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COLLABORATIVE NSF/BIO-BBSRC.  
ABI INNOVATION. MULTI-SCALE GENE FUNCTION 

PREDICTION USING BIOLOGICAL NETWORKS 
  
1. Specific Aims 
In recent years, the numerous large-scale sequencing projects combined with fast sequencing 
techniques have generated enormous amounts of sequence data. This has led to the 
identification of thousands of previously unseen genes whose function awaits to be 
characterized. A fundamental goal is therefore to identify the function of uncharacterized 
genes on a genomic scale. It is difficult to design functional assays for uncharacterized genes 
so a major current challenge in bioinformatics is to devise algorithmic methods that, given a 
gene, can predict a hypothesis for its function that can then be validated experimentally. 

In this project, we shall focus on three different aspects of gene function: molecular function, 
cellular role and organismal phenotype. Our aim will be to build a general system that, given 
a gene, can predict its function at these three different levels. This multi-scale prediction will 
be carried out exploiting the structure of biological networks. 
 
 AIM 1: We plan to develop a computational framework to identify and characterize the 
cellular role of genes using logic-circuit models and regulatory networks. Specifically we 
propose to develop a method to analyse logic operations of small regulatory triplets using a 
two-in-one-out logic gate model. We will use a binarized gene expression data to score how 
well each triplet matches each of all 16 possible logic gates. A high score implies that the 
logic operation describes accurately the interactions between elements forming the regulatory 
triplet. As such a similarity in logic gate matches between various triplets implies a similarity 
in function between input elements. 
 
AIM 2: We will develop a computational workflow to infer phenotypic function using as 
input network neighbourhoods and text mining. For this we will use machine learning 
techniques on a graph model that accounts for latent variables that can explain the association 
between the data. Here we make the presumption that the relationships existing between the 
observable variables can be explained by assuming the existence of unobservable (latent) 
variables and of relations between these latent variables and the observable ones. Note that 
any matrix can be interpreted as a graph (and vice versa). Therefore decomposing a matrix 
amounts to inferring a new graph structure where the relation between the latent factors and 
the measurable data is made explicit. Here the graphs will be constituted by large-scale 
biological networks. 
 

AIM 3: We plan to integrate our results from AIM 1, specifically synthesizing the circuit 
elements and their domains of influence within a regulatory network, with phenotypic 
function predictions from AIM 2 to better demarcate regions of the network associated with 
distinct phenotypic functions. We we’ll also use these results to improve the phenotypic 
prediction by integrating information from the cellular role inferred in AIM 1. 
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2. Background and Preliminary Results 
2.1 General Background   

 
2.2 Background on Networks  
2.2.1 Networks Biology: A Growing Field 
Biological systems are mediated by interactions between thousands of molecules. Network-
based statistical models are particularly useful in unlocking the complex organization of 
biological systems. In the last decade, biological network analysis has blossomed into a new 
scientific discipline. Examples are numerous, ranging from protein–protein to genetic 
interaction networks \cite{17473168}. Usually, networks are depicted as graphs with nodes 
and edges, where nodes denote biological entities such as proteins or genes, and edges 
represent interactions between nodes.  
Cellular networks are organized in the form of interacting modules, whereby nodes in a 
module tend to have a larger density of edges connecting them. Biologically, the genes within 
a module of a genetic regulatory network are co-regulated. Graph models can reveal 
interesting new features of the analysed biological system 
\cite{11034217,10521342,10935628,12202830,12399590,16730024}, while network 
topologies can be used to address fundamental biological questions   
\cite{18421347,15190252,12134151,17274682,19372386,16311037}. 
 
2.2.2 Preliminary Results on Networks  
Gerstein lab key papers: [[CSDS – to add]] 

Gerstein lab has carried out projects in biological networks for over a decade. We have made 
extensive contributions in the analysis of genomic data, especially with regard to network 
prediction and analysis\cite{14564010}.  We have also integrated regulatory networks with 
gene expression to uncover different kinds of dynamic sub-networks \cite{15372033}.  We 
developed methods to determine the hierarchical organization of regulatory networks and 
applied them to analyze the regulatory networks of a variety of species from yeast to human, 
including networks constructed from ENCODE, modENCODE and MCF7 data 
\cite{22125477,20439753,22955619,21177976}. 

