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Abstract 
 
Large-scale sequencing of personal genomes has revealed multitudes of genomic variants, but 
for the majority, their functional impact is unknown. Here, we annotate the allele-specific 
behavior of many variants, including rare ones. Allele-specific behavior can be assessed by 
observing allelic imbalance in the readouts of ChIP-seq and RNA-seq experiments. To this end, 
we pool and uniformly reprocess many previous experiments, organizing the results into a 
database, AlleleDB. Overall, we detect 169,235 allele-specific binding SNVs and 144,083 allele-
specific expression SNVs, representing 41% and 21% of SNVs accessible by the respective 
assays. Using the accessible non-allelic SNVs as controls, we identify genomic annotations 
(genes and categories of non-coding elements) significantly enriched or depleted in allele-
specific behavior, such as the SNURF and FHIT genes and promoters with binding sites for 
RPB2 and PU.1 transcription factors. Finally, we find that allele-specific SNVs tend to be in 
regions under less purifying selection. 
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Introduction 
 
In recent years, the number of personal genomes has increased dramatically, from single 
individuals1–3 to large sequencing projects such as the 1000 Genomes Project4, UK10K5 and the 
Personal Genome Project6. These efforts have provided the scientific community with a massive 
catalog of human genetic variants, most of which are rare.4 Subsequently, a major challenge is to 
functionally annotate these variants.  
 
Much of the characterization of variants so far has been focused on those found in the protein-
coding regions, but the advent of large-scale functional genomic assays, such as chromatin 
immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq), has facilitated the 
annotation of genome-wide variation. This can be accomplished by correlating functional 
readouts from the assays to genomic variants, particularly in identifying regulatory variants, such 
as mapping of expression quantitative trait loci (eQTLs)7–9 and allele-specific (AS)10,11 variants. 
eQTL mapping assesses the effects of variants on expression profiles across a large population of 
individuals and is usually used for detection of common regulatory variants. On the other hand, 
AS approaches assess phenotypic differences directly at heterozygous loci within a single 
genome. Using each allele in a diploid genome as a perfectly matched control for the other allele, 
AS variants can be detected regardless of their population allele frequencies. Therefore, AS 
approaches are very useful, in terms of functionally annotating personal genomes, for identifying 
cis-regulatory variants on a large scale.  
 
Early high throughput implementations of AS approaches employed microarray technologies, 
and thus are restricted to a small subset of loci.12–14 Later studies have used ChIP-seq and RNA-
seq experiments for genome-wide measurements of AS variants but have been mostly limited to 
a single assay with a variety of individuals,15 or a few individuals with deeply-sequenced and 
well-annotated genomes.11,16 For instance, GM12878, a very well-characterized lymphoblastoid 
cell-line from a Caucasian female, has several RNA-seq datasets and a huge trove of ChIP-seq 
data for more than 50 transcription factors (TFs) distributed across multiple studies.17–19 Merging 
these datasets is advantageous, be it increasing statistical power or simply having more features 
for more intra- and inter-individual comparisons (such as TFs and populations). 
 
AS variant detection is extremely sensitive to the technical issues associated with variant calling, 
RNA-seq and ChIP-seq experiments, such as heterozygous variant calling and read mapping.20–23 
For example, allele-specific SNVs detected in copy number variants have a higher rate of false 
positives, since copy number changes can easily masquerade as allelic imbalance. Moreover, 
studies with the appropriate datasets are typically designed with various goals.24,25 These reasons 
portend that simply pooling results from multiple studies may not be optimal even for the same 
biological sample. The task of merging has to be carried out in a uniform and systematic manner 
to yield interpretable results. To this end, we organize and unify datasets from eight different 
studies into a comprehensive data corpus and repurpose it especially for allele-specific analyses. 
We detect more than 169K and 144K single nucleotide variants (SNVs) associated with allele-
specific binding (ASB) and expression (ASE) events respectively. We are able to present a 
comprehensive survey of these detected AS SNVs in various categories of coding and non-
coding genomic annotations. The variants and annotations are available in a resource, AlleleDB 
(http://alleledb.gersteinlab.org/). Finally, using our consolidated data, we investigate the extent 
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of purifying selection in allele-specific SNVs and the inheritance of allele-specific binding in 
seven different transcription factors. 
 
