
 

© Oxford University Press 2014 1 

Loregic: Logic-circuit based method to characterize  
cooperativity of regulatory factors 

 

ABSTRACT 

Regulatory factors act cooperatively to control gene expression. We present Loregic, a novel computa-

tional method, to identify and characterize regulatory cooperativity using logic-circuit models from gene 

expression and regulatory networks. We study the logic operations of functional regulatory modules 

consisting of multiple RFs with common target genes, and specifically focus on two RFs co-regulating a 

target gene as a triplet using a two-input-one-output logic gate model. Next, using binarized gene ex-

pression data, we score how well each triplet matches each of all 16 (24) possible logic gates. A high 

score implies a strong operation between the two regulatory factors to target following the correspond-

ing logic gate. We first apply Loregic to the yeast transcription factors (TFs), and validate their logic co-

operations using TF deletion data. We then integrate the ChIP-seq data from ENCODE and the RNA-

seq expression data from TCGA to look at logic co-operations among TFs, TFs binding to enhancers 

and miRNAs in cancer cell lines. In addition, we use Loregic to discover indirect binding between TFs, 

when their sequence motifs are absent from the target gene promoter region. Finally, we predict the TF 

logics of the network motif, feed-forward loops in which two TFs have regulatory relationships. In sum-

mary, Loregic provides a valuable computational tool (https://github.com/gersteinlab/Loregic) to reveal 

logic operations in gene regulation, and can be extended to analyze cooperativity amongst other regula-

tory elements such as long non-coding RNAs. 

Contact: pi@gersteinlab.org 

1 INTRODUCTION  
Gene expression is a complex process that is controlled by regulatory factors (RFs) on multiple dimen-

sions. For example, from a spatial perspective, multiple transcription factors bind to the promoter region 

of their target gene (Hardison and Taylor, 2012; Neph, et al., 2012), while the regulatory network con-

trols gene expression during embryo development in a temporal dimension (Peter and Davidson, 2011). 

Due to the process complexity, the majority of regulatory factors work cooperatively, rather than inde-

pendently, to determine the correct gene expression outcome in various cell types. For example, at tran-

scriptional level, the gene expression can be controlled by various factors such as transcription factors 
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(TFs), histone modifications, enhancers (distal TFs), and non-coding RNAs. Thus, beyond individual 

factor behaviors such as binding, activating or repressing targets, ones should look at gene regulatory 

functions from the point of view of large order groups. More and more experimental and computational 

studies have indeed shown that commonly regulatory factors work together rather than individually to 

regulate transcription. Those approaches study TF-TF relationships from various aspects such as protein-

protein interactions, sequence motifs in cis-regulatory modules TF binding sites, co-associations of TFs 

in binding sites, and co-expressions of TF target genes (Banerjee and Zhang, 2003; Hardison and Taylor, 

2012; Karczewski, et al., 2011). Also, TFs cooperate with other factors (e.g. miRNAs) to co-regulate 

gene expression (Gerstein, et al., 2012; Poos, et al., 2013). However, those previous efforts have focused 

solely on the identification of the wiring relationships between TFs (e.g. co-binding, co-association and 

co-expression) leaving untouched the cooperative patterns of TFs that drive the biological functions be-

hind the wiring diagrams. Similar to an electronic circuit, where wiring different elements (e.g. as resis-

tors, capacitors, etc) as electronic units can generate various (Rabaey, et al., 2003) electrical functions, 

connecting diverse regulatory factors as functional modules will result in different biological functions. 

Thus, beyond identifying the wiring relationships among individual regulatory factors, it is necessary to 

study their cooperative patterns, and further regulatory functional modules driven by those cooperative 

patterns.   

