
RESPONSE TO REVIEWERS FOR “IDENTIFICATION OF 

ENRICHED REGIONS IN CHIP-SEQ EXPERIMENTS USING A 

MAPPABILITY CORRECTED MULTISCALE SIGNAL 

PROCESSING FRAMEWORK” 
 

RESPONSE LETTER 
 

-- Ref1 – General Remarks -- 
Reviewer 
Comment 

This manuscript presents an improved method for 
identifying significantly enriched regions from ChIP-seq 
experiments, called MUSIC. The current methods for 
analysis of ChIP-seq data suffer from 2 major limitations. 
First, none of them account for repetitive DNA sequence or 
other regions that can affect ChIP-seq peak calling due to 
mappability issues. Second most of the available programs 
struggle with accurately calling peaks for broadly 
distributed histones, such as H3K36me3 and H3K4me1. The 
authors present compelling evidence to show that MUSIC 
offers a solution to both of these issues, and is a 
significant improvement over most previous methods. The 
paper is well written and the data are presented clearly 
and the conclusions are well supported by the results. I 
only have minor comments, which can be addressed in a 
revised version. Overall, I’m very pleased with this 
manuscript and I look forward to using MUSIC as my 
preferred ChIP-seq analysis package. 

Author 
Response 

We thank the reviewer for the constructive comments. We 
address the comments of the reviewer in a point by point manner 
below. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref1.1 – Smoothed Signal Track Outputs -- 
Reviewer 
Comment 

MUSIC outputs a list of peaks and corresponding enrichment 
scores. This is fine, but it would be very helpful if the 
program also outputted a track of the processed (smoothed) 
data that could be loaded onto a Browser, so that the 
degree of smoothing could be visualized. A “before” and 
“after” version of these tracks would be particularly 
useful. 

Author 
Response 

We agree with the reviewer that the visualization of the data is an 
important aspect of assessing the results and would make 
MUSIC much more useful. For this, we added an option to 
MUSIC to write the smoothed signal tracks (for each track) in 
bedGraph format with the output ER’s. These can easily be 



loaded to a genome viewer to visualize the files locally or 
uploaded to other genome browsers like UCSC Genome 
Browser. We updated the manuscript to present that the 
smoothed tracks can be outputted as bedGraph files. 

Excerpt From 
Revised Manuscript 

Section 2.1.1: For each ER, MUSIC also computes a summit (See Methods Section 4.10), and a 
trough in the ER. The summits represent the point of strongest binding/modification in the ER 
and troughs represent the point where there is a depletion of signal, which may represent the 
nucleosome-free regions (See Methods Section 4.10.)  Finally, in order to visualize the 
processed tracks, MUSIC has an option to save the smoothed signal profiles at each 
decomposition scale in bedGraph format that can be loaded to a genome browser. 

 

-- Ref1.2 – Troughs in the Signal -- 
Reviewer 
Comment 

Second, I’m struggling a bit to assess how much of the 
smoothing removes details in a given signal that can 
sometimes be informative. For example, when ChIP-seq data 
is plotted in aggregate, it’s clear that transcription 
factors often bind in the “trough” of a bimodal histone-
peak, corresponding to the nucleosome free region. Does 
MUSIC smooth this out? How often are such regions called 
as a single histone-peak with MUSIC? Do the other programs 
(MACS, etc) tend to split these regions into 2 called 
peaks? A comparative analysis would be helpful. 

Author 
Response 

The referee raised an important point. We agree that the troughs 
can be significant since they may mark the nucleosome free 
regions where regulatory factors (like TFs) can interact with DNA. 
The identification of these troughs are especially hard since the 
decrease in signal can either be related to either real decrease in 
histone modification levels, or simply a decrease in the 
mappability. Our inspection of the ChIP-Seq signal profiles, 
however, shows that the dips in the signal are most frequently 
caused by a decrease in mappability. In fact, it is very hard to 
distinguish between the non-mappable troughs and mappable 
troughs. Therefore, MUSIC currently merges these regions 
together because it aims at identifying the ER as a complete unit, 
for example, for H3K36me3 marks, the whole gene body. The 
other peak callers do not generally merge these regions and tend 
to oversegment the signals. 
 