Network Construction 

We have developed several methods to construct networks based on various genome features 
\cite{14564010}. We extended this work by combining several heterogeneous biological 
datasets \cite{12350343,15998909,16413578} and developing new machine learning 
techniques \cite{19656385} to increase the prediction power. In 2008, our work placed first 
in the Dialogue for Reverse Engineering Assessments and Methods (DREAM, www.the-
dream-project.org) competition for the in silico network prediction challenge. In addition, we 
have participated in many experimental network determination projects, to refine and keep 
our methodologies at the cutting edge \cite{16449570,16554755,14704431}.  

Recently, we have completed the ambitious goal of constructing draft regulatory networks for 
humans and model organisms based on the mod/ENCODE datasets 
\cite{21177976,21430782,22955619}. We have successfully completed this challenge 
through the development of novel approaches for identifying individual proximal and distal 
edges, as well as creating new miRNA target prediction algorithms. 

Construction of proximal regulatory network. We have developed several computational 
approaches based on data from cutting-edge next-generation sequencing technologies (such as 
ChIP-seq) to help construct proximal regulatory networks and identify regulatory targets of 
transcription factors (TFs). We developed a computational framework, PeakSeq 
\cite{19122651},   to define  the TF binding peaks. Thus we were able to take advantage of 
the rich ChiP-seq data in constructing a regulatory network. PeakSeq constructs local 
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thresholds using input signals from genomic DNA without an enrichment process to simulate 
the null process for the background. The variability in the background signal reflects the 
accessibility of the DNA given the chromatin state of the genome. PeakSeq then identifies TF 
binding regions by identifying peaks that are significantly enriched relative to the background 
signal. PeakSeq is a widely used (the associated paper being cited more than 300 times) and 
highly versatile tool for identifying TF binding sites from ChIP-seq data. 

In addition, we have also proposed a probabilistic model, referred to as target identification 
from profiles (TIP), that identifies a given TF’s target genes based on ChIP-seq data  
\cite{22039215}. Given a ChIP-seq dataset for a particular TF, we start by identifying all 
genes bound by the respective TF. Next, we characterize the TF binding profile by averaging 
its binding signal at each position around the transcription start site (TSS) for the related 
genes. We calculate the binding strength of a given TF for a particular gene using a weighted 
sum of the TF binding signal from nucleotides surrounding the TSS and estimate the 
corresponding significance level assuming a normal distribution of regulatory scores. 
Compared to other peak-based methods, this new approach his more reliable providing highly 
accurate TF targets. We have successfully used TIP to identify a high confidence set of  ERα 
target genes. 

Constructing distal networks and identifying enhancers. We have developed machine-
learning methods that integrate ChIP-seq, chromatin, conservation, sequence and gene 
annotation data to identify 
gene-distal regulatory 
regions \cite{20126643}. 
By correlating the binding 
signals around DRMs with 
respect to expression of 
transcripts, we developed a 
computational pipeline to 
identify potential enhancers 
and the transcripts 
associated with them 
(Figure 1A). As published 
in \cite{22950945}, we 
have validated some of the 
results from our pipeline by 
experiments, which show a 
fairly high predictive 
accuracy. The enhancers 
and their targets form a 
distal regulatory network 
(Figure 1C), and when 
analyzed along with the 
corresponding proximal regulatory network (Figure 1B), provide a more comprehensive and 
complete view that incorporates multiple dimensions of transcriptional regulation into the 
network.  