Regulatory factors control gene expression in a discrete way, as such, in numerous cases gene regula-

tion can be regarded as a logic process (Albert and Othmer, 2003; Das, et al., 2009; Mangan and Alon, 

2003; Peter and Davidson, 2011; Peter, et al., 2012; Shmulevich and Dougherty, 2007; Tu, et al., 2013; 

Xie, et al., 2011). While DNA sequence motifs follow the combinatorial logic (AND, OR and NOT) to 

match gene expression patterns (Beer and Tavazoie, 2004), TFs can still connect with binding TFs via 

protein-protein interactions and control gene expression without binding directly to regulatory sequence 

elements (Farnham, 2009; Neph, et al., 2012). Moreover, combinatorial logics are much more numerous 

than the three simple logic operations (AND, OR and NOT) (Mangan and Alon, 2003). For example, 

there are 16 logic gates for any two-input-one-output scenario (including all possible logic combinations 

between positive and negative regulators). As such, in order to capture all possible combinatorial co-

operations between TFs and other regulatory factors we need a more complex model. Previous studies 

took advantage of binarized regulatory data provided by perturbation experiments such as TF knock-out 

and Boolean model to capture this logic processing, especially for logic combinatorial effects of differ-

ent TFs working together (Somogyi and Sniegoski, 1996). The simple binary operations in the Boolean 
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model are also computationally efficient. However, previous efforts focused only on a small set of 

genes, missing the genome-wide identification and characterization of logic operations in gene regula-

tion. Thus our study gives a comprehensive analysis of all possible regulatory logic operations in from a 

genome-wide perspective. 

TFs along with other regulatory factors interact with each other to form regulatory networks, which 

can be modeled as directed networks and structured in a hierarchical way with top, middle and bottom 

levels (Bhardwaj, et al., 2010; Bhardwaj, et al., 2010; Gerstein, et al., 2012). The feed-forward loops 

(FFLs), consisting of two RFs, one regulating another along with a common target, are a common hier-

archically structured motif found in regulatory networks, and can be described by different logic gates 

according to known positively (activator) or negatively (repressor) regulating factors (Mangan and Alon, 

2003). The known knowledge that RFs are activators or repressors, however, is insufficient. Moreover, a 

same RF could switch between activator and repressor to different targets. Thus, our method is designed 

to identify RF logics to various targets without prior knowledge about activators and repressors.  

In this paper, we developed a novel computational method, Loregic, which integrates gene expression 

and regulatory data, and characterizes logic operations of gene regulatory factors at genome-wide scale 

using logic-circuits models. Loregic classifies individual regulatory factors into functional modules ac-

cording to the regulatory network, and look at how modular genes act functionally as logic circuits. We 

apply our method to study regulatory factors (TFs and micro-RNAs) in yeast and human cancer datasets. 

2 RESULTS 

2.1 Yeast TFs are cooperative during cell cycle 

We identified ~39k TF-TF-target triplets from 176 different TFs using TF-target assignments in 

(Harbison, et al., 2004; Jothi, et al., 2009). We used Loregic to characterize their TF-TF-target logics 

during yeast cell cycle across 59 time points (see Methods). We found 4126 TF-TF-target triplets with 

consistent logic gates (Fig. 3A). Among those, we found that AND (i.e., “T=RF1*RF2”), 

“T=~RF1*RF2”, and “T=RF1*~RF2” logic gates, have more triplets matched than all the others. The 

AND triplets mean that both TFs have to be present to activate the expression of their target gene (see 

interpretations for other logic gates in Fig. S1). After matching all triplets against logic gates, we were 

able to check how consistent logic gates change for the triplets with the same RF1 and RF2. For example 

(Fig. 3B), we grouped RF1-RF2 pairs into three categories (Fig. 3B): 1) the triplets with RF1 and RF2 

are almost consistent with logics, and have homogeneous consistent logics gate (e.g., top table); 2) the 
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triplets with RF1 and RF2 are almost consistent with logics, but have inhomogeneous consistent logics 

gates; i.e., consistent logic gates are different for targets (e.g., middle table); 3) the triplets with RF1 and 

RF2 do not have consistent logics gates; i.e., most are inconsistent with logic gates (e.g., bottom table). 

