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Abstract 
 
Allele-specific behavior is exhibited when there is a differential phenotypic effect between the two alleles 
in a diploid genome. Genomic variants associated with allele-specific events constitute an important class 
of regulatory variation, thus it is extremely useful to annotate them on a large scale. To detect them, we 
can overlap genomic variants with regions of allelic imbalance identified by large-scale functional 
genomic assays, such as ChIP-seq and RNA-seq. Previous studies on allele-specific analyses are based on 
either a few deeply-sequenced, well-annotated genomes or a single assay over the genomes of a variety of 
individuals. Here, we endeavor to aggregate allele-specific variants across these multiple studies. In doing 
so, we gain not only statistical power, but also a wider range of analyses that can be performed. 
Unfortunately, because of the integrative nature of allele-specific variant detection, it is sensitive to 
various technical issues such as heterozygous variant detection and read mapping. Therefore, simply 
pooling the results of these disparate studies is not desirable. Moreover, different studies use various tools, 
parameters and thresholds. Henceforth, it is imperative to subject each dataset to uniform processing. To 
this end, we pool DNA sequences, RNA-seq and ChIP-seq data of 383 individuals from these separate 
data sources and put them through a standardized processing pipeline. We are able to annotate ~168K 
putative variants that assess allele-specific binding (ASB) of DNA-binding factors and ~143K variants in 
allele-specific expression (ASE) of genes, using ChIP-seq and RNA-seq data respectively. This allows us 
to define ~100 genomic regions that are enriched or depleted in these allelic variants, thereby ascertaining 
parts of the genome that might be more susceptible to functional changes due to sequences. We also 
perform population-based analyses of these individuals, showing intra- and inter-population differences. 
All the results are consolidated in a resource, AlleleDB. 
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Introduction 
 
In recent years, the number of personal genomes has increased dramatically, from single individuals [cite 
Watson, venter] to large sequencing projects such as the 1000 Genomes Project,[cite] UK10K [cite] and 
the Personal Genome Project [cite]. These efforts have provided the scientific community with a massive 
catalog of human genetic variants, most of them moderately rare (~ 58% are of population allele 
frequency < 0.5%).[cite] Subsequently, one of the major challenges is to functionally annotate all of these 
variants.  
 
Much of the characterization of variants so far has been focused on those found mainly in the protein-
coding regions, but the advent of large-scale functional genomic assays, such as ChIP-seq and RNA-seq, 
has facilitated the annotation of genome-wide variation. This can be accomplished by correlating some 
form of functional readouts from the assays to genomic variants, particularly in identifying regulatory 
variants, such as mapping of expression quantitative trait loci (eQTLs) and allele-specific (AS) 
variants.[cite] eQTLs are detected by assessing the effects of variants on expression profiles across a large 
population of individuals. A huge cohort is required in order to achieve statistical power to detect variants 
of low frequencies, thus is constrained in their ability to detect very rare variants. On the other hand, 
allele-specific approaches assess phenotypic differences at heterozygous loci within a single genome, so 
that each allele at these positions in a diploid genome acts as a perfectly matched control for the other 
allele. [cite old and new papers] As such, they can detect AS variants regardless of their allele frequencies. 
Henceforth, it is very useful to identify AS variants on a large scale, in terms of functionally annotating 
personal genomes.  
 
Early high throughput implementations of AS approaches employed microarray technologies, and thus 
are restricted to a subset of loci.[cite 2002 Yan] Later studies have used ChIP-seq and RNA-seq 
experiments for genome-wide scans of AS variants but have been mostly limited to a few individuals with 
deeply-sequenced and well-annotated genomes,[cite] or a single assay with a variety of individuals.[cite] 
Consequently, there is a need to garner more RNA-seq and ChIP-seq data for more extensive allele-
specific analyses. While a straightforward strategy is to increase the number of samples and experimental 
assays (e.g. number of transcription factors for ChIP-seq experiments on a single sample), this requires 
large amounts of resources. A less expensive alternative is to tap into the wealth of existing ChIP-seq and 
RNA-seq experimental data, by pooling already available datasets from numerous studies. For instance, 
GM12878, a very well-characterized lymphoblastoid cell-line from a Caucasian female, has several RNA-
seq datasets and a huge trove of ChIP-seq data of more than 50 transcription factors (TFs) distributed in at 
least 10 separate studies.[cite, ENCODE, kasowski] Aggregation of these datasets has obvious advantages 
in analyses, be it increasing statistical power or simply having more TFs for more inter-sample 
comparisons.  
 
