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a JC of two (or three) halves

. where’s miRNA?

- recap of MIRNA/mMRNA binding from AGO IP assays

. one transcript to rule them all
- transcriptome analysis of human tissues and cell lines reveals
one dominant transcript per gene

. neurogenesis in the adult human brain
- if there's time...
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MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base http://dx.doi.org/10.1016/j.cell.2013.03.043
pairing with only 6—8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently,
high-throughput sequencing of RNAs isolated by crosslinking ir p |puduun (HITS-CLIP) has identified functional
protein-RNA interaction sites. Here we gntl i - SUMMARY pairs with the target; (2) nucleotides paired outside the seed re-

protein-RNA complexes in mouse brain. Th gion stabilize interactions but are reported not to influence
sites—that were combined with bioinformatic analysis to identi mR e MicroRNAs (miRNAs) play key roles in gene regula- miRNA efficacy (Garcia et al., 2011; Grimson et al., 2007);
validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant mlRNAs tion, but reliable bioinformatic or experimental iden- and (3) functional miRNA targets are localized close to the

present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA tification of their targets remains difficult. To provide extremes of the 3' UTRs of protein-coding genes in rela-
action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions. an unbiased view of human miRNA targets, we devel- tively unstructured reglons (Grlmson et al, 2007) Recently,
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MRNA binding sites

AGO HITS-CLIP CLASH
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- not all mMiRNA binding sites are in the 3'UTR!



comparing predicted targets

matches with CLASH matches with control enrichment

Ly ol 6,248 6,248

interactions
miRanda 687,208 411 29 14.2 x
PicTar 205,263 224 9 24.9 x
PITA 192,255 195 2 97.5 x
RNAhybrid 992,584 310 25 12.4 x
TargetScan 54,199 170 5 34.0 x
all predictions 2,131,509 802 59 13.6 %
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- for all the miRNA binding sites that are in the 3'UTR:
- computational predictions are enriched over random
- however suffer extremely high false positives & negatives



a JC of two (or three) halves

. one transcript to rule them all
- transcriptome analysis of human tissues and cell lines
reveals one dominant transcript per gene

. neurogenesis in the adult human brain
- if there's time...



Gonzalez-Porta et al. Genome Biology 2013, 14:R70

http://genomebiology.com/2013/14/7/R70 Genome Biology
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Transcriptome analysis of human tissues and cell
lines reveals one dominant transcript per gene

Mar Gonzalez-Porta', Adam Frankish?, Johan Rung', Jennifer Harrow? and Alvis Brazma'~

Abstract

Background: RNA sequencing has opened new avenues for the study of transcriptome composition. Significant
evidence has accumulated showing that the human transcriptome contains in excess of a hundred thousand
different transcripts. However, it is still not clear to what extent this diversity prevails when considering the relative
abundances of different transcripts from the same gene.

Results: Here we show that, in a given condition, most protein coding genes have one major transcript expressed
at significantly higher level than others, that in human tissues the major transcripts contribute almost 85 percent to
the total mMRNA from protein coding loci, and that often the same major transcript is expressed in many tissues.
We detect a high degree of overlap between the set of major transcripts and a recently published set of
alternatively spliced transcripts that are predicted to be translated utilizing proteomic data. Thus, we hypothesize
that although some minor transcripts may play a functional role, the major ones are likely to be the main
contributors to the proteome. However, we still detect a non-negligible fraction of protein coding genes for which
the major transcript does not code a protein.

Conclusions: Overall, our findings suggest that the transcriptome from protein coding loci is dominated by one
transcript per gene and that not all the transcripts that contribute to transcriptome diversity are equally likely to
contribute to protein diversity. This observation can help to prioritize candidate targets in proteomics research and
to predict the functional impact of the detected changes in variation studies.