2.2 Deleting TFs with cooperative logic gates gives rise to significantly higher fold 

changes of target gene expression 

The yeast TF knockout experiments gave us fold changes in gene expression as a result of deleting a 

single TF (Hu, et al., 2007; Reimand, et al., 2010). If a target gene is regulated by two cooperative TFs 

in an “AND” relationship, deletion of either TF may corrupt the cooperativity and that impacts gene ex-

pression. For example, for the triplets with high significant scores at “AND” gate, we found that deleting 

either of their TFs gave rise to considerably down-regulated target genes, i.e., negative expression fold 

changes (t-test p-value =0.068). For non-cooperative TFs such as “T=RF1” or “T=RF2” gates, i.e., one 

of TFs (dominate TF) fully determines target gene expression, we found that target genes are more af-

fected (down-regulated) by the removal of the dominant TFs rather than by deleting the other TFs (t-test 

p-value < 0.05 for T=RF1, <0.005 for T=RF2).  

2.3 Logic operations between TF-TF, miRNA-TF and distTF-TF across targets in 

Acute Myeloid Leukemia 

Next, we applied Loregic to analyze the human leukemia datasets. We identified 50865 TF-TF-target 

triplets from ChIP-seq experiments for 70 TFs in ENCODE K562 cell line (Consortium, 2011; Djebali, 

et al., 2012; Gerstein, et al., 2012), and also 821 distTF-TF-target triplets, where distTFs were predicted 

to bind distal regulatory regions such as enhancers of targets in (Yip, et al., 2012). Moreover, because 

miRNAs and TFs have been found to co-regulate common target genes (Cheng, et al., 2011; Gerstein, et 

al., 2012), we studied their logic co-operations. We obtained 222 miRNAs that have highly confident 

interactions with their targets in K562 cell line (Chen, et al., 2014). Thus, integrating miRNA- and TF-

target pairs in K562, we identified 56944 miRNA-TF-target triplets. The gene/miRNA expression da-

tasets used comprised of ~20k protein-coding genes across 197 samples and 705 miRNAs across 188 

samples in TCGA Acute Myeloid Leukemia (AML). We characterized TF-TF, miRNA-TF and distTF-

TF logic operations by integrating ENCODE and TCGA AML datasets using Loregic. Fig. 4 shows the 

distributions of consistent logic gates found from TF-TF-target triplets, miRNA-TF-target triplets and 

distTF-TF-target triplets. In the case of TF-TF-target triplets, we randomly assigned TFs as RF1 and 

RF2 and observed that the numbers of consistent logic gates between the complementary gates (e.g. 
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“T=RF1+~RF2” vs. “T=~RF1+RF2”, “T=RF1” vs. “T=RF2”, etc.), are roughly equal (Fig. 4A). The OR 

gate is most among consistent logic gates, where either RF1 or RF2 can activate the target expression. 

But for miRNA-TF-target and distTF-TF-target triplets, where RF1=miRNA or distTF and RF2=TF, we 

noticed differences between complementary gates (Figs. 4B and 4C). The most consistent logic gate is  

“T=RF2” gate, which suggests that TFs binding to promoters (RF2) can determine the target expressions 

without being influenced by the presence of miRNAs or distTFs.  

2.4 AML-related TFs (including MYC) solely determine target expressions 
The transcription factor, MYC has been found to universally amplify target gene expressions in lympho-

cytes (Nie, et al., 2012), implying that it does not require cooperation from other TFs in order to preform 

its regulatory function. We identified 2153 MYC-TF-target (i.e., RF1=MYC, RF2=other TFs, T=target) 

triplets with 67 other TFs, and found that 905 out of 2153 triplets can be assigned significantly high 

scores (s=1) for one logic gate. The two most enriched consistent logic gates among the 905 ones were 

