RESPONSE LETTER

Reviewer 1:

-- Ref1.1 - Figure clarification --

Reviewer	As such, Figure 1 has some weaknesses, which should be
Comment	addressed. SMAP consists of two modules - creation of
	data context for variants and a variant prioritization
	pipeline. Please clarify the role of the weighted
	scoring scheme in the creation of the "Data Context", as
	well as the type of information associated with it.
	Indicate what the dashed horizontal line corresponds to.
Author	We thank the referee for the comment. We have modified figure
Response	legends to incorporate more details and added a new Figure 2
	to illustrate the weighted scoring scheme. The dashed rectangle
	in Figure 1 shows how the data context is created. Variant
	prioritization pipeline will take user-input variants and score
	them using the weighted scoring scheme. Features used in the
	scoring scheme are shown in Figure 2.
Excerpt From	Please see Figure 1 & 2 and corresponding legends. Here is the
Revised	excerpt from the legend of Figure 1.
Manuscript	
	"SMAP consists of two modules: creation of data context and variant prioritization.
	We processed large-scale genomics (such as 1000 Genomes and ENCODE data) and
	cancer resources to create the small-scale informative data context, as shown within
	the dashed rectangle. The variant prioritization pipeline will take user-input cancer
	variants and then annotate and score them against the data context. All features are
	used to annotate variants (shown in Table S2), whereas a fraction of features
	highlighted with red asterisk are used to score variants (details in Figure 2 and Table
	S3) with the weighted scoring scheme (shown in the 'variant prioritization'; details
	described in the main text). 'Process' contains scripts to analyze data, which can be
	downloaded from our website."

-- Ref1.2 - Background section--

Reviewer	The second and third paragraphs of Background should be									
Comment	reworded in places; in particular, the sentences									
	beginning with "A number of tools" and "These include".									
	The sentence beginning with "To explore the functional									
	impact" seems to conflict the methods of analysis with									
	their results and should be clarified.									
Author	We thank the referee for the suggestion. We have modified the									
Response	background section to make it clearer.									
Excerpt From	Please refer to 'Background' section.									
Revised										
Manuscript	" Studies have shown that disease-associated single nucleotide polymorphisms (SNPs) identified by Genome-wide Association Studies (GWAS) are significantly									
	enriched in ENCODE regions. A number of tools have been developed using these									
	data to annotate potential regulatory variants or to suggest most likely causal									
	variants in linkage disequilibrium with GWAS SNPs, such as Haploreg,									
	RegulomeDB, ANNOVAR, GEMINI, FunciSNP and VEP"									

YAO FU 7/26/14 1:58 PM

Deleted: suggestions

YAO FU 7/26/14 2:01 PM

Deleted: We have modified Figure 1 and its legend to incorporate details of the figure and the scoring scheme. The dashed rectangle shows the data context, which combines large-scale genomics and cancer resources. Prioritization pipeline is a collection of scripts that use the data context to calculate motif-breaking and motif-gaining, recurrence among samples and to annotate and score (with the weighted scoring scheme) variants. The weighted scoring scheme is a prioritization step using the data context. Features used in the scoring scheme are highlighted with "", which consist features directly from data context (e.g. in functional annotations) and also output features from prioritization pipeline, such as motif-gaining scores (detailed features are listed in Figure 2).

"Key features of our method include - 1) we integrated functional annotations to
identify potential regulatory variants and predicted nucleotide-level loss-of and gain-
of function events; 2) we examined whether variants occurred in noncoding regions
that are less likely to tolerant mutations through analyzing both evolutionary and
human population-level conservation; "

YAO FU 7/27/14 3:44 PM

Deleted:

YAO FU 7/27/14 3:43 PM

Deleted: To explore the functional impact of regulatory variants, 1) we examined whether variants occurred in noncoding regions that are less likely to tolerant mutations through analyzing both evolutionary and human population-level conservation; 2) our method predicted nucleotide-level loss-of and gain-of function events:

Reviewer 2:

-- Ref2.1 - General comments--

Reviewer	It is important to mention that this work builds up from									
Comment	a previous work by the authors (Khurana et al., Science 2013) in which the some of the ideas in the manuscript									
	were already described. In this manuscript further									
	details and novel elements are introduced to the									
	prioritization system and the code and a web service of									
	the framework is provided. The framework presented here									
	(SMAP) represents a substantial evolution from the									
	prioritization approach presented in the Science paper									
	(FunSeq)									
Author	We thank the referee for providing us these invaluable									
Response	comments. In the revision, we provided more details and									
	performed additional analysis as suggested.									
Excerpt From	Please see the 'Background' section in main text.									
Revised										
Manuscript	"Through analyzing the variation patterns of inherited polymorphisms, we have published a prototype approach (FunSeq) to identify potential noncoding drivers.									
	Here, we report a more elaborate and flexible framework - SMAP, built up from the previous work, to annotate and prioritize somatic alterations integrating various resources from genomic and cancer studies"									

