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PROCESSING FRAMEWORK” 
 

RESPONSE LETTER 
 

-- Ref1 – General Remarks -- 
Reviewer 
Comment 

This manuscript presents an improved method for 
identifying significantly enriched regions from ChIP-seq 
experiments, called MUSIC. The current methods for 
analysis of ChIP-seq data suffer from 2 major limitations. 
First, none of them account for repetitive DNA sequence or 
other regions that can affect ChIP-seq peak calling due to 
mappability issues. Second most of the available programs 
struggle with accurately calling peaks for broadly 
distributed histones, such as H3K36me3 and H3K4me1. The 
authors present compelling evidence to show that MUSIC 
offers a solution to both of these issues, and is a 
significant improvement over most previous methods. The 
paper is well written and the data are presented clearly 
and the conclusions are well supported by the results. I 
only have minor comments, which can be addressed in a 
revised version. Overall, I’m very pleased with this 
manuscript and I look forward to using MUSIC as my 
preferred ChIP-seq analysis package. 

Author 
Response 

We thank the reviewer for the constructive comments. We 
address the comments point by point below. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref1.1 – Smoothed Signal Track Outputs -- 
Reviewer 
Comment 

MUSIC outputs a list of peaks and corresponding enrichment 
scores. This is fine, but it would be very helpful if the 
program also outputted a track of the processed (smoothed) 
data that could be loaded onto a Browser, so that the 
degree of smoothing could be visualized. A “before” and 
“after” version of these tracks would be particularly 
useful. 

Author 
Response 

We agree with the referee that visualization of the data is an 
important aspect of assessing the results and would make 
MUSIC much more useful. For this, we added an option to 
MUSIC to dump the smoothed signal tracks (for each track) in 
bedGraph format with the output ER’s. These can easily be 
converted to bigwig file format for viewing the files locally or 



uploading to other genome browsers like UCSC Genome 
Browser. We updated the manuscript to present that the 
smoothed tracks are saved in bedGraph files. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref1.2 – Troughs in the Signal -- 
Reviewer 
Comment 

Second, I’m struggling a bit to assess how much of the 
smoothing removes details in a given signal that can 
sometimes be informative. For example, when ChIP-seq data 
is plotted in aggregate, it’s clear that transcription 
factors often bind in the “trough” of a bimodal histone-
peak, corresponding to the nucleosome free region. Does 
MUSIC smooth this out? How often are such regions called 
as a single histone-peak with MUSIC? Do the other programs 
(MACS, etc) tend to split these regions into 2 called 
peaks? A comparative analysis would be helpful. 

Author 
Response 

The referee raised a very important point. We agree that the 
troughs can be very important since they may mark the 
nucleosome free regions where the regulatory factors (like TFs) 
can interact with DNA. The identification of these troughs are 
especially hard since the decrease in signal can be related to 
either real decrease in histone modification levels, or simply a 
decrease in the mappability. Our inspection of the ChIP-Seq 
signal profiles, however, shows that the dips in the signal is very 
frequently caused by the decrease in mappability. In fact, it is 
very hard to distinguish between the non-mappable troughs and 
mappable troughs. Therefore, MUSIC currently merges these 
regions together because it aims at identifying the ER as a 
complete unit, for example, for H3K36me3 marks, the whole gene 
body. The other peak callers do not generally merge these 
regions and tend to oversegment the signals. 
 
In order to quantify the amount of decrease in the signal with 
respect to mappability versus the real nucleosome-free regions, 
we concentrated on H3K36me3 signal and identified the regions 
that were identified in ERs identified by MUSIC not identified in 
MACS ERs. Then we performed aggregation of the multi-
mappability signal to assess if there is significant increase in 
multi-mappability signal compared to a set of control regions and 
observed that there is a very significant difference in the 
mappability (See Supplementary Figure S6). This result suggests 
that the regions that MUSIC merges (but MACS does not) are 
significantly enriched in regions that have low mappability.  
 