In order to quantify the amount of decrease in the signal with 
respect to mappability versus the real nucleosome-free regions, 
we concentrated on H3K36me3 and identified the regions that 
were identified in ERs identified by MUSIC that were not 
identified in MACS ERs. Then we performed aggregation of the 
multi-mappability signal and observed that there is a very 
significant decrease in the mappability compared to a set of 
control regions (See Supplementary Figure S6). This result 
suggests that the regions that MUSIC merges (but MACS does 
not) are significantly enriched in regions that have low 



mappability.  
However, since we believe that this is a very important point for 
analysis of punctate histone marks like H3K27ac and H3K4me3, 
we also added a functionality to punctate ER identification mode 
of MUSIC to discover and report the largest trough in the signal in 
each ER that has good mappability (at the level of exonic 
mappability) requirement in each identified ER. We believe this is 
a valuable addition to the functionalities of MUSIC. 
 
We added a paragraph in the manuscript summarizing the above 
result. 

Excerpt From 
Revised Manuscript 

Methods Section 4.10: For DNA-binding protein ChIP-Seq data, e.g. 
transcription factors, MUSIC reports the location of the highest signal 
level within the ER as the summit of the signal, which can be used as 
the binding position. An important consideration in ER identification is 
the identification of valleys (or troughs) in the signal. For example, the 
troughs in H3K4me3 and H3K27ac ERs may correspond to the 
nucleosome free regions in promoters and enhancers, respectively, 
where the transcription factors can interact with DNA and regulate 
transcription. Therefore, identification of the troughs (in addition to the 
summits) is an important piece of additional information for each ER. 
Our analysis, however, shows that much of the troughs in ChIP-Seq 
signal is caused by the decrease in the mappability of the genome (See 
Fig S6). MUSIC reports one trough position in each peak by 
determining the smallest position within the top two tallest peaks such 
that the average multi-mappability around the trough is smaller than 
exonic multi-mappability ( ). No troughs are reported if there is only 
one summit in the ER. 
 

 

-- Ref 2 – General Remarks -- 
Reviewer 
Comment 

Harmanci et al. present a new algorithm called MUSIC to 
identify enriched regions in the ChIP-seq experiments. 
MUSIC aims to correct the systematic noise introduced by 
non-uniform read mappability and devices a smoothing 
strategy to merge fragmented enriched regions in ChIP-seq 
experiments. Furthermore, they applied MUSIC at multiple 
length scales to automatically consider both the narrow 
and broad peaks. They compared the performance of MUSIC 
with several peak-finding algorithms on H3K36me3. Using 
RNA-seq signals as a gold standard, they showed that MUSIC 
achieved better F-measures than the existing methods. In 
particular, they investigated the RNA ploymerase II 
binding ChIP-seq data and showed distinct expressions of 
genes with different length scale of binding peaks. For a 
computational method, it provides some new features such 
as smoothing peaks using read mappability and considering 
multiple length scales. The major concern is that the 
performance assessment is not as thorough as it can be. 



Some details of the parameters set should be provided as 
well. 

Author 
Response 

We thank the referee for constructive comments. The referee’s 
main concern is that MUSIC is not compared to other methods in 
terms of more punctate events such as H3K4me3 and TF’s. We 
updated the benchmark section with the requested comparisons 
in terms of addition of methods and more datasets using 
comparison with different metrics. We also reorganized the 
parameter selection section in order to clarify the presentation 
and added a section to present the parameters of other methods 
used in comparisons.  
 
We address the comments of the reviewer in a point by point 
fashion below. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2.1 – ChIP/Input Normalization Factor Computation -- 
Reviewer 
Comment 

In page 4, "The MUSIC computes a scaling factor using 
linear regression between the ChIP and control signal 
profiles. The slope of the regression is used as 
normalization factor for control." It is unclear how this 
regression was done. A brief explanation would be helpful 
for readers to understand how this was done. 

Author 
Response 

We agree with the reviewer that this is an important point in the 
paper that needs to be clarified. For this, we added Methods 
Section 4.1 to explain the computation of the input normalization 
factor in full detail. 

