LARVA: Large-scale Analysis of Recurrent Variants in Annotations

Authors: Lucas Lochovsky, Ekta Khurana, Arif Harmanci, and Mark Gerstein
Abstract

We present LARVA (Large-scale Analysis of Recurrent Variants in Annotations), a
computational framework for aggregating rare somatic and germline variants from
multiple samples on genomic elements. These recurrent mutations serve as a
measure of an element’s mutational burden, and high-burden elements may
correspond to important sites of disruptions for diseases like cancer, and therefore
may be crucial for understanding diseases’ mechanisms and treatment. LARVA
enables the discovery of both recurrent somatic and germline variants in the same
annotation, which could implicate previously unknown disease-causing variants. In
this paper, we explain the concepts of LARVA’s framework, and how it functions to
identify recurrent mutations and recurrently mutated genome annotations. We
illustrate how LARVA may be used to study recurrent mutation patterns in both
coding regions and noncoding regulatory elements, and sets of pathways and
interaction networks. For the purposes of determining if observed recurrent
variation is statistically significant, we introduce a Statistical Assessment Module to
assess the statistical significance relative to recurrent variation expected under
neutral mutation processes. Starting with an existing exome model of factors that
influence the neutral mutation rate, we have developed our model to simulate
expected variation across the entire human genome. Our model makes use of whole
genome mutation rate influencers such as DNA replication timing, histone marks,
whole genome RNA-seq signals, and SNV density. Our system also provides an
Analysis Integration Module for the integration of multiple LARVA analyses, for
deeper understanding of disease variation. We have applied LARVA’s methods to
sets of prostate cancer WGS data to demonstrate its usefulness.

Introduction

Genomes of numerous cancer patients have been sequenced (Barbieri 2012, Baca
2013, Grasso 2012), opening up opportunities to identify the underlying genetic
causes for cancer phenotypes and develop more effective therapies targeted at
specific molecular subtypes of cancer. Most of these studies have been so far focused
on identifying mutations and defects in the protein-coding regions, or exomes, of
cancer genomes (Baca 2013). However, this approach ignores investigation of
potential variation in important noncoding features of the genome.

There are many noncoding genome regions that influence gene transcription. Such
features include pseudogenes, some of which are transcribed and can be
incorporated into functional transcripts (Pei 2012). There are also various classes of
noncoding RNA, such as microRNA (miRNA), small interfering RNA (siRNA), small
nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) that bind and regulate
transcripts (Esteller 2011). Furthermore, the binding sites of transcription factors,



which are important for regulation of gene expression, can also be affected by
somatic mutations in cancer. Finally, various protein factors can bind to stretches of
genomic DNA called enhancers that promote gene transcription.

Some computational systems, such as HaploReg (Ward 2011) and RegulomeDB
(Boyle 2012), were previously developed to determine the effect of GWAS variants
on noncoding annotations. HaploReg intersects the variants of WGS samples with a
fixed series of noncoding regulatory elements in the human genome, determines the
variants’ effects on noncoding regulatory motifs, and indicates the chromatin state
of the genomic region to which each variant maps. RegulomeDB further develops
this idea by expanding the range of genome annotations used to include
experimentally verified regulatory regions, ChIP-seq-derived transcription factor
(TF) binding sites, eQTL, and DNase footprinting.

Also important for understanding the effects of disruptive cancer mutations is the
placement of cancer-mutated genes in their systems-level contexts. Identifying the
pathways and interactions in which the products of mutated genes participate is
often crucial to seeing precisely how cellular functions are being disrupted by
cancer (Vandin 2011). Protein interaction networks have also proven useful for
characterizing cancer disruption: disrupted subnetworks of interacting proteins
have been used to more accurately classify subtypes of breast cancer in Chuang et al.
(2007).