Unfortunately, because several layers of data are integrated in AS variant detection, it is extremely 
sensitive to the technical details of issues such as heterozygous variant calling and read mapping.   
Moreover, studies with the appropriate datasets are typically designed for various purposes, resulting in 
disparate sets of computational tools, strategies and threshold parameters used in the processing of data in 
the respective studies. These portend that a simple pooling of results from multiple studies may not be 
optimal, even for the same biological sample. Further, suitable datasets are scattered in the literature. 
Thus, the tasks of searching and then merging have to be carried out in a uniform and meaningful manner 
to yield interpretable results. To this end, we organize and unify datasets from eight different studies into 
a comprehensive data corpus and repurpose it specifically for allele-specific analyses. In total, we 
reprocess 142 ChIP-seq and 475 RNA-seq datasets of 383 individuals in our uniform pipeline (Figure 1). 
Coupled with the construction of 383 personal genomes using variants from the 1000 Genomes Project, 
we detect more than 168K and 143K single nucleotide variants (SNVs) associated with ASB and ASE 
events respectively. We construct a database to house all the personal genomes and detected AS SNVs. 
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Finally, using our consolidated data, we are able to present a systematic and unbiased survey of these 
detected allele-specific SNVs in 382 unrelated individuals of seven ethnicities in various categories of 
genomic elements and to investigate the inheritance of allele-specific binding in eight different 
transcription factors in a Caucasian trio family. 
 
 
Results 
 
AlleleDB, a resource for allele-specific behavior genome annotation 
There are several layers of information with respect to an individual that needs to be integrated in order to 
more accurately detect allele-specific SNVs: (1) the DNA sequence of the individual, and (2) reads from 
either the RNA-seq or ChIP-seq experiment to look for SNVs associated with allele-specific expression 
(ASE) or binding (ASB) (Figure 1). Here, we implement a uniform pipeline (see Methods) to combine 
personal genomic, transcriptomic and binding data and to standardize our detection of potential allele-
specific SNVs. Eventually, our pipeline detected a total of 143,316 unique ASE SNVs for 382 unrelated 
individuals and 168,539 unique ASB SNVs from a collective ChIP-seq dataset of 19 transcription factors 
for 18 unrelated individuals. We also define a set of control SNVs, for each TF dataset (for ASB) and 
each individual expression dataset (for ASE). This is especially imperative in our enrichment analyses, 
which are highly dependent on the choice null expectation (controls). We intentionally choose a set of 
control SNVs, which we termed ‘accessible’ SNVs. These SNVs are heterozygous and possess at least the 
minimum number of reads (for each dataset) that is detectable statistically but are not identified to be 
allele-specific (Table 1). In other words, these controls matched by both heterozygosity and statistical 
accessibility to the allele-specific variants. Altogether, we identified 665,860 and 409,708 accessible 
SNVs for ASE and ASB SNVs respectively. 
 
We build a database, AlleleDB (http://alleledb.gersteinlab.org/), to house the candidate allele-specific and 
accessible SNVs. AlleleDB can be downloaded as flat files or queried and visualized directly, in terms of 
gene or genomic locations, as a UCSC track in the UCSC Genome browser (Figure 1). [cite] This enables 
cross-referencing of allele-specific variants with other track-based datasets and analyses, and makes it 
amenable to all functionalities of the UCSC Genome browser. All heterozygous SNVs found in the 
stipulated query genomic region, including accessible SNVs, are color-coded (AS SNVs are red, others 
are black) in the displayed track.  
 