Excerpt From 
Revised Manuscript 

Methods Section 4.1: It is necessary to normalize the control signal 
profile with respect to ChIP-Seq profile because the read depths can be 
different. For each chromosome, MUSIC first divides the chromosome 
into 10,000 base pair bins then computes the total ChIP-seq and control 
signal in each window. Finally, it estimates the normalization factors as 
the slope of the minimum squared error estimate of the slope:  

 
where  and  represent the total signal in ith bin for ChIP and control 
samples, respectively. The normalization procedure aims to match the 
background signal level in the ChIP sample to the control sample. 
 

 

-- Ref 2.2 – Parameter Selection -- 
Reviewer 
Comment 

In page 4, how are the parameters of l(start) and l(end) 
determined? Also, how are the default values of gamma and 
tau determined? In Methods, it is noted that these 
parameters are set by trial and error. What is this "trial 



and error" procedure? How to judge what parameter values 
perform better? Is there any general guidance of choosing 
the values? Does the choice impact the results? 

Author 
Response 

We agree with the reviewer that the selection of parameters is an 
essential part of MUSIC’s workflow and should be clarified. We 
summarize the parameter selection procedure here briefly: 
 
When selecting l(begin) and l(end) for broad marks (H3K36me3, 
H3K27me3), we utilize the fact a median filter of length l removes 
all the features of length smaller than l/2 within it (See Methods 
Section 4.11 and Supplementary Figure S3). Given the 
distribution of gene-gene distances, we selected l(end) to avoid 
overmerging of consecutive ERs. Similarly, using the gene length 
distribution, we selected l(begin) to avoid missing small ERs. 
Following the discussion in Methods Section 4.11, we set l(begin) 
to 1000 bps and l(end) to 16000 bps. 
 
For punctate marks like H3K4me3, the enrichments are expected 
at scales of at most several kbs (around the promoters) thus we 
set l(end) to 2000bp’s. We set l(start) to 100bp’s so as not to miss 
any small ERs. For most transcription factors, there is almost no 
concept of multiscale processing since the binding is assumed to 
happen at a specific motif and the ERs extend most several 
hundred base pairs (See Figure 2). For TFs, we use 
l(start)=100bps and l(end)=200bps. 
  
Tau is estimated (for all the modes) as the threshold that satisfies 
5% false positive rate under the null model that the reads are 
distributed as a Poisson distribution with a mean estimated from 
the one megabase sliding windows across the genome, as 
defined in equation in Methods Section 4.6.  Thus it is not a free 
parameter.  
 
Gamma is the threshold of the smoothing statistic that is 
introduced to avoid overmerging of the ERs by oversmoothing of 
the signal in the decomposition. In principle, this oversmoothing 
test is a proxy for a statistical test that would compare the 
distribution of signal in the regions at smaller scales that get 
merged into regions at the higher scales and would determine if 
there is a significant shift in the signal levels: We expect that as 
the signal is smoothed, it will diffuse out and become smaller. We 
realized, however, that this would be computationally too costly 
and implemented the test with thresholding the simple test 
statistic presented in Methods Section 4.5. For illustrating how 
different gamma values change the smoothing levels, we plotted 
the distribution of p-values of regions with respect to the 
smoothing statistics for each SSER in a large scale 



decomposition (See Supp Fig. 5). Following these, we decided 
gamma=4 (where we capture around 90% of the SSERs) is a 
reasonable value for thresholding the smoothing ratio statistic. 
For selecting sigma, the interscale multiplicative factor, we 
evaluated different values and observed that above 2, MUSIC 
starts missing too many SSERs. We chose 1.5 as a reasonable 
value for sigma.  
 
We reorganized the Methods Section 4.12 itemizing the above 
points to more clearly explain the selection procedure for these 
parameters. 