Network constructions using ENCODE, modENCODE and other system-wide data.  Using 
the machine-learning approaches we have constructed highly integrated regulatory networks 
for humans and model organisms based on ENCODE \cite{22955619} and modENCODE 
datasets \cite{21430782}. These integrated networks consist of three major types of 
regulation: TF-gene, TF-miRNA and miRNA-gene, showing rich statistical patterns. For 
instance, the human regulatory network uniquely displays distinct preferences for binding at 
proximal and distal regions. The proximal-distal binding preference is a property of the 
intergenic space in the human genome, which is much larger relative to the genomes of other 
model organisms. This difference leads to a larger amount of distal binding. Furthermore, in 

Figure 1 A. Associating transcription factors to target genes \cite{22950945} 
B. Proximal regulatory network. C. Distal regulatory network \cite{22955619}. 



	
   4	
  

the human regulatory network, the more highly connected TFs are more likely to exhibit 
allele-specific binding and gene expression. More recently, we built a regulatory map for 24 
nuclear receptors and 14 breast-cancer-associated TFs that are expressed in the breast cancer 
cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix with 
extensive “crosstalk” between NRs and other breast-cancer-associated TFs. We show that 
large numbers of factors bind in a coordinated fashion to target regions throughout the 
genome. The highly occupied targets are associated with active chromatin state and hormone-
responsive gene expression.  

Network Analysis 

Biological networks, normally large in scale, are organized with topological structures in the 
form of interacting modules. Statistics such as 'eccentricity' and 'betweenness' are helpful to 
explain the connectivity and behaviour of nodes in a network. We have developed a number 
of tools to analyze the organization and structure of biological networks including identifying 
the importance of a node in a single network and identifying the modular structure inherent 
within several biological networks. For example, by mapping gene-expression data onto the 
regulatory network of yeast, we identified different sub-networks that are active in different 
conditions \cite{1537203}. We developed a method to extract metabolic modules from 
metagenomic data, enabling us to identify pathways that are expressed under different 
environmental conditions \cite{19164758}. We have also developed a way to identify nearly 
complete, fully connected modules (cliques) present in network interactions \cite{16455753} 
and we have been using networks to map various kinds of functional genomics data 
\cite{22955619}. 

Hierarchical Networks  

Through our network analysis, we found that gene-regulatory networks are composed of 
hierarchical structures dominated by downward information flow and that some TFs act as 
top master regulators to govern the transcription of downstream TFs. We developed methods 
to determine the hierarchical organization of regulatory networks in a variety of species. In 
these hierarchical networks, TFs are organized into three levels, whereby TFs at the top tend 
to act as regulators while TFs at the bottom tend to be targets of regulation. 

We also found that regulatory factors are hierarchically organized in all organisms. In a 
hierarchical organization, the factors at the top of the hierarchy are most influential, as 
reflected by their highly correlative binding and gene-expression profiles. The factors at the 
top level are under stronger selective pressure and are more conserved evolutionarily. In 
comparison, the middle level contains many elements characterized by bottlenecks in 
information flow and are highly connected by miRNA and distal regulatory elements. These 
analyses thus highlight the general features of regulatory networks conserved in evolution.  

[[CSDS2MG – shall I add here CC’s paper on hierarchies or do you want it as an aim?]] 

Integrating networks with other biological data   

To further illustrate the value of the network concept, we have also combined network 
analyses with many other types of biological data. Recently, we used networks to improve our 
understanding of genomic variants \cite{24092746}. In \cite{23505346}, we built a multi-
layered network that incorporated information from heterogeneous data sources such as 
protein-protein interactions and metabolic, phosphorylation, signaling, genetic, and regulatory 
networks. In general, population variants are more likely to be deleterious when they occur in 
genes or in regulatory elements associated with hubs in the multi-layered networks, indicating 
that a gene’s interactions likely influence the selective pressures on acting on it. Connectivity 
is also related to selective pressure in noncoding regions, as transcription binding motifs with 
greater connectivity tend to be under stronger evolutionary pressure \cite{24092746}. We 
built a workflow model to prioritize noncoding mutations in disease variants based on these 
patterns of negative selection in functional variants. In addition, we showed that proteins 
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under positive selection are found on the network and on the cellular periphery, an indication 
of how human variation is arranged with respect to the interactome. 