Recent computational systems that focus on the cancer pathway disruption include
cBio (Cerami 2012) and Multi-Dendrix (Leiserson 2013). cBio starts with variant
datasets, and a database of genes and their pathway membership information. The
cBio system then identifies those pathways mutated with high coverage and high
mutual exclusivity. High coverage refers to the presence of mutations in a large
proportion of samples, and high exclusivity means that many of the highly damaging,
driver mutations appear in mutually exclusive samples, owing to the sufficiency of
mutating just one part of a pathway to nullify its function. Multi-Dendrix extends
these ideas by introducing new algorithms to find arbitrary sets of genes that exhibit
high coverage and mutual exclusivity of variants, rather than being limited to
previously established pathways. GEMINI (Paila 2013) is another general system
that manages variant call sets and genome annotation sets through an SQL database,
and allows users to formulate their own SQL-based queries over the stored data,
allowing a wide range of flexibility for exploring variant data.

Here, we present a computational system that supports the study of cohorts of
whole genome sequenced (WGS) disease patient samples. The primary function of
LARVA (Large-scale Analysis of Recurrent Variants in Annotations) is to identify
recurrent patterns of disease mutations in various genome annotations using WGS
data from multiple disease patients, and compute the statistical significance of these
findings. Our framework makes use of a relational database system approach to
organize, maintain, and operate on genome variant and annotation data in a
systematic way. LARVA allows users to investigate recurrent variation patterns that



a set of disease variant data presents in a set of genome annotation data by casting
the relevant questions as SQL queries. This framework accommodates a wide range
of query types, spanning any genetic disease, and any set of genome annotations one
wishes to study.

On a simple level, a mutation recurrence would be a variant at exactly the same
position in two individuals. However, this is exceedingly unlikely for rare variants
(Durbin 2010). Thus, we will consider mutational burden spread over elements.
These elements can be single annotations, such as exons, pseudogenes, noncoding
RNA, and regulatory features like promoters and enhancers. On a more complex
level, we will consider groups of genes related through a common pathway, or
through a protein interaction subnetwork, as a single element, where variants from
multiple patients that map anywhere in the gene group represent a recurrence.

LARVA enables the discovery of annotations that contain recurrent somatic variants
and recurrent rare germline variants. Elements with both types of mutation
recurrence could indicate a functional connection between the overlapping somatic
and germline variants. The absence of common variants from these elements would
serve as further evidence for a functional connection.

In addition to recurrent variant identification, LARVA offers two additional modules.
First, LARVA includes a Statistical Assessment Module, LARVA-SAM, that uses a
model of neutral genome evolution to determine the statistical significance of the
recurrent mutation patterns that LARVA identifies. Building on a previously
developed null model for exomes (Lawrence 2013), we introduce a null model for
whole genomes. Secondly, LARVA’s Analysis Integration Module (LARVA-AIM)
enables further exploration of a LARVA systems-level analysis. When LARVA is used
to study recurrent variation in pathways and networks, LARVA-AIM may be
employed to place recurrently mutated genes in their pathway and network context.
Recurrent gene and pathway/network data are combined to allow one to observe
the number of pathways in which a recurrently mutated gene participates, or the
number of network neighbors it has.

We have applied LARVA to cancer data to elucidate patterns of recurrent prostate
cancer mutations in important noncoding regulatory features of the genome. LARVA
has also been used to explore recurrent mutations on a pathway and interaction
network level in this data. The following sections describe LARVA’s concepts, and
their applications to the study of genetic disease.

LARVA Concepts

One of LARVA’s important design features is its use of a relational database to
manage its data and express recurrent variant exploration as database queries. This
arrangement provides users with an efficient, expressive means of organizing
LARVA'’s results and pursuing followup analyses. We have implemented LARVA'’s
relational database features using SQLite.



The core module provides analysis of disease variant calls for patterns of recurrent
variation in genome annotations. We shall call this module LARVA-Core. This
module has two primary inputs: variant files and annotation files.

The variant files, or vfiles, are derived from patients whose genomes have been
sequenced, and for which single nucleotide variants (SNVs) have been called by
comparing the patients’ genomes to a reference genome. Each file corresponds to a
single patient’s variant calls.