 
Results 
 
AlleleDB Workflow 
There are two layers of information with respect to an individual that needs to be integrated in 
order to more accurately detect AS SNVs: (1) the DNA sequence of the individual, and (2) reads 
from either the RNA-seq or ChIP-seq experiment to assess SNVs associated with ASB or ASE. 
Here, we implement a uniform pipeline to combine personal genomic, transcriptomic and 
binding data and to standardize our detection of potential AS SNVs (Figure 1). First, we 
construct a diploid personal genome for each of the 383 individuals, using variants from the 1000 
Genomes Project. By mapping the reads to the respective personal genome instead of the human 
reference genome, we reduce reference bias that can potentially result in erroneous read 
mapping.16 Next, we pool the reads from each individual’s ChIP-seq or RNA-seq data and align 
them to each of the haploid genomes. In total, we reprocess 117 ChIP-seq and 475 RNA-seq 
datasets for 383 individuals. Lastly, the AS SNVs are detected based on allelic imbalance of 
reads between the two haplotypes at heterozygous loci. For ChIP-seq data, the SNVs are further 
pared down to those within peak regions. We also remove SNVs if they lie in regions predicted 
to be copy number variants (see Methods). 
 
We further define sets of ‘control’ SNVs. This is especially pertinent to our enrichment analyses, 
since the results are dependent on the choice of the null expectation (controls). The control SNVs 
are not allele-specific and are derived from a set of ‘accessible’ SNVs, which are heterozygous 
SNVs and possess at least the minimum number of reads to be statistically detectable for allelic 
imbalance. The accessible SNVs are determined for each ChIP-seq (grouped by individual and 
TF, not by study) or RNA-seq dataset (Table 1). In other words, these controls match the AS 
SNVs by accessibility for statistical significance and being heterozygous.  
 
By comparing AS SNVs relative to the control SNVs in each genomic annotation (see Methods), 
we investigate the enrichment (or depletion) of AS SNVs in 953 categories of non-coding 
genomic elements, including DNaseI hypersensitivity sites and transcription factor binding 
motifs from the ENCODE rollout26, and 19,257 autosomal protein-coding genes from 
GENCODE27. We also extend this analysis to gene elements, such as introns and promoter 
regions and six other gene categories, including housekeeping and imprinted genes (see 
Methods). Together, these provide a systematic survey of ASB and ASE with respect to various 
functional annotations in the human genome. 
 
We build a database, AlleleDB (http://alleledb.gersteinlab.org/), to house the annotations, the 
predicted AS and accessible SNVs. AlleleDB can be downloaded as flat files or queried and 
visualized directly as a UCSC track in the UCSC Genome browser28 as specific genes or 
genomic locations. This enables cross-referencing of AS variants with other track-based datasets 
and analyses, and makes it amenable to all functionalities of the UCSC Genome browser. 
Heterozygous SNVs found in the stipulated query genomic region are color-coded (AS SNVs are 
red, accessible SNVs are black) in the displayed track.  
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ASB Inheritance analyses using CEU trio 
The CEU trio is a well-studied family and particularly, many ChIP-seq studies were performed 
on different TFs. Previous studies have presented AS inheritance in a few TFs as a case-
study.11,18 Here, after uniformly processing datasets from multiple studies, we are able to analyze 
and compare the heritability of ASB across seven DNA-binding proteins in a consistent manner 
(Figure 2; see Methods). For the DNA-binding protein CTCF, we observe a high parent-child 
correlation (Figure 2), denoting great similarity in allelic directionality (Pearson’s correlation, r ≥ 
0.9 in both parent-child plots). High inheritance of AS SNVs in the same allelic direction from 
parent to child also implies a sequence dependency in allele-specific behavior. Besides CTCF, 
PU.1, PAX5, POL2, SA1 also show AS inheritance. Comparatively, AS inheritance in MYC and 
RPB2 are not as apparent, indicating that inheritance of ASB behavior may not be a universal 
phenomenon in all TFs. 
 