Web Tools for Network Analysis 

We have developed numerous network analysis web tools such as TopNet \cite{14724320}, 
tYNA \cite{17021160}, and PubNet \cite{16168087}. These tools have been widely used by 
the research community to analyze network topology—i.e., to calculate hubs, “between-ness”, 
shortness of paths and degree of modularity.  
 
2.3 Background for Phenotypic Function Prediction  
 
3. Research Plan and Methods  
3.1 AIM 1: Developing a Method to Infer Gene Cellular Role Using 

Logic Circuit Models and Biological Networks 
Our aim is to develop a novel method of inferring a gene cellular role from the analysis of 
biological networks. More specifically, we will integrate regulatory networks with gene 
expression data. This will allow us to analyse the interactions between the regulatory factors 
and target genes using a logic operations based algorithm, Loregic. This study will highlight 
common behaviour patterns between various RFs as well as groups of genes under similar 
regulatory constraints. We plan to make available Loregic available as an online tool as well 
as a stand alone application that can be downloaded and used on various input datasets. 

3.1.1  Background on Logic Circuit Models in Biological Networks 
Gene expression is a complex process controlled by regulatory factors on multiple 
dimensions. An increasing number of recent experimental and computational studies suggest 
that gene transcription is regulated cooperatively by numerous factors (i.e. TFs and miRNAs) 
\cite{24009496,22955619}. These studies analyse the relationships between the regulatory 
factors (RFs) from various aspects such as protein-protein interactions, sequence motifs in 
cis-regulatory modules, co-associations of TFs in binding sites, and co-expressions of TF 
target genes \cite{14627835,22705667, 21828005}. However, they focus solely on the 
identification of the wiring relationships between RFs (e.g. co-binding, co-association and co-
expression) leaving untouched the cooperative patterns that drive the biological functions 
behind the wiring diagrams.  

At a high level, the gene regulatory network can be regarded as an electronic circuit, with TFs 
and miRNAs acting as resistors and capacitors. Just as wiring different circuit elements can 
generate various electrical functions \cite{Rabaey}, connecting various regulatory factors as 
functional modules will result in different biological functions. Thus, in order to obtain a 
comprehensive map of gene regulation, it is necessary to go beyond identifying the wiring 
relationships among individual RFs. Here we propose to study the RFs cooperative patterns, 
and further regulatory functional modules resulting from those cooperative patterns. 

RFs control gene expression in a discrete way, such that in numerous cases gene regulation 
can be regarded as a logic process where the RFs are the input variables while the target gene 
is the result \cite{12782112,19180174,14530388,21414487, 22927416,23412653, 
21885784}. In this respect, a common regulatory triplet, with two RFs regulating the same 
gene, can be formally described by a two-in-one-out logic gate. 

Moreover, combinatorial logics are much more numerous than the three basic operations: 
AND, OR, and NOT \cite{14530388}. For example, for any two-in-one-out scenario, there 
are 16 possible logic gates (including all possible combinations between positive and negative 
regulators). In order to capture all possible combinatorial cooperations between regulatory 
factors we need a more comprehensive model. Previous studies took advantage of binarized 
regulatory data provided by perturbation experiments (i.e. TF knock-outs) and used a Boolean 
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model to capture this logic processing \cite{Somogyi}. However, previous efforts focused 
only on a small set of genes, missing the genome-wide identification and characterization of 
logic operations in gene regulation.  

Here we propose a novel approach, Loregic, that will allow a comprehensive analysis of all 
possible regulatory logic operations from a genome-wide perspective. 

