
AIM 2
 (NOTE: I NEED TO WRITE A COUPLE OF SECTIONS IN THE BACKGROUND, to which I refer to here. These will describe the experimental data available and the phenotype ontologies we will use. But first we need to decide on the organisms.) 
As we have seen earlier large amounts of data are now available, which offer clues about the phenotypes associated with different genes. We believe that statistically sound large-scale phenotypical inference can be obtained by integrating these different sources of evidence. 
The idea for our approach comes from the realization that the data available for phenotypic prediction can be logically divided into two categories. In fact, while some type of data translate directly into a probability of a given phenotype, other types of data describe instead a relatedness in the phenotype associated to two genes in the same genome. For example, detecting a phenolog provides a probability P that a gene has phenotype F. On the other hand, finding a certain correlation between the profiles of the expression of genes X and Y gives a certain probability Q that the two genes have related phenotype. These two types of data, to which we shall refer (with a slight abuse of mathematical terminology) as “unary relations” and “binary relations” respectively, are summarized in the following tables
.
	UNARY RELATIONS
	
	BINARY RELATIONS

	Experimental evidence
	
	Gene expression

	Phenolog (homology)
	
	Protein expression

	
	
	Protein-protein interaction

	
	
	Genetic interaction

	
	
	Pathway information

	
	
	Linkage maps ? (should we use them?)


Note that a binary relation has a natural representation as a graph. There has been recently a lot of interest in the machine learning community on methods for inferring graphs and relations on graphs. Our proposal is to build on some of these recent results and develop graph-theoretical methods for large scale phenotypical inference. The approach makes use of the phenotypical label associated with some genes to infer the phenotypes for the uncharacterized ones (semi-supervised learning). 
In a typical situation, for a given genome there will be genes which have already been associated with a given phenotype, and genes whose associated phenotype is still unknown. We begin by constructing graphs, in which the nodes represent the genes and each edge represents a (binary) relation between the two genes it connects, e.g. co-expression. Both edges and nodes are labelled: edges are labelled with a value that quantifies the relation they represent (e.g. their level of co-expression); nodes are labelled with their phenotypical assignment when it is known, or as “unknown” otherwise. 
In our approach, the two different types of relations described above will be treated differently for inference: binary relations will allow the characterization of the unknown genes by diffusing the information of the labelled nodes over the graph, through the links; unary relations can instead be thought of as representing a “tendency” (or a prior probability) of a gene to be associated with a given phenotype.
I shall now give an intuition of how the diffusion process will work. Let us think of the graph as having a physical implementation as a network of water wheels connected by underground pipes in which water flows: for each node (gene) we have a wheel, and for each edge (binary relation) we have a pipe connecting the corresponding wheels. The pipes have different sizes according to the edge label, thus allowing different amounts of water to flow through them, depending on the strength of the relation. Each different phenotypical assignment of genes in the dataset is represented by a salt of a specific colour. When a salt is dropped in a wheel, it colours the water in it, and we shall assume that waters of different colour don’t mix. The diffusion process consists in dropping the coloured salt of each known gene in its corresponding wheel, and then letting the coloured water be transported by the pipes. No salt is dropped in the wheels corresponding to the uncharacterized gene. However, the water in these wheels will also eventually become coloured due to the coloured waters coming from the pipes. After the coloured waters have been allowed to circulate in the pipes for some time, the amounts of different coloured waters arriving at such unlabelled wheels will provide the basis for a probabilistic distribution of assignments over the phenotypical classes for the corresponding uncharacterized genes. It is important to notice that the whole process can naturally take into account genes having multiple phenotypes, as salts of different colours can be poured into the same wheel.
In summary: the diffusion of information over graphs offers a natural framework for integrating datasets which are themselves graphs. This process produces evidence for phenotypical assignments which can then be integrated with the evidence coming from the unary relations using a statistical method, such as for example a Bayesian model. The strength of the methodology proposed here lies in its ability to use diverse sets of noisy data, and to combine them to obtain sound statistical inferences of gene phenotypes; the weak signals contained in each dataset is enhanced by integrating the data.

�Here we need to see which data is available and is appropriate for the organisms we want to work on.
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