Allele-specific variants and enrichment analyses 
Using the AlleleDB variants found in the personal genomes of the 2 parents of the trio and 380 
unrelated individuals from Phase 1 of the 1000 Genomes Project, we focus on autosomal SNVs 
and detected 144,083 ASE and 169,235 ASB SNVs, representing 21% and 41% of the accessible 
SNVs respectively (Table 1). The higher number of ASB SNVs observed is in line with a 
previous study that showed more variability in binding than in expression among individuals.19 
Of great interest, is the annotation of these AS SNVs with respect to known genomic elements, 
both coding and non-coding. 56% of our candidate ASE SNVs and 6% of ASB SNVs are in the 
coding DNA sequences (CDS). From 953 non-coding categories, we observed statistical 
significance (Bonferoni-corrected p < 0.05) for 632 and 441 categories for ASB and ASE SNVs 
respectively. From 19,257 autosomal protein-coding genes, we observed statistical significance 
for 31 and 442 genes for ASB and ASE SNVs respectively (Supplementary files 1 and 2). Some 
genes are expected, while some are not evidently so. For example, SNURF is a maternally-
imprinted gene, shown to be highly implicated in the Prader-Willi Syndrome, an imprinting 
disorder.29 Thus, it is expected to be significantly enriched in allele-specific behavior in our 
analyses. On the other hand, FHIT is a tumor suppressor gene significantly depleted in allele-
specific behavior. While it is known to be a sensitive locus implicated in a variety of cancers,30,31 
it is not obvious why allele-specific behavior is depleted in this gene. 
 
Figure 3 shows the enrichment of AS SNVs to provide a survey of AS regulation in elements 
closely related to a gene model, namely enhancers, promoters, CDS, introns and untranslated 
regions (UTR). In general, both categories of AS SNVs are more likely found in the 5’ and 3’ 
UTRs, suggesting allele-specific regulatory roles in these regions. On the other hand, intronic 
regions seem to exhibit a dearth of allele-specific regulation. For SNVs associated with allele-
specific expression (ASE), a greater enrichment in 3’ UTR than 5’ UTR regions might be, in part, 
a result of known RNA-seq bias.32,33 For SNVs associated with allele-specific binding (ASB), we 
also observe an enrichment in promoters, suggesting functional roles for these variants found in 
TF binding motifs or peaks found near transcription start sites in the promoter regions to regulate 
gene expression. However, we see variable enrichments of ASB SNVs of particular TFs in 
promoter regions such as RPB2, while depletion in others, such as PU.1 (Figure 3, 
Supplementary file 3). These differences imply that some TFs are more likely to participate in 
allele-specific regulation than others. 
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We also compute the enrichment of AS SNVs in various gene categories. Some of them have 
been known to be involved in monoallelic expression (MAE)34,35, namely imprinted genes,36 
olfactory receptor genes,37 the major histocompatibility complex,38 immunoglobulin genes and 
genes associated with T cell receptors.39 We also include a list of genes found to experience 
random monoallelic expression (RME) in a study by Gimelbrant et al (2007).40 As expected, 
most of the MAE gene sets have been found to be significantly enriched in both ASB and ASE 
SNVs, with the exception of the olfactory receptor, T cell receptor and RME genes, where 
enrichment is not observed in ASB. Interestingly, while a statistically significant enrichment of 
ASB SNVs is observed in the constitutively expressed housekeeping genes, there is no 
enrichment in ASE SNVs (Figure 3).  
 
Rare variants and purifying selection in AS SNVs 
To assess the occurrence of ASB and ASB SNVs in the human population, we consider the 
population minor allele frequencies (MAF). Table 1 shows the breakdown of the accessible and 
AS SNVs in seven ethnic populations and allele frequencies. Yoruba from Ibadan, Nigeria (YRI) 
contribute the most to both ASE and ASB variants at each allele frequency category. The number 
of rare AS SNVs (MAF ≤ 0.5%) is abou t two folds higher in the YRI (48% ASE SNVs and 34% 
ASB SNVs with MAF ≤ 5%) than the ot her European sub-populations of comparable (CEU, FIN) 
or larger (TSI) population sizes (see Methods for full explanation of population abbreviations). 
In general, rare variants do not form the majority of all the AS variants. Nonetheless, we observe 
a shift towards very low allele frequencies in AS SNVs, peaking at MAF ≤ 0.5% (Figure 4).  
 