However, since we believe that this is a very important point for 
analysis of punctate histone marks like H3K27ac and H3K4me3, 



we also added a functionality to punctate peak calling mode of 
MUSIC to identify the smallest dip in the signal in each ER that 
has good mappability (at the level of exonic mappability) 
requirement in each identified ER. We believe this is a valuable 
addition to the functionalities of MUSIC. 
 
We added a paragraph in the paper summarizing our point 
above. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2 – General Remarks -- 
Reviewer 
Comment 

Harmanci et al. present a new algorithm called MUSIC to 
identify enriched regions in the ChIP-seq experiments. 
MUSIC aims to correct the systematic noise introduced by 
non-uniform read mappability and devices a smoothing 
strategy to merge fragmented enriched regions in ChIP-seq 
experiments. Furthermore, they applied MUSIC at multiple 
length scales to automatically consider both the narrow 
and broad peaks. They compared the performance of MUSIC 
with several peak-finding algorithms on H3K36me3. Using 
RNA-seq signals as a gold standard, they showed that MUSIC 
achieved better F-measures than the existing methods. In 
particular, they investigated the RNA ploymerase II 
binding ChIP-seq data and showed distinct expressions of 
genes with different length scale of binding peaks. For a 
computational method, it provides some new features such 
as smoothing peaks using read mappability and considering 
multiple length scales. The major concern is that the 
performance assessment is not as thorough as it can be. 
Some details of the parameters set should be provided as 
well. 

Author 
Response 

We thank the referee for constructive comments. The referee’s 
main concern is that MUSIC is not compared to other methods in 
terms of more punctate events such as H3K4me3 and TF’s. We 
updated the benchmark section with the requested comparisons 
in terms of addition of methods and more datasets using 
comparison with different metrics. 
 
We first would like to note that we chose the other methods in the 
benchmark because they all have broad ER identification modes 
implemented in them. 
 
We address these concerns below point by point. 
 
We also would like to emphasize an important point about 
MUSIC. MUSIC is specifically designed to process the ChIP-Seq 
signal using a multiscale approach and the multiscale approach is 
utilized best for the signals that show ERs at large spectrum of 



length scales. [[ Punctate events are not affected much by the 
non-uniform mappability and multiscale comparisons ]] 
 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2.1 – ChIP/Input Normalization Factor Computation -- 
Reviewer 
Comment 

In page 4, "The MUSIC computes a scaling factor using 
linear regression between the ChIP and control signal 
profiles. The slope of the regression is used as 
normalization factor for control." It is unclear how this 
regression was done. A brief explanation would be helpful 
for readers to understand how this was done. 

Author 
Response 

We agree with the reviewer that this is an important point in the 
paper that needs to be clarified. For this, we added Section 4.1 in 
Methods Section to explain the computation of input 
normalization factor in full detail. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2.2 – Parameter Selection -- 
Reviewer 
Comment 

In page 4, how are the parameters of l(start) and l(end) 
determined? Also, how are the default values of gamma and 
tau determined? In Methods, it is noted that these 
parameters are set by trial and error. What is this "trial 
and error" procedure? How to judge what parameter values 
perform better? Is there any general guidance of choosing 
the values? Does the choice impact the results? 

Author 
Response 

We agree with the reviewer that the selection of parameters is an 
essential part of MUSIC workflow and should be clarified. For 
selecting l(begin) and l(end) for broad marks (H3K36me3, 
H3K27me3), we utilize the fact a median filter of length l removes 
all the features of length smaller than l/2 within it (See Section 
4.11 and Supplementary Figure S3). Given the distribution of 
gene-gene distances and gene lengths, we used this fact to 
minimize over-merging and over-segmentation of the signal while 
detecting gene-wide ERs. For punctate marks like H3K4me3 the 
enrichments are expected at scales of at most several kbs thus 
we set l(end) to 2000bp’s. For these we set l(start) to be 100bp’s 
so as not to miss any small ERs. For most transcription factors, 
there is almost no concept of multiscale processing since the 
binding is assumed to happen at certain point. For TFs, we use 
l(start)=100bps and l(end)=200bps. 
  