Excerpt From 
Revised Manuscript 

Methods Sections 4.12:  

Selection of  and  

For punctate marks (like H3K4me3 and H3K27ac), MUSIC is set to run at the smaller scale 

spectrum with , . This way MUSIC aims at identifying small 

ERs and at identifying the enrichments at a reasonable expected length range of several 
kilobases.  
For transcription factors, for which point binding events occur at almost single base pair 

resolution, MUSIC is set to run at very small scales with , . It 

should be noted that the utility of mappability correction and multiscale decomposition is most 
effective for identification of more broad ERs. 
 

Selection of  

The punctate histone marks (like H3K4me3) and transcription factors (like CTCF) have much 
more punctate ERs than broad histone marks. In addition, the ERs are observed at a much 
smaller spectrum of length scales (See Fig 2). Therefore, the procedure that we used for broad 
marks with large scale spectrum is not very suitable for these marks. For example most of the 

transcription factor peaks are smaller than 500 base pairs. Therefore, for CTCF, we set  to 

500 bps. Similarly, H3K4me3, which marks the promoters, extend over the promoters of genes 

and has ERs of several kilobases. For H3K4me3, we set  to 2000 bps. 

Selection of  

 is the threshold on the ratio of the maximum of the smoothed signal and the unsmoothed 
signal on an SSER. This parameter enables MUSIC to avoid overmerging segments by 
comparing the signal level in the smoothed signal and the original signal. To visualize the effect 

of changing  on the identified SSERs, we computed the SSERs for H3K36me3 and H3K4me3 
marks for K562 cell line. We then identified the computed the smoothing ratio (as given in 
Section 4.5) for each SSER. Then we plotted the cumulative distribution of all the SSERs with 
respect to the smoothing statistic, which is shown in Fig. S5. It can be seen that for H3K4me3 

that the distribution is much more skewed toward smaller  than H3K36me3, which is expected 
since H3K4me3 has much narrower ERs than H3K36me3. To be as inclusive as possible, we 

choose =4 (98% and 90% of the SSERs respectively for H3K4me3 and H3K36me3 pass the 
smoothing statistic test) as a suitable parameter to balance the tradeoff between being inclusive 
in the identified SSERs and overmerging the ERs.   

Selection of  

The final parameter to set is, , which is the multiplicative factor between the consecutive 



scales. Higher values of  decreases the runtime of MUSIC but important information can be 
lost since sampling of the scale space is sparsified. For example, the SSERs that can be 
identified at a mid-scale scale in between can get lost. We evaluated several different values for 

 and observed that for , MUSIC uses a very sparse set of scales that miss many ERs. 

As a suitable compromise, we chose to use . It should be noted that it may be useful 

to utilize smaller values for  when more punctate ERs are being analyzed. For example, we 

used  for performing the scale spectrum analysis in Figure 2. 
 

 

-- Ref 2.3 –Comparison to TFs and DHSs-- 
Reviewer 
Comment 

When evaluating the performance of MUSIC, the authors 
selected H3K36me3 and used RNA-seq signals as the gold 
standard. Clearly MUSIC outperformed the other methods. 
This is not completely unexpected because MUSIC tends to 
identify long enriched regions. What about a comparison on 
signals with narrow peaks of TFs and DHS? There are many 
TF ChIP-seq available and their motifs are also known. It 
would be interesting to see whether MUSIC recovers peaks 
of these TFs containing the motifs. 

Author 
Response 

The referee brings up an important point. We have added a new 
benchmarking section to the manuscript (Sections 2.2.2 and 
2.2.3) for comparing the methods with respect to their accuracies 
for the transcription factor CTCF. MUSIC performs as one of the 
best methods calibrated as a function of the fraction of top peaks 
containing known CTCF sequence motifs. 

Excerpt From 
Revised Manuscript 

Section 2.2: For comparing the accuracy of methods with respect to identification of ERs for 
point binding factors like transcription factors, we used the transcription factor, CTCF, which 
has a well-studied motif associated with it. We identified the ERs using each method (using the 
TF peak calling mode when available). As a gold standard we utilized the motif datasets from 
the ENCODE  project [34]. In order to measure accuracy, we ranked the top 2000 peaks and 
then computed the fraction of ERs with a motif within 150 base pairs of the summit of ERs. The 
results are summarized in Table S2. We observed that MUSIC, SPP, MACS, and DFilter 
perform very similarly followed by other methods. 
 