To examine selective constraints in AS SNVs, we consider the enrichment of rare variants with 
MAF ≤ 0.5%.4,41 Our results show lower enrichment of rare variants in AS SNVs as compared to 
non-AS SNVs. This posits that, as a whole, AS SNVs are under lesser selective constraints than 
non-AS SNVs. Such weaker selection may be a result of accommodating varying levels of gene 
expression across individuals. In addition, ASB SNVs seem to be under less selective constraints 
than ASE SNVs, which aligns with more variability being observed in binding than expression. 
 
 
Discussion 
 
Much research on regulatory variants has been performed using eQTL mapping of common 
variants. AS analyses can provide a complementary approach for detecting regulatory variants. 
Firstly, we found a substantial number of very rare AS SNVs with MAF ≤ 0.5%.  Rare SNVs are 
harder to assess by eQTL mapping and the number is expected to increase with more personal 
genomes. Secondly, in eQTL mapping, correlation is drawn between total expression measured 
between individuals in a population and their genotypes. This is allele-insensitive as the total 
expression across a single locus is measured. However, in an AS approach, even if the total 
expression is the same across genotypes, difference in allelic expression can still be detected. 
Such a within-individual control in an AS approach also alleviates normalization issues across 
multiple assays. Thirdly, eQTL mapping is contingent on population size for sufficient statistics, 
while the AS approach can detect AS effects en masse within a single individual’s genome. This 
makes it an attractive strategy for biological samples such as primary cells and tissues that are 
difficult to obtain in large numbers. 
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Our analyses focuses on relating allele-specific activity to known genomic annotations, such as 
CDS and various non-coding regions, and many diseases have been found to implicate ASE in 
particular genomic regions.42–44 Therefore, our analyses can help to characterize genomic 
variants on two levels: firstly, at the single nucleotide level, where our detected AS SNVs can 
serve as an annotation to variant catalogs (e.g. 1000 Genomes Project) in terms of allele-specific 
cis-regulation; secondly, by associating AS SNVs with a genomic annotation, we might be able 
to define categories of genomic regions more attuned to allele-specific activity. This can help to 
prioritize downstream experimental characterization to determine if such allele-specific behavior 
do exist and if so, whether it leads to any phenotypic differences.45 Additionally, high 
coordination between ASB in specific TFs and ASE in genes they regulate has been observed in 
previous studies.16,46 By comparing the ASB and ASE enrichments within the same category of 
genomic region, we can provide some further insights into the coordination of ASB and ASE 
within a genomic annotation or category. For example, the high enrichment of AS SNVs in most 
loci associated with monoallelic expression can imply coordination of ASE events by ASB. The 
exceptions are the groups of RME, T cell receptor and olfactory receptor genes, where another 
mechanism (besides ASB) might be causing ASE in these genes.  
 
Our current catalog of AS SNVs is detected from lymphoblastoid cell lines (LCLs), which is also 
the predominant cell-line type in the literature. However, it has already been known that there is 
considerable variability in regulation of gene expression in different tissues.47 Data from projects, 
such as GTEx47, which has more functional assays and sequencing in other tissues and cell lines 
can be incorporated to provide a more wholesome AS analysis. Furthermore, our search for 
datasets shows a dearth of personal genomes with corresponding ChIP-seq and RNA-seq data in 
non-European populations. It could be a strong reflection on the lack of large-scale functional 
genomics assays in specific ethnic groups – a concern echoed previously in population genetics 
and is recently being increasingly addressed.48 Since many AS variants have been found to be 
rare at both the individual and the sub-population level, it is of great interest and importance that 
more individuals of diverse ancestries be represented.  
 
In conclusion, there is great value and utility in integrating existing data. Even though an AS 
approach is able to detect many AS SNVs for a single personal genome, the increase in quantity 
and diversity of personal genomes will raise the number of rare AS SNVs detected. Additionally, 
more accurate datasets will be made available in the near future as allelic information becomes 
more precise with the advent of longer reads to help in haplotype reconstruction and phasing in 
next-generation sequencing.49–51 As more diverse and accurate personal genomes and functional 
genomics data become available, a pipeline that processes them efficiently and in a uniform 
fashion is essential, and enables AlleleDB to be easily scaled to accommodate new individual 
genomes, tissue and cell types. Such should be especially valuable, not only for researchers 
interested in allele-specific regulation but also for the scientific community at large. 
 