“T=MYC” (133 triplets, hypergeometric test < 4.3*10-27) and “OR” (T=MYC+TF) (211 triplets, hyper-

geometric test < 1.1*10-21) (Fig. 5A). “T=MYC” indicates that the target gene expression is solely de-

termined by MYC, while “T=MYC+TF” means that either MYC or TF can regulate the target’s expres-

sion. However, both scenarios suggest that MYC is able to control the target expressions without requir-

ing the presence of other TFs. These results support the recent finding that MYC plays a universal am-

plifier role in gene expression. Next we analyzed all the triplets associated with AML-related TFs (i.e., 

RF1=AML-related TFs, RF2=non-AML related TFs, T=targets) from cancer gene datasets (Forbes, et 

al., 2011), and found that the most enriched consistent logic gates are “T=RF1” and “T=~RF1” (Fig. 

5B). We did not find any enrichment for these two gates in triplets containing only non-AML TFs. 

Therefore, this suggests that the AML-related TFs activate or repress target expressions by themselves.  

2.5 Prediction of indirect binding from cooperative TF motifs analysis 

We studied TF promoter motifs in the target genes promoter regions (1000 bps (yeast) and 5000 bps 

(human) upstream of TSS) (DebRoy, 2013; Lawrence, 2014; Li, 2014; Pages, 2014). We identified nu-

merous TFs with no motifs (<80% PWM similarity) in target promoter regions, even though the logic 

gate assessment predicted that cooperation between the two RFs is required in order to control the target 

gene expression. Out of 948 yeast TF-TF-target triplets with consistent “AND” gates (see examples in 

Fig. 6), 348 have one TF whose motifs is not present in the target promoters (364 out of 1100 for 

“T=RF1*~RF2”, 377 out of 1095 for “T=~RF1*RF2”). Similarily, in the human leukemia dataset, we 

found that out of 888 TF-TF-target triplets with consistent “AND” gates, 71 have one TF whose motifs 
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is not present in the target promoters. For example (Fig. S2), the triplet: RF1=USF2, RF2=NFYB, 

T=YPEL1 has a consistent “AND” gate, and both TFs have motifs in the YPEL1 promoter region (see 

Fig. S2 for IGV visualizations). By contrast, the triplet of RF1=USF2, RF2=NFE2, T=NBPF1, does not 

have an NFE2 motif in NBPF1’s promoter region, even though it has a dominant “AND” gate. However,  

USF2 and NFE2 are connected through protein-protein interactions, and consequently NFE2 is regulat-

ing NBPF1 through indirect binding (Neph, et al., 2012). As such, we suspect that those TFs with absent 

motifs (as above) can potentially regulate targets through indirect binding by cooperating (through pro-

tein-protein interactions) with directly bound TFs (Biddie, et al., 2011; Farnham, 2009; Gordan, et al., 

2009; Neph, et al., 2012; Zhao, et al., 2012).  

2.6 Logic gates for feed-forward loops (FFLs) 

Feed-forward loops (FFLs) are RF1-RF2-T triplets where RF1 is also regulating RF2.  FFLs are found to 

be important patterns in regulatory networks, with many following the logics (Mangan and Alon, 2003). 

For the yeast cell cycle, we found that 659 FFLs have consistent logic gates. Two enriched consistent 

logic gates among FFLs are “AND” (162 FFLs, hypergeometric test <1.3*10-3) and “T=RF1” (159 

FFLs, hypergeometric test <7.5*10-5). It has been shown that these two logic gates that also match the 

logics for coherent type 1 FFL (e.g. RF1 activates RF2, both of which activate the target) are more 

abundant that other logic gates (Mangan and Alon, 2003). Then we investigated the FFLs in human leu-

kemia TF-TF-T triplets, and found that the two most abundant consistent logic gates are ‘T=RF1” (1306 

FFLs, hypergeometric test <3.4*10-9) and “T=RF1+~RF2” (1765 FFLs, hypergeometric test <1.7*10-5), 

both of which correspond to the coherent type 4 FFL (RF1 down-regulates RF2 and RF2 down-regulates 

target but RF1 activates target). This suggests that the master TFs, (RF1s) of FFLs in leukemia, aims to 

activate the targets, but due to the gene down regulation action from the second TF, (RF2s,), RF1s sim-

ultaneously down-regulate RF2s to activate the target. Moreover, we did not find any enriched logic 

gates among the triplets that do not form FFLs in both yeast and human. 