 

-- Ref 2.4 –Zinba, F-seq, DFilter-- 
Reviewer 
Comment 

There are several recently developed methods that should 
be included for comparison, such as Zinba, F-seq and 
DFilter. These methods also provide flexibility of 
detecting peaks at different length. 

Author 
Response 

We thank the reviewer for pointing out these methods. We have 
added the mentioned methods (ZINBA, F-Seq, and DFilter) in our 
ER identification comparisons, updated the results, and 
highlighted the manuscript. In the benchmark comparisons, the 
parameters were selected from the documentation for each 
method that was best suited for the comparison. We added one 
section to the manuscript (Methods Section 4.13) on the details of 
the options (including parameters) used to run the each of the 
other programs in the benchmarking. The results show that 



MUSIC performs favorably compared to all other methods for the 
analysis of the broad marks. 

Excerpt From 
Revised Manuscript 

Section 2.2:In order to evaluate the accuracy of ERs, we compared MUSIC with 8 other 
algorithms that identify ERs from ChIP-Seq data: DFilter [26], ZINBA [27], F-Seq [28], BCP 
[17], SPP [29], MACS [30], SICER [18], and PeakRanger [31].  A detailed list of the parameters 
used to run each method are presented in the Methods Section 4.12 and 4.13.  
 
Methods Section 4.13: The most recent versions of the tools are downloaded from the website 
and documentations are followed for running the tool in the correct mode. 

1. BCP [17]: For histone marks (H3K36me3, H3K27me3, and H3K4me3), we used 

BCP_HM tool with command line options: ‐f 200 ‐w 200 ‐p 0.05. For CTCF dataset, we 

used BCP_TF tool with command line options: ‐e 10 ‐p 0.00000001 

2. PeakRanger [31]: For histone marks, we used ‘ccat’ option for broad peak calling. For 

CTCF peaks, we used ‘ranger’ option. 

3. ZINBA [27]: For broad histone marks (H3K36me3, H3K27me3), we used the unrefined 

ERs from ZINBA with ‘broad’ flag on as explained in the documentation. For 

H3K4me3 and CTCF peaks, we used the refined peaks with ‘broad’ flag turned off. 

4. F‐Seq [28]: For histone marks and CTCF, F‐Seq is run in default mode. 

5. SICER [18]: For broad marks, SICER is run with the with command options: hg19, 

w=200, fragment_size=150, 0.74, g=600, FDR=0.01. For CTCF, SICER is run with 

smaller gap size of g=200. 

6. SPP [29]: For broad marks, SPP is run in broad mode using 

get.broad.enrichment.clusters(…). For CTCF, the peak calling mode is run using 

find.binding.positions(…). 

7. DFilter [26]: For H3K36me3 and H3K27me3, DFilter is run with command line options 

‘‐nonzero ‐bs=200 ‐ks=40 ‐std=2’ then removed the peaks that has score smaller than 

2. For H3K4me3, DFilter is run using ‘‐bs=100 ‐ks=100 ‐dir ‐std=2’ then peaks with 

score smaller than 6 are removed. For CTCF, we ran DFilter with ‘‐nonzero ‐bs=25 ‐

ks=50 ‐pm=300 ‐std=2’. 

8. MACS [30]: For broad marks, MACS is run with options ‘‐‐broad ‐g hs’. For CTCF, 

MACS is run with ‘‐g hs ‐q 0.01’.  

 
 

 

-- Ref 2.5 –H3K4me3 and TF Comparisons-- 
Reviewer 
Comment 

F-measure is only one simple statistics and a better 
performance on H3K36me3 alone is not sufficient to 
demonstrate that MUSIC is superior to other methods. There 
are additional criteria for performance comparison such as 
comparing active promoters overlapping with H3K4me3 peaks 
called by the methods, percentage of peaks located within 
50bp of motifs for TFs et al.. A thorough comparison can 
be found in the DFilter and Zinbe papers. 