Materials and Methods 
 
Construction of diploid personal genomes 
There are a total of 383 genomes used in this study: 380 unrelated genomes, of low-coverage 
(average depth of 2.2 to 24.8) from Utah residents in the United States with Northern and 
Western European ancestry (CEU), Han Chinese from Beijing, China (CHB), Finnish from 
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Finland (FIN), British in England and Scotland (GBR), Japanese from Tokyo, Japan (JPT), 
Toscani from Italy (TSI), and Yorubans from Ibadan, Nigeria (YRI) and 3 high-coverage 
genomes from the CEU trio family (average read depth of 30x from Broad Institute’s, GATK 
Best Practices v3; variants are called by UnifiedGenotyper). Each diploid personal genome is 
constructed from the SNVs and short indels (both autosomal and sex chromosomes) of the 
corresponding individual found in the 1000 Genomes Project. This is constructed using the tool, 
vcf2diploid.16 Essentially, each variant (SNV or indel) found in the individual’s genome is 
incorporated into the human reference genome, hg19. Most of the heterozygous variants are 
phased in the 1000 Genomes Project; those that are not, are randomly phased. As a result, two 
haploid genomes for each individual are constructed. When this is applied to the family of CEU 
trio, for each child’s genome, these haploid genomes become the maternal and paternal genomes, 
since the parental genotypes are known. Subsequently, at a heterozygous locus in the child’s 
genome, if at least one of the parents has a homozygous genotype, the parental allele can be 
known. However, for each of the genomes of the 380 unrelated individuals, the alleles, though 
phased, are of unknown parental origin. 
 
CNV genotyping is also performed for each genome by CNVnator,52 which calculates the 
average read depth within a defined window size, normalized to the genomic average for the 
region of the same length. For each low coverage genome, a window size of 1000 bp is used, 
while for the high coverage genomes, a window size of 100 bp is used. SNVs found within 
genomic regions with a normalized abnormal read depth <0.5 or >1.5 are filtered out, since these 
would mostly likely give rise to spurious AS detection. 
 
RNA-seq and ChIP-seq datasets  
RNA-seq datasets are obtained from the following sources: gEUVADIS15, ENCODE26, Lalonde 
et al. (2011)53, Montgomery et al. (2010)54, Pickrell et al. (2010)7, Kilpinen et al. (2013)18 and 
Kasowski et al. (2013)19. 
 
ChIP-seq datasets are obtained from the following sources: ENCODE26, McVicker et al. (2013)55, 
Kilpinen et al. (2013)18 and Kasowski et al. (2013)19. 
 
Allele-specific SNV detection  
AS SNV detection is performed by AlleleSeq.16 For each ChIP-seq or RNA-seq dataset, reads 
are aligned against each of the derived haploid genome (maternal/paternal genome for trio) using 
Bowtie 1.56 No multi-mapping is allowed and only a maximum of 2 mismatches per alignment is 
permitted. Sets of mapped reads from various datasets are merged into a single set for allele 
counting at each heterozygous locus. Here, a binomial p-value is derived by assuming a null 
probability of 0.5 sampling each allele. To correct for multiple hypothesis testing, FDR is 
calculated. Since statistical inference of allele-specificity of a locus is dependent on the number 
of reads of the ChIP-seq or RNA-seq dataset, this is performed using an explicit computational 
simulation.16 Briefly, for each iteration of the simulation, a mapped read is randomly assigned to 
either allele at each heterozygous SNV and performs a binomial test. At a given p-value 
threshold, the FDR can be computed as the ratio of the number of false positives (from the 
simulation) and the number of observed positives. An FDR cutoff of 10% is used for ChIP-seq 
data and 5% for RNA-seq data, since the latter is typically of deeper coverage. Furthermore, we 
allow only significant AS SNVs to have a minimum of 6 reads. For ChIP-seq data, AS SNVs 
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have to be also within peaks. Peak regions are provided as per those called from each publication 
of origin, except for the dataset from McVicker et al. (2013), in which there are no peak calls. In 
the latter case, we determine the peaks by performing PeakSeq57 using the unmapped control 
reads provided by McVicker et al. (2013) via personal communication with the author. We use 
PeakSeq version 1.2 with default parameters and mapability map for human genome (hg19) to 
call peaks. The peaks that pass q-value threshold of 0.05 are marked as significant and used in 
the analyses. 
 