3.1.2  Development of the Logic Circuit Models Approach - Loregic 
Loregic is a logic operation based method that requires two types of input data: a regulatory 
network (defined by regulatory factors and their target genes) and a binarized gene expression 
dataset across multiple samples. The binarized gene expression data (on – 1 and off – 0) is the 
direct result of the network’s regulatory factors activity on the target genes. The inputs can be 
chosen from different resources to meet the user’s interests. The regulatory network is 
decomposed into 
regulatory modules 
formed by triplets 
consisting of 2 RFs and 
a common target gene 
T. Loregic algorithm 
comprises of five steps 
(Figure 2). 

• Step 1: Input gene 
regulatory network 
consisting of regula-
tory factors and 
their target genes; 

• Step 2: Identify all 
RF1-RF2-T triplets 
where RF1 and RF2 
co-regulate the 
target gene T; 

• Step 3: Given a 
particular triplet 
(RF1, RF2 and T) 
query the binarized 
gene expression data 

• Step 4: Match the 
triplet’s gene expre-
ssions against all 
possible two-in-one-
out logic gates 
based on the binary 
values; 

• Step 5: Find the 
consistent logic 
gate(s) that best 
matches the expressions and calculate the consistency score. Test the score significance 
against random effects; 

• Repeat Step 3-5 for all triplets in the regulatory network. 

Loregic describes each regulatory module (triplet) using a particular type of logic gate – i.e. 
the logic gate that matches best the binarized expression data for that triplet across all 
samples. If such a logic gate is found, we claim that the regulatory triplet is defined by a 
consistent logic gate. Next Loregic calculates the corresponding consistency score for the 
selected gate (Figure 3). Logic gate consistency score is calculated as follows. 

Figure 2 Loregic workflow. 
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• Create the truth table. A logic gate with two inputs (RF1, RF2) and one output (T) can be 
determined by a combination of four (RF1, RF2, T) binary vectors, v1=(RF1=0, RF2=0, 
T), v2=(RF1=0, RF2=1, T), v3=(RF1=1, RF2=0, T), and v4=(RF1=1, RF2=1, T) with 
specific values (0 or 1) for T.  

• Given a RF1-RF2-T triplet, match output T (0 or 1) for each of four input combinations of 
RF1 and RF2, and find the logic gate(s) that describes best the truth tables. 

• Calculate the consistency score: For any triplet with m binary vectors and any gate g the 
gate consistency score of the triplet is, S(g)=(n1 +n2 +n3 +n4)/m, where ni as number of 
vectors matching vi(g) with i=1,2,3,4. 

Also in order to verify the authenticity of the consistent logic gate given a triplet of (RF1, 
RF2, T), we calculate its significances over the 16 logic gates’ scores. We suppose that it 
matches the kth logic gate, Gk. We replace the target gene, T by a randomly selected gene N 
times (N=1000), and calculate its significance score, as p(Gk)=(Gk)/N. A high significance 
score implies that random effects may cause the matched logic gate. We suggested to select 
the consistent logic gates within top 2% of consistency and significance scores. 

In the case where no there is no consistent logic gate found, we claim that the triplet is 
inconsistent with all logic gates. The negative result indicates that the cooperativity of the two 
RFs cannot be described by a standard logic operation.  

All the triplets that can 
be described by logic 
gates can be further 
mapped onto other 
regulatory networks. As 
such the logic gates 
information brings a 
new dimension to the 
interaction between 
regulatory elements and 
targets. We tested and 
validated the enhan-
cement in the 
information obtained 
through Loregic on the 
study of yeast 
regulatory network. We 
studied the TF promoter 
sequence motifs and 

used predicted TF logics to infer potential indirect bindings. 

 

3.1.3  Preliminary Results on Logic Circuit Models 
Cooperative behaviour between yeast TFs during cell cycle 

We have used logic circuit models to study the cooperation between yeast TF during cell 
cycle. We identified ~39k TF-TF-target triplets from 176 different TFs using TF-target 
assignments in \cite{15343339,19690563}. We used Loregic to characterize the TF-TF-target 
logics during yeast cell cycle across 59 time points. We found 4126 TF-TF-target triplets with 
consistent logic gates (Figure XXX). Among those, we found that “T=RF1*RF2” (AND), 
“T=~RF1*RF2”, and “T=RF1*~RF2” logic gates, have more triplets matched than all the 
others. The AND triplets mean that both TFs have to be present to activate the expression of 
their target gene. 