Enrichment analyses 
Of great interest, is the annotation of these allele-specific SNVs with respect to known genomic elements, 
both coding and non-coding. Only ~56% of our candidate ASE SNVs and ~6% of ASB SNVs are found 
in coding DNA sequences (CDS). Using the AlleleDB variants found in the low-coverage personal 
genomes of 382 unrelated individuals from Phase 1 of the 1000 Genomes Project and the 2 parents of the 
trio, we further investigate the enrichment (or depletion) of these AS SNVs in 954 categories of genomic 
elements, including gene annotations from GENCODE, and transcription binding motifs from 
ENCODE.[cite, Methods] The comparisons are performed with respect to the control set of accessible 
SNVs within the regions tested. Subsequently, we use the Fisher’s exact test to estimate the odds ratios 
and p values of finding AS variants in these regions, relative to the expected odds provided by the control 
SNVs. 
 
Figure 2 shows the enrichment of elements more closely related to a gene structure, namely enhancers, 
promoters, CDS, introns and untranslated regions (UTR). In general, both categories of AS SNVs are 
more likely found in the 3’ and 5’ UTRs, suggesting allele-specific regulatory roles in these regions. [any 
lit evidence? For regulation? Regulatory role allelespecific] On the other hand, intronic regions seem to 
exhibit a dearth of allele-specific regulation. For SNVs associated with allele-specific expression (ASE), a 
greater enrichment in 3’ UTR than 5’ UTR regions might be, in part, a result of known RNA-seq 
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bias.[cite] For SNVs associated with allele-specific binding (ASB), we also observe an enrichment in the 
promoters, hinting at functional roles in these variants found in TF binding motifs or peaks found near 
transcription start sites in the promoter regions to regulate gene expression. However, we observe variable 
enrichments of ASB SNVs in particular categories of binding sites for TF families in promoter regions 
such as xx, xx and xx (Figure 2, Supp fig). These differences imply that some TFs are more likely to 
participate in allele-specific regulation than others. Enrichments of ASE, as well as, ASB SNVs are both 
observed in CDS. Several studies have found that many TFs bind in the protein-coding regions, for 
instance to regulate codon usage. [cite, Supp table] More ASB SNVs found in these regions might 
suggest an allele-specific mechanism to such regulatory roles of the TFs.  
 
We also compute the enrichment of AS SNVs in various gene categories. Some of them have been known 
to be involved in monoallelic expression, namely (1) imprinted genes [cite], and three sets of genes 
known to undergo allelic exclusion: (2) olfactory receptor genes [cite], (3) immunoglobulin, (4) genes 
associated with T cell receptors and the major histocompatibility complex [cite]. (5) A list of genes found 
to experience random monoallelic expression found in a study by Gimelbrant et al is also included. [cite]. 
Expectantly, these have been found to be significantly enriched in ASE SNVs (except for olfactory 
receptors), especially when compared to the constitutively expressed housekeeping genes (Figure 2).  
 
Allele frequency analyses 
To examine the occurrence of ASE and ASB SNVs in the human population, we consider the population 
minor allele frequencies (MAF) from Phase 1 of the 1000 Genomes Project. Table 1 shows the 
breakdown of the AS SNVs in seven sub-populations and some MAF categories. YRI contributes the 
most to both ASE and ASB variants at each allele frequency category. Interestingly, while very rare AS 
SNVs comprise a substantial proportion in all populations, it is about two folds higher in the YRI (~48% 
ASE SNVs and ~34% ASB SNVs with MAF ≤ 5%) than the other European sub-populations of 
comparable (CEU, FIN) or larger (TSI) population sizes.  
 
In general, rare variants do not form the majority of all the AS variants. Nonetheless, we observe a skew 
towards very low allele frequencies, peaking at MAF ≤ 0.5% in AS SNVs, compared to other categories 
of MAF (Figure 3). However, such enrichment of very rare SNVs is exhibited more in non-allele-specific 
SNVs (ASE-, ASB-) than in the corresponding allele-specific SNVs (ASE+, ASB+). Comparing ASE+ to 
ASE- gives an odds ratio of 0.67 (hypergeometric p < 2.2e-16), while comparing ASB+ to ASB-, gives an 
odds ratio of 0.96 (p=0.0021), signifying statistically significant depletion of AS variants relative to non-
AS variants in both cases.  
 