AlleleDB 
The final data and results are organized into a resource, AlleleDB 
(http://alleledb.gersteinlab.org/), which conveniently interfaces with the UCSC genome browser 
for query and visualization. Since many in the scientific community are familiar with the genome 
browser, we hope that this would increase the accessibility and usability of AlleleDB. The query 
results are also available for download in the BED format, which is compatible with other tools, 
such as the Integrated Genome Viewer58. More in-depth analyses can be performed by 
downloading the full set of AS results. For ASB, the output will be delineated by the sample ID 
and the associated TFs; for ASE, the output will be categorized by individual and the associated 
gene. We also provide the raw counts for each accessible SNV and indicate if it is identified as 
an AS SNV. AlleleDB also serves as an annotation of allele-specific regulation of the 1000 
Genomes Project SNV catalog. 
 
AS inheritance analyses 
The conventional measure of ‘heritability’ allows the estimation of (additive) genetic 
contribution to a certain trait. The population genetics definition of ‘heritability’ in a parent-
offspring setting is described by the slope, β, of a regression (Y=βX + α), with the dependent 
variable being the child’s trait value (Y) and the independent variable (X) being the average trait 
values of the father and the mother (‘midparent’).59 This is a population-based measure typically 
performed on a large set of trios for a particular trait (e.g. height) and β is not necessarily bound 
between 0 and 1.  
 
Given we have only a single trio, we adapt the definition of ‘heritability’ to quantify AS 
inheritance for each TF. For each TF and parent-child comparison, we consider ASB SNVs from 
two scenarios: (1) when an AS SNV is heterozygous in all three individuals but common to the 
two individuals being compared, and (2) when an AS SNV is heterozygous in two individuals 
and homozygous (reference or alternate) in the third. We define the allelic ratio as the ‘trait’, 
which is a continuous value and computed as the proportion of reads that align to the reference 
allele with respect to the total number of reads mapped to either allele of a particular site. We 
perform the analyses separately for father-child and mother-child pair to maximize statistics, 
since a midparent calculation will require that a SNV is allele-specific in all three individuals 
(Scenario 1).  
 
Given that Pearson’s correlation coefficient, r, always gives a value between 0 and 1, we use r 
instead of β, as our measure of ‘heritability’. We also compute and include β values in the 
Supplementary Table. The parent-parent comparison is provided as a source of comparison for 
two unrelated individuals with shared ancestry. For parent-parent β, the maternal allelic ratio is 
chosen arbitrarily to be the independent variable. 
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Genomic annotations 
Categories of gene elements from Figure 3, such as promoters, CDS regions and UTRs, and 
19,257 autosomal protein-coding gene annotations (HGNC symbols) are obtained from 
GENCODE version 17.27 Promoter regions are set as 2.5kbp upstream of all transcripts 
annotated by GENCODE.  
 
Gene annotations also include 2.5kbp upstream of the start of gene. 953 categories of non-coding 
annotations are obtained from ENCODE Integrative release,26 which includes broad categories 
such as TF binding sites and more specific annotations such as distal binding sites of particular 
TFs, e.g. ZNF274. Note that these TF binding sites are separate from those sites in promoter 
regions in Figure 2, which are based on the 59 TFs and peaks from the ChIP-seq experiments 
used in our pipeline. 
 
Genes for random monoallelic expression are from Gimelbrant et. al. (2007)40 The olfactory 
receptor gene list is from the HORDE database37; immunoglobulin, T cell receptor and MHC 
gene lists are from IMGT database39. We performed enrichment analyses on a number of 
enhancer lists, which are derived using the ChromHMM and Segway algorithms (Ernst and 
Kellis (2012)60, Hoffman et. al. (2013)61), and data from distal regulatory modules from Yip et al. 
(2012)62. The result for the enhancers in Figure 3 is based on the union of these lists. The lists 
can be found at http://info.gersteinlab.org/Encode-enhancers. An additional enhancer list for 
experimentally validated enhancers is obtained from VISTA enhancer browser database63 
(http://enhancer.lbl.gov/). Housekeeping gene list is obtained from Eisenberg and Levanon (2013) 
(http://www.tau.ac.il/~elieis/HKG/)64. 
 