-- Ref2.2 - Clarify the features --

Reviewer	From one side it annotates with multiple features the									
Comment	variants, and next, some of the features are used to									
	construct a prioritization score. However through the text									
	and also in figure 1 it is not completely clear what									
	features are used to obtain the prioritization score, and									
	which are just used to annotate the variant in the final									
	output to the user (variant reports). It would be helpful									
	if authors make this clearer in the text and Figure 1.									
Author	We thank the referee for pointing this out. We have added a									
Response	new Figure 2 to clarify how features are used to score and									

YAO FU 7/27/14 3:48 PM

Deleted:

YAO FU 7/26/14 2:16 PM

Deleted: made changes to YAO FU 7/26/14 2:16 PM

Deleted:

	annotate variants. We also restructured the main text to first	
	describe features used in the weighted scoring scheme and	
	then talk about additional features. Features used to score and	
	annotate variants are further Jisted in Figure 3 and Table S2,	
	respectively	
Excerpt From	Please refer to Figure 1 & 2 and Table S2 & S3.	
Revised		
Manuscript		

-- Ref2.3 - Knowledge of genes --

Reviewer Comment	For instance, it is not clear to me how the "differentially gene expression analysis" module is used within the framework. Is this information used in any way to obtain the prioritization score of the variant? If not, how it is used? Similarly, how the prior knowledge of genes is used? I assume that it is not used in any way for the prioritization score, and it is only used to annotate the "gene info" column in the output? Is this the case?
Author Response	For 'differential gene expression analysis', we test for differentially expressed genes from RNA-Seq and then use those genes to annotate coding and non-coding variants associated with them. In the scoring scheme, we don't add additional scores for those variants, considering user-input samples are not always coupled with RNA-Seq data. But this, information does help to further prioritize variants and we
	highlight those variants in the output. The prior knowledge of genes is used in the similar way as differentially expressed genes. We made this clearer by showing that these features are used as additional features to highlight variants.
Excerpt From Revised Manuscript	Please refer to Figure 1 & 2 and Table S2 & S3. In main text, we added section - 'Highlighting variants using prior knowledge of
wanuscript	genes and user annotations Interpretation of the functional impact of noncoding variant can be greatly enhanced if the function of its target protein-coding gene is known. Many cancer genes are known to play a crucial role in cell proliferation and DNA repair. We incorporated prior knowledge of genes, such as known cancer-driver genes

-- Ref2.4 - Mention regulatory mutations --

Reviewer	In the title and through the text authors talk about
Comment	noncoding somatic variants, however most of the features they compute are specific for regulatory noncoding variants, and this is what this framework is able to prioritize. There are other types of noncoding variants different to regulatory variants, such as those in noncoding RNA genes, which would not be well prioritized by SMAP as they will have missing values in several features. If authors agree with this point they should
	clarify in the title, abstract and through the
	manuscript that SMAP is a framework to prioritize

YAO FU 7/26/14 2:16 PM

Deleted: in the manuscript, Figure 1 and

YAO FU 7/27/14 3:47 PM

Deleted: .

YAO FU 7/27/14 3:45 PM

Deleted: shown in Figure 2 and

YAO FU 7/27/14 3:45 PM

Deleted: Table S3

YAO FU 7/27/14 3:48 PM **Deleted:** . We also added Table S2 to show all the features used to annotate

Deleted: In main text, 'Weighted scoring

scheme'

YAO FU 7/26/14 2:23 PM

Deleted: didn't

YAO FU 7/27/14 3:52 PM

Deleted: DNA-seq YAO FU 7/26/14 2:22

Deleted: ose

YAO FU 7/25/14 1:20 PM

Deleted: file 'Candidates.Summary'

YAO FU 7/26/14 2:25 PM

Formatted: Font:10 pt YAO FU 7/26/14 2:26 PN

Formatted: Font:12 pt, Not Bold

Formatted: Font:10 pt

YAO FU 7/26/14 2:25 PI

Formatted: Font:10 pt

YAO FU 7/26/14 2:24 PM

Deleted: Weighted scoring scheme'[2]

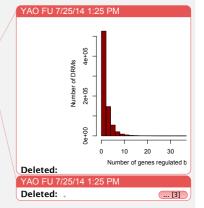
YAO FU 7/26/14 2:25 PM

Formatted: Font:10 pt

	regulatory noncoding somatic variants.
Author	We agree with the reviewer's comment. The majority of our
Response	features focus on regulatory mutations. We have modified the
	text as suggested.
Excerpt From	Please see the title, abstract and main text.
Revised	
Manuscript	"A flexible framework to annotate and prioritize regulatory somatic variants
1	from cancer whole-genome sequencing"
	"We have developed a method integrating various genomic and cancer resources to prioritize cancer somatic variants, especially regulatory noncoding mutations"