2.7 miRNAs and c-Myc double down-regulate to each other 
MYC and miRNAs have been found to down-regulate each other by forming double down-regulatory 

FFLs in leukemia (Tao, et al., 2014). We identified 1805 miRNA-MYC-target triplets with 117 miR-

NAs, and 1143 out of these 1805 triplets have consistent logic gates. Then, out of the 1143 triplets, 446 

match “T=MYC” (hypergeometric test < 2.5*10-124), and 201 match “T=~miRNA+MYC” (hypergeo-

metric test < 4.1*10-25). These two most enriched logic gates, also match the logic for the coherent type 

4 FFL as previously shown in (Mangan and Alon, 2003). This implies that miRNAs repress target ex-
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pressions, while MYC activates it and simultaneously down-regulates miRNAs. We also found that 

there were 56 triplets matching “T=~miRNA*MYC”, and 16 triplets matching “T=~miRNA”, two 

logics matching coherent type 2 FFL. This result suggests that miRNAs repress both MYC and target 

expressions, while MYC aims to activate the targets. In short, those matched logic gates support that the 

miRNAs and MYC form indeed a double-negative regulatory loop in leukemia. 

3 MATERIALS AND METHODS 

Loregic inputs a regulatory network (regulatory factors and their target genes) along with binarized gene 

expression datasets across multiple samples. The binarized gene expressions (on or off) are resulting 

from regulations in the network. The inputs can be chosen from different resources to meet user inter-

ests. In this paper, we used BoolNet (Mussel, et al., 2010) to obtain binarized gene expressions, but ones 

can also input their customized binarized expression datasets. Loregic tries to describe each regulatory 

module (triplet) consisting of two regulator factors and one common target gene using a particular type 

of logic; i.e., the binarized gene expression changes in the triplet across samples highly match a particu-

lar two-input-one-output logic gate. If Loregic is able to find such a logic gate, we claim that the triplet 

is consistent with logics, and refer to the gate as the consistent logic gate for the triplet, and give the cor-

responding consistency score. If not, we claim that the triplet is inconsistent with logic gates; i.e., the 

cooperativity of two RFs may not be described by logics. In this paper, we reveal Loregic’s capabilities, 

analyzing transcription factors, micro-RNAs (miRNAs) and their target genes. In details, Loregic algo-

rithm comprises of five steps (Figure 1): 

Step 1: Input gene regulatory network consisting of regulatory factors and their target genes; 

Step 2: Identify all RF1-RF2-T triplets where RF1 and RF2 co-regulate the target gene T; 

Step 3: Given a particular triplet (RF1, RF2 and T) query the binarized gene expression data; 

Step 4: Match the triplet’s gene expressions against all possible two-in-one-out logic gates based on 

the binary values; 

Step 5: Find the consistent logic gate(s) that best matches the expressions and calculate the consistency 

score. Test the score significance against random effects;  

Repeat Step 3-5 for all triplets in the regulatory network. 

After determining the triplets consistent with logics, we can map them to other features of regulatory 

networks, and see how logics enrich in those features. Though we can relate any regulatory features 

(Discussion), we focus on two important ones in this paper: 1) Feed-forward loops (FFLs), a common 
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network motif with RF1-RF2-T and RF1 also regulating RF2, where we predict FFL logics; 2) TF pro-

moter sequence motifs, where we use the predicted TF logics to infer the potential indirect bindings. 