All enrichment analyses results with respect to these annotations are provided in the 
supplementary files. 
 
Enrichment analyses 
Accessible SNVs, in addition to being heterozygous, also exceed the minimum number of reads 
detectable statistically by the binomial test. This is an additional criterion imposed, besides the 
minimum threshold of 6 reads used in the AlleleSeq pipeline. The minimum number of reads 
varies with the pooled size (coverage) of the ChIP-seq or RNA-seq dataset. Given a fixed FDR 
cutoff, for a larger dataset, the binomial p-value threshold is typically lower, making the 
minimum number of reads (N) that will produce the corresponding p-value, larger. This 
alleviates a bias in the enrichment test for including SNVs that do not have sufficient reads in the 
first place. Considering an extreme allelic imbalance case where all the reads are found on one 
allele (all successes or all failures), this minimum N can be obtained from a table of expected 
two-tailed binomial probability density function, such that accessible SNVs are all SNVs with 
number of reads, n = max(6,N). The control (non-AS) ASB or ASE SNVs are accessible SNVs 
excluding the respective ASB or ASE SNVs. Enrichment analyses are performed using the 
Fisher’s exact test. P-values are Bonferroni-corrected and considered significant if < 0.05.  
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Figure and table captions 
 
Figure 1. Workflow for uniform processing of data from 383 individuals and construction 
of AlleleDB. For each of the 383 individuals, a diploid personal genome is first constructed 
using the variants from the 1000 Genomes Project. Next, reads from ChIP-seq or RNA-seq data 
are mapped onto each of the haploid genome of the diploid genome. At each heterozygous SNV, 
a comparison is made between the number of reads that map to either allele, and a statistical 
significance (after multiple hypothesis test correction) is computed to determine if a SNV is 
allele-specific (AS). All the candidate AS variants are then deposited in AlleleDB database. 
Additional information, such as raw read counts of both accessible non-AS and AS variants, can 
be downloaded for further analyses.  
 
Figure 2. Inheritance of allele-specific binding events is evident in some TFs but not so 
apparent in others. The left panel shows plots for the TFs CTCF (top row) and MYC (bottom 
row) being examined for inheritance in the CEU trio (Father: NA12891, blue; Mother: NA12892, 
red; Child: NA12878, green). Each point on the plot represents the allelic ratio of a common 
ASB SNV between the parent (x-axis) and the child (y-axis), by computing the proportion of 
reads mapping to the reference allele at that SNV. High Pearson’s correlations, r, observed in 
both parent-child comparisons for CTCF (r > 0.9) signify strong heritability in allele-specific 
behavior. On the other hand, MYC has comparatively lower r values, suggesting that AS 
inheritance is not apparent. The table at the top right panel presents the r values for all seven TFs 
used in our analyses, in descending order of heritability.  
 
Figure 3. A considerable fraction of AS variants are rare but do not form the majority. A 
lower proportion of AS SNVs than non-AS SNVs are rare, suggesting less selective 
constraints in AS SNVs. The minor allele frequency (MAF) spectra of ASB (green filled circle), 
accessible non-ASB SNVs (green open circle), ASE (blue filled circle) and accessible non-ASE 
SNVs (blue open circle) are plotted at a bin size of 100. The peaks are in the bin for MAF < 
0.5%.The inset zooms in on the histogram at MAF < 3%. The proportion of rare variants in 
descending order: ASE- > ASE+ > ASB- > ASB+. Comparing ASE+ to ASE- gives an odds 
ratio of 0.67 (hypergeometric p < 2.2e-16), while comparing ASB+ to ASB-, gives an odds ratio 
of 0.96 (p=0.0021), signifying statistically significant depletion of AS variants relative to non-
AS variants in both cases. This depletion suggests that AS SNVs are under less purifying 
selection. 
 