-- Ref2.5 - Missing features --

Reviewer	Related to that I also have a question regarding missing							
Comment	features. How they are treated? I assume that if a							
	variant do not have any information on one of the							
	features (eg. Motif-breaking or gaining score) it does							
	not sum up anything in the final score, does it? This							
	could be clearly stated in Formula 3.							
Author	The referee is right. If a variant does not have a particular							
Response	feature, there is nothing added-up in the final score. We clarify							
	this in Formula 3.							
Excerpt From	Please see the Methods, 'Weighted scoring scheme'.							
Revised								
Manuscript	"If a particular feature is not observed, it is not used in the scoring."							


-- Ref2.6 - Distribution of distal linkages--

Reviewer Comment	Authors give the number of distal regulatory elements (~769K) and the number of associated genes (~17K), but it would help to also know the total number of
	interactions and the distribution of interactions per gene and per distal regulatory element so to have an idea of how many interactions are observed per gene and regulatory element.
Author Response	We thank the referee for this suggestion. We incorporated the numbers in the Methods section and showed the distributions in Figure S1.
Excerpt From Revised	In Methods, 'Associating regulatory elements to likely target genes'
Manuscript	" we further expanded the method to all ENCODE non-coding regulatory elements and identified ~2,225K significant associations between ~769K regulatory elements and ~17K genes (see below). The distributions of regulatory element-gene associations are shown in Figure S1. The median number of associations is 22 and 2 for per gene and per regulatory element, respectively"

-- Ref2.7 - Region within 10kb--

Reviewer	DRMs	are	def	ined	as	those	reg	ulatory	regio	ns at	least
Comment	1kb	from	the	clos	est	gene	and	associa	tions	with	tssEUs

YAO FU 7/26/14 2:26 PM **Deleted:** d

	were computed from all tssEUs beyond 10kb but within 1Mb from it. What happens with the regions between 1kb and 10kb? They are not tested?				
Author Response	We thank the referee for pointing this out. For regulatory regions within 10kb of genes, we also test for associations between them and adjacent genes [will come soon From Shaoke]				
Excerpt From Revised Manuscript	?????????????				

-- Ref2.8 - TSS cut-off--

Reviewer	Page 11 "For each tssEU, we defined its expression level
Comment	as the number of RNA-seq reads aligned to the [TSS- 50,
	TSS+50] window." Why from TSS-50?
Author	The main reason is to allow potential small errors in the
Response	annotation of the TSS. 50bp is a small window size to avoid
	running into another TSS.
Excerpt From	
Revised	
Manuscript	

-- Ref2.9 - Add number of variants --

Authors should provide the number of variants in each					
group (in Methods and/or Figure 2).					
We thank the referee for the suggestions.					
We provided the numbers in both the Methods and Figure 2.					
Please refer to the Methods and Figure 2. 'Application to regulatory					
pathogenic and somatic cancer variants'					
"We obtained noncoding somatic variants form COSMIC (version 68). Recurrent variants (10,041) are defined as identified in whole-genome sequencing and observed in at least 2 samples. All other variants (1,311,389) are non-recurrent ones. After excluding variants in coding regions (GENCODE 16) and mitochondrion, there are 956 variants occurred in more than 2 samples, 8,932 variants in 2 samples and 1,305,699 non-recurrent variants"					

-- Ref2.10 - Clarify COSMIC and 570 samples--

Reviewer	COSMIC includes somatic mutations observed in tumors and
Comment	many of the most recent data is from whole genome/exome
	projects. There is the possibility that the datasets of
	COSMIC and those from the recurrence database of 570
	samples of 10 tumor types are overlapping quite a lot.
	Could authors clarify this?
Author	We have checked the COSMIC database and our 570 samples.
Response	468 out of 570 (82.1%) are not in COSMIC. Majority of the cancer
'	samples (from Alexandrov's paper) are newly sequenced and are

	not submitted to COSMIC.
Excerpt From	
Revised	
Manuscript	

-- Ref2.11, - Comparisons--

		
Reviewer Comment	1. For the sake of comparison with existing methods, the ability to separate between these groups of variants by CADD and GWAVA should also be shown, including boxplots and p-values.	
	2. The authors could also compute AUC and/or other performance metrics for how well SMAP, CADD and GWAVA are able to separate between the two extreme groups (non-recurrent variants Vs. >2 sample variants).	
Author	We thank the referee for the suggestions. We made the	1
Response	comparisons with GWAVA and CADD using boxplots and AUC	
-	calculations. The results are shown in Figure S5. As mentioned	
	by the referee, recurrence is not a good criterion to define functional and non-functional sites. As expected, none of the three methods could separate recurrence from non-recurrence well, with AUCs around 0.5. Generally speaking, our method performs better than others.	
Excerpt From	Please see the Additional file 1: Figure S5.	
Revised	-	
Manuscript	" Results from CADD and GWAVA are shown in Additional file 1: Figure S5."	