We tested our TF cooperativity results analysing the fold changes in the target gene 
expression as consequence of deleting one of the regulatory triplet TF.  

Gene 20 samples

RF1=TF 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

RF2=TF 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T=Gene 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1

0

0

0 1

0

1

0 1

1

0

0 1

1

1

0 1

RF1

RF2

T

5             0 4            1 5            0 1            4

RF1=TF 1 0 0 1 1

RF2=TF 2 0 1 0 1

T=Gene 1 0 0 0 1

AND
TF1

TF2

Gene 1
Consistency score:

(5+4+5+4)/(5+4+5+4+1+1) =0.9
6LJQLÀFDQFH�VFRUH:

replace T by random gene 1000 times=0.01  

Figure 3 Consistency score evaluation 
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The yeast TF knockout experiments gave us fold changes in gene expression as a result of 
deleting a single TF \cite{17417638,20385592}. If a target gene is regulated by two 
cooperative TFs in an “AND” relationship, deletion of either TF may corrupt the 
cooperativity and that impacts gene expression. For example, for the triplets with high 
significant scores at “AND” gate, we found that deleting either of their TFs gave rise to 
considerably down-regulated target genes, i.e., negative expression fold changes (t-test p-
value =0.068). For non-cooperative TFs such as “T=RF1” or “T=RF2” gates, i.e., one of TFs 
(dominate TF) fully determines target gene expression, we found that target genes are more 
af- fected (down-regulated) by the removal of the dominant TFs rather than by deleting the 
other TFs (t-test p-value < 0.05 for T=RF1, <0.005 for T=RF2). 

 
3.2 AIM 2: Inferring Phenotypic Functions Through Network Mining 

(Using Graph Models and Latent Variables) 
[[AP- to add]]  

 
3.3 AIM 3: Optimizing Phenotypic Function Prediction Using Logic 

Circuit Models on Biological Networks 
[[CSDS, AP- to add]]  

 
 
4. Tools and Sustainability  
The sustainability of the developed resources is very much contingent on the hardware and 
servers on which they are stored and run. The existing infrastructure at Yale and Royal 
Holloway has served investigators well, but we aim to improve the current setup by making it 
reliable and robust for supporting all the proposed tools, as well as more accessible to the 
scientific community. To this end, we intend to make use of new technologies such as web 
services and cloud computing. 

Specifically, we intend to use Amazon Web Services (AWS) for distributing most of 
developed tools, and intend to make use of the Amazon Elastic Compute Cloud EC2 
(processing) and S3 (storage). AWS EC2 enables flexible, resizable online resources, and 
would serve as a sensible means for distributing the contents and services our tools, as it 
provides high performance computing, processing resources which adjust to user demand, 
reliability, and greater security. 

Here, we summarize the various distinct components the function predictions tools, along 
with the means by which we intend to disseminate each: 

i)  Source code, as used in constructing the various software components will be 
made available from open access repositories, such as sourceforge, github, and/or 
google code.  

ii)  Web-services (LoREgic, AP-tools, etc.): each of the different servers would be 
encapsulated and made available as a virtual machines (see below for a description 
and the advantages of virtual machines), which may be downloaded from our servers, 
and then stored locally by the user, or uploaded by the user to AWS EC2.  

iii)  Databases: the regulatory network datasets will be bundled up into a single 
virtual machine, and distributed in a similar manner. We intend to move all the 
working datasets to AWS S3 for storage, and would periodically (about once a 
month) make backups of this data locally.  