Figure 4. Some genomic regions are more inclined to allele-specific regulation. We map 
variants associated with allele-specific binding (ASB; green) and expression (ASE; blue) to 
various categories of genomic annotations, such as coding DNA sequences (CDS), untranslated 
regions (UTRs), enhancer and promoter regions, to survey the human genome for regions more 
enriched in allelic behavior.  Using the accessible non-AS SNVs as the expectation, we compute 
the log odds ratio for ASB and ASE SNVs separately, via Fisher’s exact tests. The number of 
asterisks depicts the degree of significance (Bonferonni-corrected): *, p<0.05; **, p<0.01; ***, 
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p<0.001. For each transcription factor (TF) in AlleleDB, we also calculate the log odds ratio of 
ASB SNVs in promoters, providing a proxy of allele-specific regulatory role for each available 
TF. Genes known to be mono-allelically expressed such as imprinted and MHC genes (CDS 
regions) are highly enriched for both ASB and ASE SNVs. The actual log odds ratio of 
immunoglobulin genes for ASE SNVs and MHC genes for ASB and ASE SNVs are indicated on 
the bars.  
 
Table 1. 
Table 1 shows the breakdown of SNVs in each ethnic population: heterozygous (HET), 
accessible (ACC) and ASE SNVs in Table 1A and ASB SNVs in Table 1B. For each of the last 3 
columns, each category of HET, ACC and AS SNVs is further stratified by the population minor 
allele frequencies: common (MAF > 0.05), rare (MAF ≤ 0.01) and very rare (MAF ≤ 0.005). The 
number of AS SNVs is given as a percentage of the ACC SNVs. Table 1 also provides the 
number of individuals from each ethnic population with RNA-seq and ChIP-seq data available 
for the ASE and ASB analyses respectively. 
 
Supplementary Table 
 
Supplementary Table 1 
This table shows the slope and Pearman’s correlation results for all seven DNA-binding proteins 
for parent-child and parent-parent comparisons. CTCF, PU.1, SA1, PAX5 and POL2 exhibit AS 
inheritance but MYC and RPB2 do not seem to have very apparent AS inheritance.  
 
Supplementary Files 
 
Supplementary File 1 
This Excel file contains results from our AS analyses for 953 categories from ENCODE, 
including the Fisher’s exact test odds ratios, p-values (original and Bonferroni-corrected), the 
number of AS SNVs and accessible non-AS SNVs found in each category. The results for five 
gene element categories from GENCODE and 16 enhancer categories are also included. ‘NA’ is 
marked in categories where odds ratio cannot be calculated due to insufficient numbers in non-
AS SNVs. These are tabulated for ASB, ASE and AS SNVs, which is analysis based on the 
combined unique number of ASB and ASE SNVs. 
 
Supplementary File 2 
This Excel file contains results from our AS analyses for the 19,257 autosomal protein-coding 
genes (HGNC symbols) from GENCODE, including the Fisher’s exact test odds ratios, p-values 
(original, Bonferroni-corrected), the number of AS SNVs and accessible non-AS SNVs found in 
the gene region. The results for housekeeping genes and 5 monoallelically-expressed gene 
categories are also included. ‘NA’ is marked in categories where odds ratio cannot be calculated 
due to insufficient numbers in non-AS SNVs. These are tabulated for ASB, ASE and AS SNVs, 
which is analysis based on the combined unique number of ASB and ASE SNVs. 
 
Supplementary File 3 
This Excel file contains the ASB enrichment in promoter regions for 59 TFs used in our database, 
including the Fisher’s exact test odds ratios, p-values (original, Bonferroni-corrected), the 

Formatted: Font: Bold, Underline

Deleted: ¶

Deleted: Figures

Deleted: Figures

Deleted: 5

Deleted: 20,144



12 
 

number of ASB SNVs, accessible non-AS SNVs both found and not found in the gene region. 
ASB SNVs for each TF are contributed by different individuals. If either of the parents in the 
CEU trio is involved, ASB SNVs for NA12878 are not included. Those TFs with only ASB 
SNVs from NA12878 are annotated ‘1’ under the column ‘NA12878 only’. ‘NA’ is marked in 
categories where odds ratio cannot be calculated due to insufficient numbers in any of the last 
three columns. 
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