-- Ref2.12 - Clarify recurrent elements--

Reviewer	How are defined recurrent regulatory elements? For					
Comment	instance, it is required that more than one sample has					
	mutations in the same TFBS motif or in the same					
	promoter?					
Author	Recurrent regulatory elements are regulatory regions mutated					
Response	in more than one sample. For example, the same TFBS motif with mutations from two or more samples. We added the					
	description in the Methods section.					
Excerpt From	Please refer to Methods, 'Noncoding somatic variants in recurrent					
Revised	regulatory elements'.					
Manuscript						
-	"Regulatory regions mutated in more than one sample are defined as recurrent					
	regulatory elements, such as the same TF binding motif or the same noncoding					
	RNA"					

-- Ref2.13 - TERT promoter mutation in other samples--

Reviewer	1. As	there	are	7 san	nples	with	the	TERT p	romoter
Comment	mutatio	on, why	the	authors	do n	ot test	the	ranking	of the
	mutatio	on in a	11 7	instead	of	only on	e? It	would	be more

YAO FU 7/21/14 10:31 AM

Deleted: 9

YAO FU 7/21/14 10:31 AM

Deleted:

YAO FU 7/25/14 1:21 PM

Deleted: on both COSMIC (do we want to show results from COSMIC ??? our results are slightly worse than GWAVA.... Reasons see below...) and Breast cancer data (

YAO FU 7/25/14 1:21 PM

Deleted:)

YAO FU 7/25/14 1:24 PM

Deleted: As noted in COSMIC database, the same sample can have multiple ids if the sample has been entered into the database multiple times from different papers. Also COSMIC collects various studies, probably with various data qualities. Even though it claims that COSMIC contains only somatic mutations, we found 6.6% of recurrent and 2.7% of non-recurrent mutations occurred in 1000 Genomes. For those overlapping with 1000 Genomes, the allele frequency of recurrent ones (mean: 0.19) is significantly higher than non-recurrent ones (mean: 0.11) (p-value < 2.2 e-16). On the contrary, the Breast cancer mutations are carefully filtered against germline and natural variants. We considered that the results from Breast cancer were more reliable.

YAO FU 7/25/14 1:23 PM

Formatted: Indent: Left: 0"

YAO FU 7/25/14 1:2

Deleted:

YAO FU 7/21/14 10:32 AM

... [4]

Deleted: 0

YAO FU 7/21/14 10:32 AM

Deleted: 1

	information to see the ranking of this mutation in each of the 7 samples and also the ranking provided by GWAVA and CADD.
	2. Does the prioritization in the case study use anyhow the recurrence information?
Author	We thank the referee for the comments.
Response	
	 We provided results for all 7 samples in Additional file 1: Table S4, together with results from GWAVA and CADD. In the case study (sample MB59), we used the recurrence information. We also provided the ranking without recurrence in Table S4. Without recurrence, our method still performs better than GWAVA and CADD.
Excerpt From	Please refer to Additional file 1: Table S4. In main text:
Revised	
Manuscript	" Results of additional 6 samples are shown in Additional file 1: Table S4."

	Ref2.1 <mark>4, – Figure legends</mark>	Deleted: Sample YAO FU 7/21/14 10:32 AM
Reviewer Comment	Figure legends are short and not informative enough, they could be much longer to contain all the necessary information to understand the figure without having to go to methods section. For instance, Figure 2B Y and X-axis should be defined in the legend.	Deleted: 2
Author Response	We agree with the referee. We made modifications to the legends.	
Excerpt From Revised Manuscript	Please refer to figure legends. Here is an excerpt for Figure 3. "Figure 3 Weighted scoring scheme. A) Features used in the weighted scoring scheme. Features can be classified into discrete and continuous. Discrete features are binary, such as in ultra-conserved elements or not. For continuous features, taking 'motif-breaking score' as an example, the values would be the changes in PWMs. * only applicable when user input multiple genomes; B) We weighted each feature based on the mutation patterns observed in natural polymorphisms. Features that are frequently observed are less likely to contribute to the deleteriousness of variants and are weighted less (entropy based method, details described in Materials and Methods). For continuous feature, such as motif-breaking scores, we calculated weights for each observed value. The x-axis is the observed motif-breaking scores and y-axis is the corresponding weights. The black line show the values observed in natural polymorphisms. We then fitted a smooth curve (the red dashed line) to obtain continuous weights for all possible motif-breaking scores."	YAO FU 7/26/14 2:28 PM Deleted: 2 YAO FU 7/26/14 2:28 PM Deleted: 2