
on the EC2 for easy access. 
 

5. Broader Impacts  
5.1 Integration of Research into Education  
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We propose to integrate the above described research activities into graduate and 
undergraduate education.  
Mark Gerstein is the Co-Director of the Computational Biology and Bioinformatics (CBB) 
PhD program (cbb.yale.edu) at Yale University, and he has been designing and teaching 
graduate courses in bioinformatics, genomics, and data mining for almost 20 years. These 
activities could easily be translated into class projects, which may help recruit undergraduates 
into Yale labs. In addition, we focus on students of underrepresented groups through a Yale 
program called “Science, Technology and Research Scholars” or STARS 
(science.yalecollege.yale.edu/stars-home), which includes Computer Science, Bioinformatics, 
and Genomics components. 
All the tools developed for gene function prediction will be integrated into 
Computational Biology and Bioinformatics 752 (Bioinformatics: Practical Application of 
Simulation and Data Mining), a course directed by Dr Gerstein, and taught to 
undergraduates and graduate students. The course is an introduction to the computational 
approaches used for addressing questions in genomics and structural biology. The function 
component of the course can be substantially improved by introducing the students to 
innovative tools to predict gene function using a variety of data. This resource represents the 
integration of many facets of bioinformatics, including functional data, biological network 
analysis, programming, as well as sets of algorithms applied to address questions about gene 
function discovery. It will also be integrated into final year projects, and as part of these 
projects, students will develop online libraries for gene function. The students will also have 
the opportunity to exchange ideas and expand their networking skills by attending the invited 
lectures and seminars that will be offered by Dr Paccanaro during his work visits at Yale. 

5.2 Workshops and Webinars: From Our Computers to Everyone’s  
As a “tool just as useful the consumer's ability to effectively use it” we plan to reach out to 
the scientific community and popularize our newly developed methods using reach media 
interactions such as webinars and hands-on workshops. Also we aim to present the function 
prediction methods and network analysis algorithm at scientific conferences as well as “Open 
Day” events.  

As part of numerous consortia (e.g. Kbase, exRNA, 1000 Genomes, ENCODE), Dr Gerstein 
will also have the opportunity to disseminate the research findings and present, popularize 
and make available the developed tools to all his consortia colleagues and collaborators.   

6. Project Management Plan  
The research will be conducted by graduate students and early career personnel under the 
supervision of Dr Mark Gerstein (US NSF PI) at Yale University, and Dr Alberto Paccanaro 
at Royal Holloway University of London (UK BBSRC PI).  

In leading this collaborative project, we will draw on considerable experience we have had 
with other integrative collabroative projects. In particular, Dr Gerstein has been an integral 
part of the ENCODE Project as well as the modENCODE Project since its inception. Within 
these he has had a number of leadership roles, as he has co-directed the Networks/Elements 
Group. He has co-led high profile papers focusing on networks and was the leader of the 
numerous collaborative papers.  

This project will integrate the biological networks expertise of Dr Gerstein with the of 
software development expertise of Dr Paccanaro and thus will bring a fresh new perspective 
to protein function prediction. Dr Gerstein and Dr Paccanaro have been collaborating for over 
ten years on many network-based approaches for problems in biology. To some degree the 
collaboration between the two labs will be cemented through knowledge exchange and work 
visits. As such Dr Sisu (Yale) will have a visiting scientist appointment in Dr Paccanaro’s lab 
and will work closely with his team to integrate the network analysis tool with phenotype 
predictions. Dr Sisu will also be the project manager and will be the contact person between 
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the two labs. Also Dr Paccanaro will visit the Gerstein Lab and contribute invited lectures to 
the computational biology and bioinformatics course led by Dr Gerstein.  

Dr Gerstein will be responsible for the coordination, designing and development of tools 
associated with AIM 1 created by Dr Sisu and Dr Wang at Yale. Dr Paccanaro will be 
involved in the design and development of phenotype prediction tools associated with AIM 2. 
While these two aims are lead mostly by each lab independently, both groups will collaborate 
towards their completion. As such, Paccanaro group will help with model development and 
implementation for AIM 1, while Gerstein group will help with assessment of data quality, 
standardization and biological interpretation of AIM 2 results. The two groups will work 
closely together to facilitate the implementation of AIM 3.  

The overall progress of the project is summarized in yearly milestones. As such, during the 
first and a half years of the project, the Gerstein lab work will be devoted to the development 
of logic circuit models for network analysis (AIM 1). Dr Paccanaro will provide technical 
support for the correct implementation and optimization of the algorithm. The successful 
development of this method will be assessed by a pilot study on yeast regulatory network. In 
the same time, the Paccanaro’s lab will focus on developing machine learning methods for 
phenotype function predictions (AIM 2). Similarly Dr Gerstein lab will provide scientific 
feedback and validation of the prediction results. The rest of the second year will be focused 
on developing of a robust and friendly interface for the network analysis and function 
prediction tools, their deployment on host websites and open access repositories. The final 
year will be used for the implementation AIM 3. This year will also be dedicated to 
publishing collaborative papers describing the newly developed tools as well as the scientific 
advances resulted from their use.  

The two groups will also coordinate the analysis and writing of collaborative  manuscripts. To 
achieve this, we plan to implement regular conference calls between the two groups, but also 
open them to the larger networks and protein function community.  

We will also take advantage of the plethora of tools available to facilitate collaboration. To 
this end the software development between the two labs will be hosted on a communal 
subversion system, git-hub. In order to guaranty a high standard of our tool, we will employ 
regular code reviews. Similarly we will use google drive and online whiteboard tools on a 
regular basis to enhance the sharing of ideas between the two groups. 

We will also work closely with other investigators from UK and US to identify additional 
regulatory networks datasets for integrative analysis, and coordinate the sharing of 
information with the larger biological research community. On a regular basis, the project 
results will be disseminated to a broad audience (from senior researchers to middle and high 
school teachers) through conferences, public workshops and webinars.  