tau is estimated (for all the modes) as the threshold that satisfies 
5% false positive rate under the null model that the reads are 
distributed with Poisson distribution with mean estimated from the 



1 megabase windows over the genome (See Section 4.6).  Thus 
it is not a free parameter.  
 
gamma is the threshold on the smoothing statistic that is 
introduced to avoid overmerging of the ERs by oversmoothing of 
the signal in the decomposition. In principle, this oversmoothing 
test is a proxy for a statistical test that would compare the 
distribution of signal in the regions in smaller scales that get 
merged regions in the higher scales and determine if there is 
significant shift in the signal levels: We expect that as the signal 
is smoothed, it will diffuse out and become smaller. We realized, 
however, that this would be computationally too costly and 
implemented the test with thresholding the simple test statistic 
presented in Section 4.5. For illustrating how different gamma 
values change the smoothing levels, we plotted the distribution of 
p-values of regions with respect to the smoothing statistics for 
each SSER in a large scale decomposition (See Supp Fig. 5). 
Following these, we decided gamma=4 (where we capture 
around 90% of the SSERs) is a reasonable value for thresholding 
the smoothing statistic. 
 
For selecting sigma, interscale multiplicative factor, we evaluated 
different values and observed that above 2, MUSIC starts missing 
too many SSERs. Since sigma has to be greater than 1, we 
chose 1.5 as a good value for sigma.  
 
We updated the Section 4.11 to more clearly explain the selection 
procedure for these parameters. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2.3 –Comparison to TFs and DHSs-- 
Reviewer 
Comment 

When evaluating the performance of MUSIC, the authors 
selected H3K36me3 and used RNA-seq signals as the gold 
standard. Clearly MUSIC outperformed the other methods. 
This is not completely unexpected because MUSIC tends to 
identify long enriched regions. What about a comparison on 
signals with narrow peaks of TFs and DHS? There are many 
TF ChIP-seq available and their motifs are also known. It 
would be interesting to see whether MUSIC recovers peaks 
of these TFs containing the motifs. 

Author 
Response 

The referee brought up an important point. We added a new 
benchmarking section to the manuscript (Sections 2.2.2 and 
2.2.3) for comparing the methods with respect to their accuracies 
for TFs and we also included H3K4me3 in the comparisons. 

Excerpt From 
Revised Manuscript 

 

 



-- Ref 2.4 –Zinba, F-seq, DFilter-- 
Reviewer 
Comment 

There are several recently developed methods that should 
be included for comparison, such as Zinba, F-seq and 
DFilter. These methods also provide flexibility of 
detecting peaks at different length. 

Author 
Response 

We thank the reviewer for pointing out these methods. We added 
the mentioned methods (ZINBA, F-Seq, and DFilter) in our ER 
identification comparisons, updated the results, and highlighted 
the manuscript. We ran all the tools (including other programs) in 
the broad ER identification mode. We added one section to the 
manuscript (Section 4.13) on the details of the options used to 
run the other programs in the benchmarking. The results show 
that MUSIC performs favorably compared to other methods for 
broad marks. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2.5 –H3K4me3 and TF Comparisons-- 
Reviewer 
Comment 

F-measure is only one simple statistics and a better 
performance on H3K36me3 alone is not sufficient to 
demonstrate that MUSIC is superior to other methods. There 
are additional criteria for performance comparison such as 
comparing active promoters overlapping with H3K4me3 peaks 
called by the methods, percentage of peaks located within 
50bp of motifs for TFs et al.. A thorough comparison can 
be found in the DFilter and Zinbe papers. 