The annotation files, or dfiles, are derived from a number of genome annotation
sources. Afiles we have collected for LARVA analysis include protein-coding exon,
pseudogene, and noncoding RNA data from the GENCODE project (Harrow 2012).
We also studied transcription factor binding sites derived from a number of sources
(Rozowsky 2009, Kheradpour 2012). Finally, we sought to understand cancer
variation on a system-wide level by studying recurrent variation in metabolic
pathways and protein interaction networks (Kanehisa 2000, Kanehisa 2011, Prasad
2009).

Measures of Mutation

LARVA-Core intersects a set of vfiles with a set of afiles and identifies two types of
recurrent mutations. These include:

* Recurrent variants: Overlapping SNVs from multiple samples that fall into at
least one afile annotation (Fig. 1a). Such mutations may correspond to a
critical component of the annotation’s function that is important for tumor
suppression. These mutations may also be used to classify the subtype and
severity of cancer patients (Vandin 2011).

* Recurrently mutated annotations: Annotations that contain SNVs from
multiple samples that do not necessarily overlap (Fig. 1b). Such annotations
may be functionally disruptable in multiple places, and therefore, multiple
patients with the same functional disruption may carry SNVs in different
places of the same gene.

LARVA-Core’s findings are presented using three “Measures of Mutation”. These are
computed for each annotation, and each dfile annotation set. They are:

- Number of samples mutated: The number of samples represented by SNVs
that fall anywhere in the given annotation, or afile annotation set.

- Number of annotations recurrently mutated: The number of annotations in an
afile annotation set that are mutated in at least two samples. This is not
applicable to individual annotations.



- Number of recurrent variants: The number of SNVs from multiple samples
that overlap exactly, and fall anywhere in the given annotation, or afile
annotation set.

LARVA Statistical Assessment Module (LARVA-SAM)

It is important to determine whether the recurrently mutated annotations and
recurrent variants of LARVA-Core are statistically significant, in that these patterns
are not the result of random, neutral mutation processes. To that end, LARVA has a
module for randomly generating sets of cancer variants similar to the actual
datasets, and running LARVA-Core on these random datasets to gather information
on recurrently mutated annotations and variants that would occur by chance. Hence,
arandom distribution of the “Measures of Mutation” is generated, and compared to
the actual, observed “Measures of Mutation” to determine whether the mutation
patterns of the actual datasets are statistically significant.

Random variant generation for whole genome datasets

When LARVA-SAM is used on whole genome variant datasets, LARVA’s whole
genome neutral mutation “null model” is used, which simulates the distribution of
variants expected over a neutrally evolving genome. Our null model is defined as a
weight function that assigns weight to discrete partitions of the genome. The factors
used in our whole genome model include:

- DNA replication time: Early in the DNA replication process, there are more
free nucleotides available for DNA repair. As the process continues, this
nucleotide pool is depleted, and portions of the genome that are replicated at
a late phase are more likely to pick up mutations (Chen 2010).

- H3K4mel and H3K4me3 marks: Schuster-Bockler and Lehner (2012)
demonstrated that H3K4me1l/me3 marks are anti-correlated with SNV
density.

- Expression level: More highly expressed genome regions have higher levels of
transcription-coupled repair (Barretina 2012).

- SNV density: The 1000 Genomes Project has researched differences in
mutation rate due to natural population variation. (Durbin 2010).

- GC bias: Genome regions with more G and C bases have higher substitution
rates (Smith 2002). Incorporation of this factor into our model is under way.

The weight of a region r in the genome is defined with the following function:

weight(r)
= w,log (CDF(reptiming(r))) +w,log (1 - CDF(H3K4mel(r)))
+ wslog (1 - CDF(H3K4me3(r))) + wylog (1 - CDF(expression(r)))
+ wslog (CDF(SNV_density(r)))



where

* risa100,000-bp-long block of the human genome (hg19 build).