Common SNVs (MAF > 5%) constitute the majority of the ASE and ASB variants in all populations. 
This is especially useful in functional annotation of variants via aggregation analyses [cite]. On average, 
in each person, ~0.1% of heterozygous sites (~2,000 SNVs) potentially tags for ASE (Supp Table); for 
ASB, it is highly dependent on the chosen TFs. 
 
ASB Inheritance analyses using CEU trio 
The CEU trio is a well-studied family and particularly, many ChIP-seq studies were performed on 
different TFs. Unifying these studies and pooling the data presents an opportunity to investigate the 
inheritance of allele-specific behavior using data from more TFs. While previous studies have also 
observed strong inheritance, the datasets are usually limited to a few TFs [cite McDaniel Kilpinen]. Using 
variants derived from high-coverage genomes of the CEU family trio, we investigate the inheritance of 
allele-specific binding events in eight DNA-binding proteins (Figure 4 and Supp fig). For the DNA-
binding protein CTCF, we observe a high parent-child correlation, i.e. significantly more points in the B 
and C quadrants (red boxes in Figure 4) compared to the A and D quadrants (grey boxes in Figure 4), 
denoting great similarity in allelic directionality (binomial p=5.7e-48 and p=2.0e-54). The inheritance of 
AS SNVs in the same allelic direction from parent to child implies a sequence dependency in allele-
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specific behavior. While there is also a high correlation between the unrelated parents, the number of 
common allelic SNVs in both parents is substantially lower. We interpret this as a combined effect of 
genetic similarity of the same population and the sequence heritability of AS behavior. Besides CTCF, 
PU.1 (p=xx) and POL2 (p=xx) also show AS inheritance. On the contrary, MYC (binomial p=8.2e-5 and 
p=1.1e-7), PAX5 (p=xx), RPB2 (p=xx) and SA1 (p=xx) exhibit enrichment of points in quadrants B and 
C with very much lower statistical significance, indicating that AS inheritance is not as apparent in some 
TFs – inheritance of AS behavior may not be a universal phenomenon.  
 
 
Discussion 
It has been known that there is considerable inter-individual variability in gene regulation. [cite] Genetic 
variants associated with allele-specific regulation constitute a portion of cis-regulatory variation. Research 
on regulatory variants so far has also focused on eQTL mapping and consequently common variants.  
 
There are several immediate advantages of AS approaches compared to eQTL mapping. First, for eQTLs 
to be detected, it has to exist in significant allele frequencies relative to the population and effect 
sizes.[cite] On the other hand, allele-specific behavior can be detected across any heterozygous site, 
regardless of its allele frequency, so very rare variants can be possibly detected. This is extremely 
important in light of two aspects: the vast number of rare variants found to be present in the human 
population by the 1000 Genomes Project and a substantial proportion of AS SNVs are very rare variants, 
as observed in our study and others.[cite] These make allele-specific variant detection a valuable asset in 
annotating cis-regulatory variants in personal genomes. Second, in eQTL mapping, correlation is drawn 
between total expression measured between samples and their genotypes, that is, allele-insensitive. As 
such, trans-acting factors such as negative feedback mechanism that sought to reduce total expression 
variance across samples with different genotypes will not be detected. However, in an AS approach, a 
heterozygous site can be directly associated with a differential readout by comparing between the two 
different alleles (within one individual). Such a within-sample control in an AS approach also eliminates 
normalization issues across multiple assays, since factors that phenotypic differences between samples 
due to various environmental conditions are being controlled for. Third, eQTL mapping is contingent on 
population size for sufficient statistics, while the allele-specific approach works for a single sample. This 
makes it an attractive strategy for biological samples such as primary cells and tissues that are difficult to 
obtain in large numbers. 
 
