Merging Enhancer Predictions

Anurag Sethi Gerstein Laboratory Yale University AWG Call May 2014

Transgenic mouse assays in ENCODE 3

Overall Goal: To develop and assess different methodologies for predicting enhancers active in different tissues for human/ mouse.

Phase I: Test 100-150 predicted enhancers in transgenic mouse Enhancer assays. Tissues chosen : Heart (maybe forebrain later in phase I). Developmental stage: E14.5

Perform validations in transgenic mice

Rules for Submissions

- Two tissue specific lists of up to 10000 enhancers active in human heart and forebrain (with validation in corresponding mouse tissues).
- Predicted enhancers were all 1 kb in width.
- Validated regions (VISTA) and promoters (+/- 2kb of GENCODE 19 TSS) were removed from the predicted enhancers.

Different prediction strategies and datasets utilized

Group	Method	Datasets	#prediction _ heart	→ after filtering
Stam	k-means clustering	DNase HS	9875	4 supervised 7 unsupervised
Yuan	HMM	histone (mouse)	7075	
Ren	Random Forest	P300, histone (mouse)	8345	
Gerstein	Random Forest	TF, histone, DNase HS conservation, motifs	9990	
Kellis	Empirical evidence	H3K27ac, DNase HS, chromatin state	7614	
Beer	k-mer SVM	Sequence, DNase HS, P300, H3K27ac	6616	
Wei Wang	HMM	histone, P300, known enhancer	4325	
Yuan	SVM	VISTA, motif,H3K27ac	7363	
Kellis	SimpleLogistic	VISTA, H3K27ac, DNase HS	4037	
Gerstein	Random Forest	VISTA, TF, histone, DNase conservation, motifs	9989	
Zhiping Weng	Combination	VISTA, P300, histone, DNase HS	8105	

chry

chr10

ch/9

dark

chi17

chr16

chu\5

chrl

Methods that utilize similar datasets make more similar predictions. Very different predictions when different datasets used.

Methods that use similar datasets make more similar predictions.

Methods that use similar datasets make more similar predictions.

Strategy for merge

Predictions divided into regions based on overlap of different methods.

Regions are scored based on quantile normalization (score = 0 if region not in a particular method's predictions before quantile normalization). Overall score of a region is the sum of these quantile normalized scores.

Regions are then ranked based on number of methods that predict this region to be an enhancer and the overall score of these predictions.

Highest ranked regions used as seed for merge regions and the predictions are then expanded to 1 kb width based on these rankings.

None of the predictions can be within 5 kb of each other.

Analysis of common regions in predictions from multiple methods

A single prediction gets split into multiple regions based on overlap with predictions made by other groups.

Priority for ordering of regions:

- 1) Number of predictions common to that region
- 2) Quantile normalized score for regions that are tied according to condition 1.

Analysis of common regions in predictions from multiple methods

A single prediction gets split into multiple regions based on overlap with predictions made by other groups.

Analysis of common regions in predictions from multiple methods

Method3	
Method2	
Method1	
Common to 1 method	
Common to 2 methods	
Common to 3 methods	

Priority for ordering of regions:

- 1) Number of predictions common to that region
- 2) Quantile normalized score for regions that are tied according to condition 1.

There are a lot of regions that overlap in 5 or larger number of prediction lists

Number of Methods	Number of regions	Average Width
9	1	343
8	4	151
7	29	282.7
6	149	261.7
5	626	284.2
4	2433	297
3	7828	341.3
2	23891	450
1	70320	707

Choose highest ranked regions as seeds for regions chosen for enhancer validation

Ranking of regions based on two criteria:

- 1) Number of methods that predict a region (cyan > orange > magenta).
- 2) Sum of quantile normalized scores of different regions when tied by criteria 1.

Choose highest ranked regions as seeds for regions chosen for enhancer validation

Expansion of seed regions based on ranking of neighboring regions

Expansion of seed regions based on ranking of neighboring regions

Expansion of merged regions continues until the merged bin is 1000 bp in width

All methods represented - only one method highly underrepresented

Method	Number of predictions
Unsup_Stam	73
Unsup_Yuan	99
Unsup_Ran	116
Unsup_Gerstein	99
Unsup_Kellis	9
Unsup_Beer	69
Unsup_Wang	94
Sup_Yuan	112
Sup_Kellis	85
Sup_Gerstein	72
Sup_Zhiping	126

Future Work:

Statistical analysis of overlap between different methods.

Similar strategy may be applied for enhancers predicted to be active in mouse forebrain.

Acknowledgements

Mark Gerstein Kevin Yip Joel Rozowsky Sushant Kumar Jing Zhang Len Pennacchio Manolis Kellis Zhiping Weng Members of DAC for submissions