[[CSDS, AP- to add]]  
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5. Broader Impacts  
5.1 Integration of Research into Education  
We propose to integrate the above described research activities into graduate and 
undergraduate education.  
Mark Gerstein is the Co-Director of the Computational Biology and Bioinformatics (CBB) 
PhD program (cbb.yale.edu) at Yale University, and he has been designing and teaching 
graduate courses in bioinformatics, genomics, and data mining for over ten years. These 
activities could easily be translated into class projects, which may help recruit undergraduates 
into Yale labs. In addition, we focus on students of underrepresented groups through a Yale 
program called “Science, Technology and Research Scholars” or STARS 
(science.yalecollege.yale.edu/stars-home), which includes Computer Science, Bioinformatics, 
and Genomics components. 
All the tools developed for gene function prediction will be integrated into 
Computational Biology and Bioinformatics 752 (Bioinformatics: Practical Application of 
Simulation and Data Mining), a course directed by Dr Gerstein, and taught to 
undergraduates and graduate students. The course is an introduction to the computational 
approaches used for addressing questions in genomics and structural biology. The function 
component of the course can be substantially improved by introducing the students to 
innovative tools to predict gene function using a variety of data. This resource represents the 
integration of many facets of bioinformatics, including functional data, biological network 
analysis, programming, as well as sets of algorithms applied to address questions about gene 
function discovery. It will also be integrated into final year projects, and as part of these 
projects, students will develop online libraries for gene function. 

 
5.2 Workshops and Webinars: From Our Computers to Everyone’s  
Alberto Paccanaro is Associate Professor in Computational Biology at Centre for Systems 
and Synthetic Biology, Department of Computer Science, Royal Holloway, University of 
London. [[AP, CSDS – to add]] 
 

5.3 Advances in Function Prediction  
[[CSDS – to add]] 

 
6. Project Management Plan  
The research will be conducted by graduate students and early career personnel under the 
supervision of Dr Mark Gerstein at Yale University, and Dr Alberto Paccanaro at Royal 
Holloway University of London.  

In leading this collaborative project, we will draw on considerable experience we have had 
with other integrative consortium projects. In particular, Dr Gerstein has been an integral part 
of the ENCODE Project as well as the modENCODE Project since its inception. Within these 
he has had a number of leadership roles, as he has co-directed the Networks/Elements Group. 
He has co-led high profile papers focusing on networks and was the leader of the numerous 
collaborative papers. [[AP – to add ]] 

Integrating the network science expertise of Dr Gerstein with the knowledge domain of 
protein science and also software development expertise of Dr Paccanaro, will bring a fresh 
new perspective to protein function prediction.  

Dr Gerstein will be responsible for the coordination, designing and development of tools 
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associated with AIM 1. Dr Paccanaro will be involved in the design and development of 
phenotype prediction tools associated with AIM 2. While these two aims are lead mostly by 
each lab independently, both groups will collaborate towards their completion. As such, 
Paccanaro group will help with model development and implementation for AIM 1, while 
Gerstein group will help with assessment of data quality, standardization and biological 
interpretation of AIM 2 results. The two groups will work closely together to facilitate the 
implementation of AIM 3. 

The overall progress of the project is summarized in yearly milestones. As such, during the 
first year of the project, the Gerstein lab work will be devoted to the construction of a 
biological network library and the development of logic circuit models for network analysis. 
The successful development of computational models will be assessed by a pilot study on 
yeast regulatory network. The second year will be focused on developing of a robust and 
friendly interface for LoREgic, deploy it on the host website and also make it available 
through various open access repositories. The final year will be used to implement AIM 3. 
[[CSDS, AP – to add milestones]] 

The two groups will also coordinate the analysis and writing of collaborative papers. To 
achieve this, we plan to implement regular conference calls between the two groups, but also 
open them to the larger networks and protein function community.  

We will also work closely with outside investigators from UK and US to identify additional 
regulatory networks datasets for integrative analysis, and coordinate the sharing of 
information with the larger biological research community. On a regular basis, the project 
results will be disseminated to a broad audience (from senior researchers to middle and high 
school teachers) through conferences, public workshops and webinars.  
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