3.1 Gene expression, transcription factor and miRNA datasets 

We analyzed the gene expression in yeast using three well-studied cell-cycle datasets: 1) alpha-factor 

time course with 18 time points (0, 7’, … , 119’); 2) cdc15 time course with 24 time points (10’, 30’, … 

, 290’) and 3) cdc28 time course with 17 time points (0, 10’, … , 160’)  (Cho, et al., 1998; Spellman, et 

al., 1998). We combined all three datasets (5581 genes and 59 time points), and standardized gene ex-

pressions for each time point. For gene regulation in yeast, we used the transcription factors with their 

target genes identified in (Harbison, et al., 2004; Jothi, et al., 2009), and found 39011 TF-TF-target tri-

plets. 

For the study of gene expression in human leukemia, we obtained RPKM expressions in RNA-seq for 

~20k protein-coding genes (705 miRNAs) across 197 (188) samples with Acute Myeloid Leukemia 

(AML) from The Cancer Genome Atlas (TCGA) Data Portal (https://tcga-data.nci.nih.gov/tcga/). We 

standardized log(RPKM+1) across genes for each sample. We identified 50865 TF1-TF2-target (i.e., 

RF1=TF1, RF2=TF2, T=target gene) triplets using ChIP-seq data in ENCODE K562 cell line 

(Consortium, 2011; Djebali, et al., 2012; Gerstein, et al., 2012), and 56944 miRNA-TF-target (i.e., 

RF1=miRNA, RF2=TF, T=target gene) triplets using confident miRNA-targets for human K562 cell line 

in (Chen, et al., 2014). Because TFs can also bind to the distal regulatory regions such as enhancers 

(here denoted as ‘distTF’), we also included 821 distTF-TF-target (i.e., RF1=distTF, RF2=TF, T=target 

gene) triplets. The distTFs were obtained from (Yip, et al., 2012). 

3.2 Converting gene expression changes over conditions to Boolean values 

Previous Boolean models normally converted the gene expression to 1 or 0 based on whether its expres-

sion values are greater (1) or not (0) than an imposed threshold. This method, however, is subjective to 

the selected threshold, which may vary depending on genes or datasets. Moreover, the gene expression 

varies dynamically over conditions if their regulators express differently. As such there can be different 

thresholds for highly or lowly expressed genes. Thus, we converted gene expressions to Boolean values 

(1 or 0) using BoolNet (Mussel, et al., 2010). This method uses K-means clustering to group genes into 

co-expression modules, and discretizes gene expressions to binary values from co-expressed modular 

patterns across time points (yeast) or AML patients (human). 

3.3 Mapping and scoring a RF-RF-T triplet to 16 logic gates 
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A logic gate with two inputs (RF1, RF2) and one output (T) can be determined by a combination of four 

(RF1, RF2, T) binary vectors, v1=(RF1=0, RF2=0, T), v2= (RF1=0, RF2=1, T), v3= (RF1=1, RF2=0, T), 

and v4=(RF1=1, RF2=1, T) with specific values (0 or 1) for T, also known as a truth table. With 24 dif-

ferent combinations of T values, we obtain 16 different logic gates (Fig. S1), where ‘~’ denotes NOT 

(negative regulation), ‘*’ denotes AND and ‘+’ denotes OR logic operations. Given a RF1-RF2-T tri-

plet, we find output T (0 or 1) for each of four input combinations of RF1 and RF2, and find the logic 

gate(s) whose truth tables matches best the four outputs as follows. Suppose that we have a triplet with 

m binary vectors in total. For a given logic gate g, we define the gate consistency score of the triplet, 

S(g)=(n1 +n2 +n3 +n4)/m, where ni as number of vectors matching vi(g) with i=1,2,3,4.  

For example (Fig. 2), suppose a triplet with RF1=TF1, RF2=TF2, and T=target, has m=20 binary vec-

tors after conversion. There are 5 vectors with RF1=0 and RF2=0, all of which have output of T=0 (red). 