Author 
Response 

We thank the reviewer for the suggested comparisons. We 
updated the benchmark section with comparisons of H3K4me3 
and (enrichment of active TSS’es around identified H3K4me3 
peaks) and TF experiments (enrichment of motif around 150 bp 
as it was used in ZINBA paper and several previous papers) of 
the identified peak summit). The results suggest that MUSIC 
performs favorably for H3K4me3 peaks and comparable with the 
best performing methods for motif enrichment. 

Excerpt From 
Revised Manuscript 

 

 

-- Ref 2.6 –Study by Knijnenburg et al.-- 
Reviewer 
Comment 

There was a recent paper published by Knijnenburg et al. 
Nature Methods, 11, 689-694, 2014 that provides a 
multiscale representation of genomic signals. Can the 
authors comment on that study and compare the multiscale 
features of MUSIC with Knijnenburg study? 

Author 
Response 

We thank the reviewer for pointing this relevant paper, which was 
published very close to our initial submission. The Knijnenburg 
study utilizes a Gaussian filtering based multiscale decomposition 
to summarize and visualize the genomic signals. Although the 



authors present a pruning approach for identification of peaks, 
MSR is not designed primarily for identification of ERs, thus we 
cannot directly compare MSR with MUSIC, i.e.: “.. Consistent with 
our principal goal of investigating the ability of the MSR method to 
enable multiscale comparisons between heterogeneous genomic signals 
(rather than the specific data reduction step of peak-calling), we used the 
'unpruned' MSR for all subsequent analyses. ...” 
 
There is no discussion on selection of scales and we are afraid 
that the pruning methodology proposed in the study will cause 
extensive overmerging of the ER. 
 
We also would like to point out that multiscale feature detection is 
a very broad area of research in electrical engineering literature. 
The Gaussian scale space approach utilized by Knijnenburg et al 
is a linear approach and MUSIC utilizes a novel median filtering 
based non-linear approach. We believe there is significant 
difference in two decomposition methodologies. More specifically 
in terms of methodology, MUSIC is different from Knijnenburg et 
al’s approach in three basic aspects:  
 
First, MUSIC performs the multi-mappability correction before 
performing the multiscale decomposition. We observed that this 
increases accuracy of identified ERs significantly as shown in 
Figure 3e. Knijnenburg et al  considers mappability for building a 
background in the enrichment step and not in the decomposition 
step and does not take into account the mappability effects while 
building the decomposition. But the assumption is that the 
genomics signal is never smaller than the mappability signal, 
which is definitely not correct for the datasets that we evaluated. 
When Gaussian decomposition is utilized, the lowly mappable 
regions will see high decrease in signal levels and this will 
seriously distort the tree based segmentation using the 
decomposition. MUSIC, however, takes this into account in the 
mappability correction stage.  
 
In order for the pruning and Gaussian decomposition to work, 
Gaussian decomposition to work, there are assumptions on how 
fine the scale space is sampled, which corresponds to the 
parameter sigma in MUSIC. In addition, MSR can be built only 
from the 50 scale decomposition of each chromosome which 
ensures that all chromosome becomes on node in the 
segmentation. In MUSIC, however, there is no constraint on the 
scale levels and the user can change this parameter freely but 
which is not possible in MSR building. Similar arguments can be 
made for l(begin) and l(end).  



 
Finally, MUSIC uses a median filtering based non-linear 
multiscale decomposition (unlike the linear Gaussian filter), which 
is shown to be much more robust with respect to the impulse 
noise (refer to the manuscript) introduced by the lowly-mappable 
regions in the genome and which has better edge preserving 
capability in the smoothing. This should allow MUSIC to recover 
the peaks more accurately [\cite]. Please note that non-linear 
multiscale feature detection is an active area of research in 
electrical engineering. 
 
We updated and highlighted the manuscript to reflect these 
arguments. 

Excerpt From 
Revised Manuscript 

 

 
 