Author 
Response 

We thank the reviewer for the suggested comparisons. We have 
updated the benchmark section with comparisons of H3K4me3 



(i.e. enrichment of active TSS’es around identified H3K4me3 
peaks) and TF experiments (i.e. enrichment of motif around 150 
bp of the identified peak summit as was used in ZINBA paper as 
well as several previous papers). The results demonstrate that 
MUSIC performs favorably for H3K4me3 peaks and performs 
comparably to the best performing methods in terms of motif 
enrichment. 

Excerpt From 
Revised Manuscript 

Section 2.2: For comparing the methods for identification of punctate ERs with smaller length 
scales, we first chose to compare the methods on the H3K4me3 histone modification, which 
marks the promoters of active genes. As a gold standard, we utilized the promoters of the active 
genes (RPKM > 0.5) as the gold standard positives. We identified the ERs that have at least 5% 
overlap with the promoter region (2 kb region around the annotated transcription start site). For 
this comparison, we sorted the top 20,000 ERs with respect to the score reported by each method 
then computed the overlap of the ERs with active promoters. Starting from the top ERs, we 
plotted fraction of active promoters that are identified correctly versus fraction of ERs that 
overlap with active promoters. These are shown in Fig 3c and 3d, respectively for the K562 and 
GM12878 cell lines. MUSIC performs favorably compared to other methods, followed by 
DFilter and SICER. 
 
For comparing the accuracy of methods with respect to identification of ERs for point binding 
factors like transcription factors, we used the transcription factor, CTCF, which has a well-
studied motif associated with it. We identified the ERs using each method (using the TF peak 
calling mode when available). As a gold standard we utilized the motif datasets from the 
ENCODE  project [34]. In order to measure accuracy, we ranked the top 2000 peaks and then 
computed the fraction of ERs with a motif within 150 base pairs of the summit of ERs. The 
results are summarized in Table S2. We observed that MUSIC, SPP, MACS, and DFilter 
perform very similarly followed by other methods. 
 

 

-- Ref 2.6 –Study by Knijnenburg et al.-- 
Reviewer 
Comment 

There was a recent paper published by Knijnenburg et al. 
Nature Methods, 11, 689-694, 2014 that provides a 
multiscale representation of genomic signals. Can the 
authors comment on that study and compare the multiscale 
features of MUSIC with Knijnenburg study? 

Author 
Response 

We thank the reviewer for pointing this relevant paper, which was 
published very close to our submission. The Knijnenburg study 
utilizes a linear Gaussian filtering based multiscale decomposition 
to summarize and visualize the genomic signals. An important 
difference in the methodologies is that MUSIC performs the multi-
mappability correction before performing the multiscale 
decomposition. We observed that this increases accuracy of the 
identified ERs significantly as shown in Figure 3e. Knijnenburg et 
al makes the assumption that the genomics signal is never 
smaller than the mappability signal, which is not hold true for 
most of the public datasets we have analyzed. When Gaussian 
decomposition is utilized, the lowly mappable regions will see a 
high decrease in signal levels and this may substantially distort 
the tree based segmentation used in their decomposition. MUSIC 
aims to correct for these in the mappability correction stage. In 
addition, the non-linear median filtering based decomposition 



used in MUSIC is better tuned to identify the edges in the signal. 
 
In order for the tree based decomposition in Knijnenburg et al to 
successfully work, there are several constraints that has to be 
met (See Babaud et al). For example, the scale space has to be 
sampled densely and completely (starting from very bottom scale 
going to very top scale) so that the full tree can be generated. In 
MUSIC, however, there are no constraints on the scale levels 
(l(begin), l(end), and sigma) and the user can change these 
parameter freely. Similar arguments can be made for l(begin) and 
l(end). 
 
We have added a reference to the study and updated the 
Conclusion Section to briefly reflect our discussion above. 

Excerpt From 
Revised Manuscript 

Conclusion Section: For example, a recent study [39] uses linear Gaussian filtering based 
multiscale decomposition to compute multiscale representations of genomic signals. The non-
uniform mappability of the genome should be expected to substantially affect the representation 
since mappability is utilized in a post-processing step after representation is computed unlike 
MUSIC, where the mappability correction is performed before decomposition is computed. 

 
 