Despite its ability detect AS variants in just a single diploid genome, the enrichment of rare variants and 
considerable inter-individual variability in gene regulation provide impetus for larger sample size, 
especially in the budding field of personal genomics. [cite] This is because as more personal genomes are 
being sequenced, more rare and private SNVs need to be annotated. Larger sample sizes allow inter-
sample comparisons and more genomes to be annotated properly. Previous ChIP-seq and RNA-seq 
studies have focused mainly on a few genomes for either ASE or ASB analyses. [cite a few papers] Also, 
studies investigating ASB has been limited to a few DNA-binding proteins, such as CTCF and Pol2. Here, 
we have devised a processing pipeline to capitalize on existing large ChIP-seq and RNA-seq datasets (that 
have been used for other purposes) solely for allele-specific analyses, without having to generate new 
ones. 
 
Limited by the availability of personal genomes with ChIP-seq and RNA-seq data, a part of our strategy is 
the selection of individuals that are found in the 1000 Genomes Project. When we distinguish samples by 
their ancestry, we found that there is only 1 individual each for CHB and JPT. It could be a strong 
reflection on the lack of large-scale functional genomics assays in specific ethnic groups – concerns 
echoed by many other studies.[cite Bustamente review on research diversity] Since many AS variants 
have been found to be rare, it is of great interest and importance that more samples of diverse ancestries 
be represented in a dataset. 
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Our enrichment analyses emphasize on relating allele-specific activity to known genomic elements, such 
as CDS and various non-coding regions. Together, these aid in the enduring effort in characterization of 
genomic variants on two levels: firstly, at the single nucleotide level, our detected AS SNVs can serve as 
an annotation to the 1000 Genomes Project variant catalog in terms of allele-specific cis-regulation; 
secondly, by associating AS SNVs with elements such as promoters and enhancers, we might be able to 
define genomic regions, more susceptible to allele-specific activity. For instance, we found enrichments 
of ASB SNVs in many regions such as promoter and UTR regions, which might suggest an allele-specific 
mechanism to regulatory roles of the TFs. We also observe a depletion in ASB SNVs in the olfactory 
genes but enrichment in imprinted and MHC genes, possibly indicating differences in allelic exclusion 
mechanisms and the role of transcription factors in allele-specific regulation of these genes [can we find 
any articles?]. Interestingly, a statistically significant enrichment is also observed in the housekeeping 
genes. However, more experimental characterization would be required to determine if such allele-
specific or differential binding (evidenced by ChIP-seq experiments) do exist and if so, whether it leads to 
any phenotypic differences at all. A recent paper found that many TFs do not elicit any change in gene 
expression when knocked out [cite 2014 paper by pritchard and gilad] 
 
In our analyses, we also assess the enrichment of rare variants, defined by minor allele frequencies in the 
human population (from the 1000 Genomes Project). This has been shown to be a considerable indicator 
for negative selection, where conserved, and probably functional, regions are shown to have a very high 
fraction of rare variants.[cite] Our results show lower enrichment of rare variants in AS SNVs than non-
AS SNVs. This suggests that, as a whole, AS SNVs are under less selective constraints than non-AS 
SNVs. This was also noted in previous studies using only a high-coverage single individual [cite]. A 
weaker selection may also account for more toleration to varying gene expression profiles across 
individuals. In addition, there is a substantial number of rare SNVs with MAF ≤ 0.5% (~17% in ASE and 
~5% in ASB, Figure 3) among the AS SNVs (ASB and ASE); these will be inaccessible to eQTL 
mapping.  
 
The final data and results are centralized in AlleleDB, which plugs into the UCSC genome browser for 
query and visualization. Since many in the scientific community are familiar with the genome browser, 
we hope that this would increase the accessibility and usage of AlleleDB. The query results are also 
available for download in the BED format, which is compatible with other tools, such as the Integrated 
Genome Viewer [cite]. More in-depth analyses can be performed by downloading the full set of AS 
results. For ASB, the output will be delineated by the sample ID and the associated TFs; for ASE, the 
output will be categorized by individual and the associated gene. We also provide the raw counts for each 
accessible SNV and indicate if AlleleSeq identified it as an AS SNV. AlleleDB also serves as an 
annotation of allele-specific regulation of the 1000 Genomes Project SNV catalog, for use by the 
scientific community especially for research in gene expression. 
 