Keywords: splicing, transcriptome, gene expression, RNA-seq




analysis summary

- Djebali 2012 suggested genes tend to express a ‘'major
transcript’

- in this paper, the EBI group used 16 BodyMap tissues, 5
ENCODE cell-lines, and Flux Simulator RNA-seq data

- mapped to Gencode v11 protein coding genes

- transcript quantification using MISO, Cufflinks, and MMSEQ



major transcript
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Figure 1 Most protein coding genes express one predominant transcript. (a) Relative abundance of the subset of transcripts in each
position of the ranking for the primary tissues dataset. For each gene, transcripts were ranked based on their relative abundances. There is
generally one predominant transcript over the rest. (b) Percentage of the studied mRNA pool explained by each category of transcripts for the BM
dataset. The mean percentage for all samples is represented here. Major transcripts represent approximately 85% of the studied mRNA population and
were further classified into two-fold and five-fold dominant. (c) Expression distribution for major and minor transcripts in the tissue dataset. We
detect a total of 31,902 transcripts expressed above 1 FPKM in at least one tissue and 26,641 different major transcripts.
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body map vs. ENCODE

- Major transcript abundance
greater in cytosol than in
nucleus

- major transcript abundance
is generally lower in cell-
lines than in tissues

ript relative abundance
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simulated data
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- major transcript abundance is underestimated in simulated
data



transcript switching
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Figure 3 Expression patterns for major transcripts. (a) Percentage of genes with recurrent and non-recurrent major transcripts. Changes in the
identity of major transcripts across samples were quantified with switch events. (b) Concept of switch event. A gene is considered to be involved
in a switch event if we detect two different dominant major transcripts in two different samples. If the dominant transcripts involved in the
switch are expressed above 5 FPKM, while the minor ones are expressed below 1 FPKM, we define the event as a strong switch.
J

- 50% of genes expressed in all 16 tissues have the same
dominant transcript

- 35% of genes have consistent gene-level expression, but
have different dominant transcript between at least 2 tissues
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replicates
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- biological variability greater than between technical replicates
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example transcript switch
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Figure 4 Example of a switch event: MBP (myelin basic protein, ENSG00000197971). Read coverage for the gene in brain and kidney.
Further tissues, as well as transcript annotation information, can be visualised in Additional File 1 - Figure S12.
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example transcript
switch

ovary
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white blood cells

- Myelin Basic Protein (MBP)

- very different transcript in brain
compared to all other tissues
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- codes for a different protein
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non-coding major transcripts
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Figure 5 Major non-coding transcripts in protein coding genes. (a) Proportion of the mRNA studied represented by different categories of
transcripts. Average proportions were calculated including all the samples from each dataset. Major non-coding transcripts are more abundant in
nucleus, where the proportion of major coding ones also becomes reduced. (b) Transcript biotype categories for the major non-coding transcripts.
Average proportions were calculated including all the samples from each dataset. Processed transcripts are more abundant in the cytosol, while
retained introns represent the major fraction in the nucleus. Other minor categories that represented <1% of the transcripts were also identified,
but are not visible in the plots.

- 17% of ‘protein-coding’ genes have a major transcript that is
non-coding (31% in the nucleus)
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a JC of two (or three) halves

. wWhere’s miRNA?

- recap of MiIRNA/mRNA binding from AGO IP assays

. one transcript to rule them all
- transcriptome analysis of human tissues and cell lines
reveals one dominant transcript per gene

. neurogenesis in the adult human brain
- if there's time. ..



neurogenesis In the adult human brain

image: Fabian Oefner
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increased atmospheric '4C enters food chain

2 " S T,

incorporated into tissues » enters entire food chain




radiocarbon (14C) dating

- radiocarbon dating I
invented in 1949 e NV A -
RTBT 10-Oct-1963

natural level

- principle that -
atmospheric 14C is &N«L
constant and 14C - | |
decays predictably over = *

~14,000 years 120
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genesis of non-neurons
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Figure 2. Turnover Dynamics of Nonneuronal Cells

(A) Schematic illustration of the representation of the measured '*C concentration in genomic DNA. The black line indicates the *C concentration in the at-
mosphere at different time points in the last century. Individually measured '“C concentrations in the genomic DNA of human hippocampal cells are plotted at the
time of the subject’s birth (vertical lines), before (green dot) or after the '*C bomb spike (orange dot). '*C concentrations above the bomb curve (subjects born
before the bomb peak) and data points below the bomb curve (subjects born after the nuclear tests) indicate cellular turnover.

(B) The "C concentrations of genomic DNA from nonneuronal cells demonstrate postnatal cell turnover in subjects born before and after the bomb spike.

(C) Individual turnover rates for Nonneuronal cells computed on the basis of individual data fitting. Individual turnover rate calculations are sensitive to deviations
in measured '“C and values <0.001 or >1.5 were excluded from the plot, but the full data are given in Table S1.

(D) Nonneuronal average cell age estimates of cells within the renewing fraction are depicted (red curve). The dashed line represents a no-cell-turnover scenario.
See also Figure S2 and Table S2.
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