* reptiming(r) is the replication timing of region r, according to Chen et al.
(2010)

*  H3K4mel(r) is the level of histone H3K4 mono-methylation of region r,
according to ENCODE GM12878 Peak-seq experiments (Dunham 2012).

* H3K4me3(r) is the level of histone H3K4 tri-methylation of region r,
according to ENCODE GM 12878 Peak-seq experiments (Dunham 2012).

* expression(r) is the expression level of region r, according to the ENCODE’s
GM12878 RNA-seq track (Dunham 2012).

* SNV _density(r) is the number of SNVs in region r, according to the 1000
Genomes Project (Durbin 2010).

* w1 ... ws are the weights assigned to each variable to represent differing
contribution levels. These can be adjusted to fit the model to the observed
contributions of each factor.

CDF here refers to the cumulative distribution function of the expression values,
replication timing values, etc. It functions as a percentile ranking of each variable
within its respective distribution, and influences weight(r) accordingly. For example,
genes with higher H3K4me1 marks are less likely to be mutated, therefore lower
H3K4me1 values will map to higher weights, and higher H3K4me1 values will map
to lower weights.

When a region is chosen, the exact variant position is determined by randomly
choosing a position in the selected region with uniform probability. This whole
genome method of random variant placement represents an extension of Lawrence
etal’s (2013) methods to account for the systemic biases in effect on the human
exome’s neutral mutation rate.

LARVA-SAM will generate a user-specified number, nrand, of replicates of the vfiles
dataset that represents the actual data. Each of these replicate datasets contain the
same number of vfiles and variants as the original dataset, but have randomized
variant positions.

Random variant generation for exome datasets

When LARVA-SAM is used on exome variant datasets, the random variant datasets
are derived by simulating the distribution of variants expected for a neutrally
evolving exome. Our neutral mutation “null model” is defined as a weight
distribution over all genes, where the weight is based on a number of factors that
influence their neutral mutation rate (Lawrence 2013). These factors include:

- Expression level: As in the whole genome model, more highly expressed genes
have higher levels of transcription-coupled repair (Barretina 2012).



- DNA replication time: As in the whole genome model, later replicating
portions of the genome are more likely to pick up mutations (Chen 2010).

- Chromatin state: Genome regions with open chromatin are less likely to be
mutated than regions with closed chromatin, likely due to differences in
accessibility to DNA repair complexes (Schuster-Bockler 2012).

- Length: Longer genes will pick up more variants by chance than shorter
genes.

These factors are used to produce a weight for a gene g using the following function:

weight(g)
= w,log (1 - CDF(expression(g))) + wylog (CDF(reptiming(g))) + wslog(1 — CDF (chromatin_state(g)))

+wylog (CDF(length(g)))

where

* expression(g) is the expression level of gene g, according to the Cancer Cell
Line Encyclopedia’s (CCLE) RNA-Seq data (Barretina 2012). This is an
average of the expression across all CCLE cancers.

* reptiming(g) is the replication timing of gene g, according to Chen et al.
(2010).

* chromatin_state(g) is a measure of how open or closed the chromatin is at
gene g, according to Lieberman-Aiden et al. (2009).

* length(g) is the length of gene g.

* wi ... wsare the weights assigned to each variable to represent differing
contribution levels.

Once the gene to place the random variant in has been chosen, the gene’s exon
coordinates are retrieved, and an exact position for the random variant is
determined by selecting one at random from the retrieved exons, with uniform
probability. This procedure is repeated for each variant to be generated for the
given random variant file.

LARVA-Core runs and Normal distribution fitting

After the random variant generation step, LARVA-SAM will have generated nrand
random variant datasets. These datasets are used as input for LARVA-Core,
generating nrand datapoints approximating the expected distribution of each
Measure of Mutation. These datapoints are fit to a Normal distribution, and
compared to the corresponding Measure of Mutation from the actual vfile data to
produce a p-value, for significance testing.