Finally, we have shown that there is great value and utility in pooling of data and it has to be processed in 
a uniform fashion to eliminate issues of heterogeneity in various standards and parameters etc. However, 
there are still several concerns. First, the integrative nature of allele-specific approach means that AS 
variant detection is highly sensitive to sequencing errors in heterozygous SNV calling, as well as biases 
and issues associated with ChIP-seq and RNA-seq analyses. Second, a certain property of the dataset that 
was not discussed because of its uniformity in the current collection is tissue specificity. Here, our AS 
SNVs are all detected in lymphoblastoid cell lines (LCLs). Most genomic sequences and functional 
genomic datasets in the literature are predominantly derived from LCLs. However, it has already been 
known that there is considerable variability in regulation of gene expression in different tissues.[cite] 
More extensive projects are already underway to involve functional assays and sequencing in other tissues 
and cell lines, such as GTex [cite] and ENCODE [cite]. Further, more accurate allelic information is also 
being achieved with the advent of phasing information in next-generation sequencing, [cite phased HeLa, 
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Shendure, Church, Illumina]. In light of these datasets and new technologies, AlleleDB is intended as a 
scalable resource. As technology evolves, more personal genomes are sequenced with more functional 
genomics data becoming available, this study provides an infrastructure that can accommodate new 
samples (of potentially varied ancestries), tissue and cell types, which can be similarly processed. Such 
should be especially valuable, not only for researchers interested in allele-specific regulation but also for 
the scientific community at large. 
 
 
Materials and Methods 
 
Genomic annotation 
SNV/Gene lists data provenance: (1) GENCODE; (2) ENCODE; (3) genes for random monoallelic 
expression from Gimelbrant et. al. [cite] (4) olfactory receptor gene list from [cite]; (5) immunoglobulin, 
T cell receptor and MHC gene list from [cite]; (6) loss-of-function variants from 1000 Genomes Project 
as annotated by Variation Annotation Tool [cite]. Enhancer lists are also obtained from data at 
http://www.ebi.ac.uk/~swilder/Superclustering/concordances4/ [Hoffman et al, NAR, 2013; Hoffman et 
al, Nature Methods, 2013; and Ernst and Kellis, Nature Methods, 2012] and 
http://encodenets.gersteinlab.org/metatracks/ (described in Yip et al, Genome Biol, 2012). Promoter 
regions are set as 2kbp upstream of all transcripts annotated by GENCODE. Transcription factor motifs 
and peaks are obtained from TRANSFAC.[cite] 
 
Construction of diploid personal genomes 
There are a total of 383 genomes used in this study: 382 unrelated genomes, of low-coverage (average 
depth of 2.2 to 24.8) from Utah residents in the United States with Northern and Western European 
ancestry (CEU), Han Chinese from Beijing, China (CHB), Finnish from Finland (FIN), British in England 
and Scotland (GBR), Japanese from Tokyo, Japan (JPT), Toscani from Italy (TSI), and Yorubans from 
Nigeria (YRI) and 3 high-coverage genomes from the CEU trio family (average read depth of 30x from 
Broad Institute’s, GATK Best Practices v3; variants are called by UnifiedGenotyper). Each diploid 
personal genome is constructed from the SNVs and short indels (both autosomal and sex chromosomes) 
of the corresponding individual found in the 1000 Genomes Project. This is constructed using the tool, 
vcf2diploid. [cite] Essentially, each variant (SNV or indel) found in the individual’s genome is 
incorporated into the human reference genome, hg19. Most of the heterozygous variants are phased in the 
1000 Genomes Project; those that are not, are randomly phased. As a result, two haploid genomes for 
each individual are constructed. When this is applied to a family of trio (CEU), for each child’s genome, 
these haploid genomes become the maternal and paternal genomes, since the parental genotypes are 
known. Subsequently, at a heterozygous locus in the child’s genome, if at least one of the parents has a 
homozygous genotype, the parental allele can be known. However, for each of the genomes of the 380 
unrelated individuals, the alleles, though phased, are of unknown parental origin. These personal genomes 
are provided in AlleleDB. 
 