Thus, when RF1=0 and RF2=0, the output of this triplet is more likely to be 0 (T=0), so (RF1=0, RF2=0, 

T=0) is chosen as the most suitable triplet-logic gate match. Next, there are 5 vectors with RF1=0 and 

RF2=1, four of which have output of T=0 (green), and one of which has output of T=1. We choose 

(RF1=0, RF2=1, T=0) as the most common/expected triplet, because for the given input the majority of 

cases has zero as the output value. Similarly, when RF1=1 and RF2=0, T=0 is chosen (magenta) because 

it appears more than T=1. Finally, when RF1=1 and RF2=1, T=1 is chosen (orange) because it appears 

four times but T=0 appears only once. Combining the outputs chosen for four different input combina-

tions of RF1 and RF2, we obtain the triplet’s truth table, and find that it matches the AND logic gate. As 

such we define the AND gate as consistent logic gate for this triplet, and calculate its consistency score. 

This score is equal to number of the vectors matching AND logic gate over the total number of vectors; 

i.e., S(AND)=(n1 +n2 +n3 +n4)/m =(5+4+5+4)/20=0.9. 

3.4 Testing consistent logic gate significances of triplets by randomizing their tar-

gets 

In order to test the consistent logic gate identified not due to chance, given a triplet of (RF1, RF2, T), we 

calculate its significances over the 16 logic gates’ scores as follows. We suppose that it matches the kth 

logic gate, Gk. We replace the target gene, T by a randomly selected gene N times (e.g., N=1000), and 

define its significance score, as p(Gk)=(number of matched logic gate=Gk)/N. Thus, a high significance 

score implies that random effects may cause the matched logic gate. In this paper, we select the con-

sistent logic gates within top 2% of consistency and significance scores. 
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4 DISCUSSION 

Loregic is a computational method using logic-circuit models to characterize the cooperativity among 

regulatory factors such as transcription factors and miRNAs by integrating gene expression and regula-

tory networks. Loregic can be further extended to study coordination among other regulatory elements 

such as splicing factors, long non-coding RNAs and so on through availability of high quality expression 

(e.g., RNA-seq, small RNA-seq), and regulation (e.g., ChIP-seq, CLIP-seq, DNase-seq) datasets. 

  Loregic is capable to relate triplet logics to any features of regulatory networks. Here, we map the log-

ic-consistent triplets to two regulatory features including feed-forward loops (FFLs), a common network 

motif reflecting the hierarchical structure of regulatory networks. A straightforward future work is to 

find enrichments of the logic-consistent triplets in hierarchical layers, and identify logic co-operations 

between and among regulatory factors at different hierarchical layers; e.g., top, middle and bottom lay-

ers found in (Bhardwaj, et al., 2010; Bhardwaj, et al., 2010; Gerstein, et al., 2012). 

We test Loregic using 2-RFs-1-target triplets and particularly focusing on TF/miRNA-TF-target tri-

plets. We highlight that Loregic could be also used to analyze the regulatory modules with multiple RFs 

and multiple target genes as long as there is enough expression data support (2N samples, N is number of 

RFs in module). For those regulatory modules with N1 RFs and N2 targets, we have 2N1 input combina-

tions and 2N2 output combinations, and we calculate the consistency scores associated with correspond-

ing logic gates with N1-input and N2-output. 

We convert the gene expression to Boolean values by comparing co-expression patterns across sam-

ples. Using a significance test, we are able to use binarized expression values, even for noisy datasets 

(e.g. yeast microarrays) and thus reduce the noise effect.  Loregic is also compatible with other discreti-

zation methods, and is able to use any binarized gene expression data input. 

We find that some triplets didn’t have strong consistency and significance scores for any logic gates, 

indicating that the regulatory cooperativity between those RFs might be random. Another explanation is 

that the target gene expression might be driven by other stochastic biological processes, rather than de-

terministic ones, and thus cannot be simply explained as logic operations. Moreover, the target gene can 

be regulated by more than two RFs, thus we might need the higher-order logic circuit models with mul-

tiple inputs (>2) as discussed above to capture the RF logics to the target. 

To our knowledge, Loregic is the first computational method to systematically characterize the regula-

tory cooperativity using logic-circuit models.  It has a wide variety of applications for the study of regu-

latory mechanisms, and can help build the gene regulatory panoramagram. 
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