LARVA Analysis Integration Module (LARVA-AIM)

LARVA-Core may be used for numerous types of analyses, the results of which can
be integrated for better understanding of disease variation. To this end, we have



developed the LARVA Analysis Integration Module (LARVA-AIM), designed to
facilitate the integration of multiple analyses after significance testing.

To assist in the systems-level analysis of disease variant files, LARVA-AIM may be
used to integrate a LARVA-Core gene analysis and a LARVA-Core pathway analysis.
LARVA-AIM can take a list of recurrently mutated genes and place them in the
pathways in which those genes participate. Additionally, LARVA-AIM can be used to
understand recurrently mutated genes in the context of their protein products’
interactions. The AIM module can bring recurrently mutated gene analysis data and
protein interaction network data together, so users can see the number of
interaction partners for each recurrently mutated gene. This enables the
identification of potential disease-related network hubs.

Example Workflows of applications using LARVA

By plugging a genetic disease cohort’s variant calls into LARVA’s vfiles parameter,
and using different settings of LARVA'’s afiles parameter, one may use LARVA to
study a cancer cohort’s patterns of recurrent variation over many genome
annotations of interest. We illustrate this flexibility with the following examples.

1) afiles = noncoding RNA annotations. With this setting, LARVA can find
potential regulatory drivers from a genetic disease cohort in noncoding RNA
(ncRNA). ncRNA annotations may be derived from the GENCODE project
(Harrow 2012). Recurrent variants corresponding to putative critical point
mutations in ncRNA will be identified, as well as any ncRNA mutated in
multiple samples.

2) dfiles = KEGG pathways. Here, one may define an dfile for each pathway in
the KEGG database (Kanehisa 2000, 2011), each containing the pathway
members. Under this arrangement, one may study a genetic disease cohort’s
recurrently mutated pathways using LARVA’s annotation set “Measures of
Mutation”. Once pathways worth closer investigation are identified at this
higher level of analysis, one may drill down into the annotation “Measures of
Mutation” for those pathways to investigate further.

3) afiles = Transcription factor binding peaks. Using data on the binding
sites of transcription factors from ENCODE Peak-seq experiments (Rozowsky
2009), one may use LARVA to identify recurrent mutations that may lead to
expression dysregulation in a genetic disease cohort. By defining an dfile for
each transcription factor, each containing that factor’s sites, one may identify
both factors and sites that should be studied further.

LARVA Applications to Cancer
We have applied LARVA to studying recurrent variants and recurrently mutated

annotations in a number of prostate cancer datasets (Berger 2012, Weischenfeldt
2013, Barbieri 2012, Baca 2013). Our findings have produced new insights into



potential noncoding disruptions in these cancers. LARVA’s source code is available
to download through Github, at <gersteinlab.github.io/LARVA>.

LARVA Implementation and Computational Efficiency,
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When LARVA-Core’s computations are complete, the results are produced in an
SQLite database, which allows the different types of output to be organized into
separate tables, and lets users explore specific portions of the output for the most
relevant findings. Although users may query this database directly, a Perl script is
available that allows users to construct queries using a wizard-like interface from
the command line. Users only need to answer a series of questions, and the script
will construct the SQL that corresponds to the user’s requested information,
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Due to the large number of simulated LARVA-Core runs that LARVA-SAM executes
LARVA-SAM is very compute intensive. Therefore, we have developed a parallel
version of LARVA-SAM that leverages multi-core CPUs. Users may specify the
number of CPU cores on their machines that LARVA should use. LARVA-SAM will
automatically split its LARVA-Core runs across the specified number of cores evenly

and process each batch in parallel. This allows the system to run as efficiently as the
available hardware allows.