CNV genotyping is also performed for each genome by CNVnator.[cite] This is achieved by calculating 
the average read depth within a window, normalized to the genomic average for the region of the same 
length. For each low-coverage genome, a bin size of 1000 bp is used. SNVs found within genomic 
regions with a normalized abnormal read depth <0.5 or >1.5 are filtered out, since these would mostly 
likely give rise to spurious detection. Read depths for each heterozygous SNV in each genome are also 
provided in AlleleDB. 
 
Allele-specific SNV detection  
AS SNV detection is performed by AlleleSeq. For each ChIP-seq or RNA-seq dataset, reads are aligned 
against each of the derived haploid genome (maternal/paternal genome for trio) using Bowtie 1.[cite] No 
multi-mapping is allowed and only a maximum of 2 mismatches per alignment is permitted. Sets of 
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mapped reads from various datasets are merged into a single set for allele counting at each heterozygous 
locus. Here, a binomial p-value is derived by assuming a null probability of 0.5 sampling each allele. To 
correct for multiple hypothesis testing, AlleleSeq calculates FDR. Since statistical inference of allele-
specificity of a locus is highly dependent on the size of the ChIP-seq or RNA-seq dataset, this is 
performed using an explicit computational simulation, as described in the original AlleleSeq publication 
[cite]. Briefly, for each iteration of the simulation, AlleleSeq randomly assigns a mapped read to either 
allele at each heterozygous SNV and performs a binomial test. At a given p-value threshold, the FDR can 
be computed as the ratio of the number of false positives (from the simulation) and the number of 
observed positives. An FDR cutoff of 10% is used for ChIP-seq data and 5% for RNA-seq data, since the 
latter is typically are of deeper coverage. Furthermore, we allow only significant AS SNVs to have a 
minimum of 6 reads. For ChIP-seq data, AS SNVs have to be also within peaks. Peak regions are 
provided as per those called from each publication of origin, except for the dataset from McVicker et al. 
[cite], in which there are no peak calls; we then determine the peaks by performing PeakSeq using the 
control and unmapped reads provided via personal communication with the author [cite, parameters? 
Arif?].  
 
Enrichment analyses 
Accessible SNVs, in addition to being heterozygous, also exceed the minimum number of reads 
detectable statistically by the binomial test. This is an additional criterion imposed, besides the minimum 
threshold of 6 reads used in the AlleleSeq pipeline. The minimum number of reads varies with the pooled 
size (coverage) of the ChIP-seq or RNA-seq dataset. For a larger dataset, the binomial p-value threshold 
is lower, making the minimum number of reads (n) that will produce the corresponding p-value, larger. 
We can obtain this from a table of a two-tailed binomial probability density function computed for each n 
and each number of successes (Supp Figure). Enrichment analyses are performed using the Fisher’s exact 
test. P-values are considered significant if < 0.05 (denoted by asterisks in Figure 2). 
 
AS inheritance analyses 
We compute the allelic ratio as the proportion of reads that align to the reference allele with respect to the 
total number of reads mapped to either allele of a particular site, for each pair of individuals in the trio 
family, i.e. parent-child and parent-parent. Since AS events can only be detected at heterozygous sites, we 
consider two scenarios: (1) when an AS SNV is heterozygous in all three individuals but common to the 
two individuals being compared, and (2) when an AS SNV is heterozygous in two individuals and 
homozygous (reference or alternate) in the third. P values are generated by a binomial test of quadrants B 
and C against a random null distribution (probability = 0.5). The p values are then ranked to determine a 
‘degree’ of allele-specific inheritance.  
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