We conducted timing tests on LARVA-SAM to evaluate how its running time scales

with different input sizes. The four parameters that influence LARVA-SAM’s running
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Variant count influence can be seen in Fig. 3 by comparing the running time of the
prostate samples vs. KEGG run (nrand = 120) and the Grade 4 glioma vs. KEGG run

(nrand = 120). These correspond to columns 1 and 3 in Fig. 3. The two columns are
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factor of ~2.5. Therefore, LARVA-SAM’s running time scales linearly with the nrand
setting. Taken together, these results indicate that LARVA-SAM’s algorithms are
efficiently optimized to scale to large problem sizes.
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and the GENCODE exons as the dfiles. Fig. 5 graphs the performance gain per core
added at different CPU core counts using nrand = 120 (a) and nrand = 300 (b). From
both graphs it is clear that there is an “elbow”: a point at which the performance
gain per core added decreases sharply, and the performance benefit per core

becomes minimal. However, it is also clear that at higher nrand settings, this elbow
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increases. For an nrand in the thousands range, which is recommended for

accurately deriving the expected variant distributions of neutrally evolving genomes,

we expect that using as many CPU cores as possible will yield significant
performance gains.

Choice of nrand Parameter Setting

Given the computational expense involved with running LARVA-SAM for a large
number of random datasets nrand, we investigated the influence of nrand on the
stability of the p-values produced by the LARVA-SAM significance tests. Specifically,

we looked at whether the p-values produced by LARVA-SAM cross the commonly

used significance thresholds of 0.05 and 0.01 as nrand increases.

Our analyses used the prostate sample collection described in Table 1 for the vfiles,
and used the KEGG pathway data as the dfiles, also described in Table 1. As we
varied the nrand, we observed how many p-values crossed a significance threshold

between consecutive runs. This analysis is demonstrated using a subset of our p-
value data as presented in Table 2. This data was derived from running LARVA-
SAM (prostate sample collection, KEGG pathways) using an nrand of 500 and 1000.
For each pathway, the expected distribution of each Measure of Mutation was
computed, and the findings from those distributions have been summarized in this
table. P-values from the same analysis done at different nrand settings were

compared to find those that crossed a significance threshold (i.e. p=0.05 or 0.01,

which are the two most commonly used thresholds). For example, in Table 2, the p-
value of the neuroactive ligand receptor interaction pathway at nrand=500 is over
0.05, but at nrand=1000, it is below 0.05. It is the only analysis in this sample data
that represents a “significance threshold crossing”. We generated p-values running

the prostate sample data against KEGG pathways for a range of nrand settings to
discover the setting at which the p-values had stabilized enough so that no

significance threshold crossing were observed for higher nrand settings.

Fig. 6 graphs the significance threshold crossings at p=0.05 (a) and p=0.01 (b). Each

bar cluster indicates the crossings observed from increasing the nrand as indicated
in the horizontal axis. At both significance thresholds, there are no more crossings
after nrand = 2000. Therefore, we conclude that 2000 simulated datasets is
sufficient to produce reliable p-values in LARVA-SAM'’s significance testing

Discussion

In this paper, we have introduced a new computational framework for exploring
patterns of recurrent mutation across somatic and rare germline variants. LARVA is
designed to be used to explore a broad range of genome annotations to uncover the
ones that are mutated across many samples, making it possible to predict putative
drivers of genetic disease, and prioritize these predicted drivers for more rigorous

downstream analysis. This may lead to faster identification of important targets that

may be used to suppress disease in therapies and drugs.
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Using a relational database design, LARVA is easily adaptable to many different
types of analyses. It may be used to study recurrent mutation patterns across genes,
pseudogenes, noncoding RNA, and various noncoding regulatory elements. This
ability to study noncoding mutation serves as an important supplement to the many
exome-focused studies that have been conducted so far on genetic diseases, such as
cancer. LARVA may also be used to study genetic diseases at a systems level, with
analyses on pathways and interaction networks possible.

Furthermore, we have developed LARVA-SAM, a module designed to compare
observed variant file recurrent mutation patterns to a simulated distribution of
variants generated from a neutrally evolving genome model. This comparison
allows users to identify genome annotations that are mutated in a higher number of
samples, or have a higher number of recurrent variants, than expected under
neutral evolution, indicating possible cancer involvement. Finally, we have created
LARVA-AIM, a module with the purpose of bringing together recurrent mutation
data from multiple types of analyses to shed deeper understanding on features with
probable connections to cancer disruption processes.

| A

Future Work

In addition to recurrence information, functional annotation is important to
assessing a variant’s likelihood of disease association (Khurana 2013). In the future,
we plan to add functional annotation capabilities to LARVA, enabling the filtering of
results for recurrent variants and recurrently mutated annotations more relevant to
diseases. We will also continue to improve LARVA’s algorithms and LARVA'’s user
interface. As the amount of genetic data increases, it will be important to further
optimize LARVA'’s computational efficiency, and therefore we are investigating these
issues for future iterations of LARVA. Also, we will continue to gain insights by
applying LARVA to additional cancer types and subtypes. In the long term, we
envision LARVA becoming increasingly useful for elucidating important insights and
understanding about all types of genetic diseases.
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Figures

Fig 1a: Recurrent variants are single nucleotide variants (SNVs) from multiple
samples that overlap in a single annotation.
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Fig 1b: Recurrently mutated annotations contain variants from multiple samples
that are positioned anywhere within the annotation boundaries.
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Fig. 2: A schematic of the algorithms behind the LARVA-Core module.
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Fig. 3: A series of timing tests for LARVA-SAM, varying the number of input variants,

input annotations, and number of random variant datasets to produce to determine
how performance scales with these parameters.
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Fig. 4: A graph of the running time with respect to the number of parallel CPU cores
used for a LARVA-SAM query of the prostate sample collection (vfiles) against the
KEGG pathways (afiles), with a number of random datasets nrand of 180. The
performance gained relative to the number of CPU cores added steadily decreases,

as expected.
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Running Time vs. CPU core count -
Query=prostate samples vs. KEGG,
nrand=180
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Fig. 5: These graphs illustrate the percent performance gain—measured in wallclock
running time—per CPU core added. It is evident that there is a point at which the
performance gained from increasing the number of parallel CPU cores diminishes
sharply at a certain point, much like the variance metric in elbow plots. These are
marked in red. (a) is for a LARVA-SAM analysis with the number of random datasets
nrand set to 120, and (b) is for the same analysis with nrand set to 300. These
graphs indicate that the “elbow” increases with nrand.
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Fig. 6: A graph of the significance threshold crossing at p=0.05 (a) and p=0.01 (b).
Significance threshold crossings refer to p-values that cross the given significance
threshold by increasing the nrand setting as indicated in the x-axis. For 185

Lucas Lochovsky 4/1/14 11:41 AM

Formatted: Font:ltalic

Lucas Lochovsky 4/1/14 11:41 AM

pathways, there are 555 p-values generated at each nrand setting. For both p=0.05 :
. AT ; A Formatted: Font:ltalic
and p=0.01, there are no crossing after nrand=2000, indicating that this is the \ \

Lucas Lochovsky 4/1/14 11:59 AM

optimal prand setting, Formatted: Font:ltalic

N Lucas Lochovsky 4/1/14 4:06 PM
(a) \ Formatted: Font:ltalic

. P A | L Lochovsky 4/1/14 4:05 PM
Significance Threshold Crossings at \r—rr

p=0_05 Lucas Lochovsky 4/1/14 12:05 PM
Formatted: Font:ltalic

=
N

11 Lucas Lochovsky 4/1/14 12:05 PM
10 10 10 10 Formatted: Font:ltalic
— Lucas Lochovsky 4/1/14 12:05 PM
Formatted: Font:ltalic
Lucas Lochovsky 4/1/14 12:05 PM
Formatted: Font:ltalic
Lucas Lochovsky 4/1/14 12:05 PM
Formatted: Font:ltalic
¥ nannot Lucas Lochovsky 4/1/14 12:05 PM
Formatted: Font:ltalic

Lucas Lochovsky 4/1/14 11:59 AM
Formatted: No underline

|
|

|
|
|

“nsamp

nvar

500 --> 1000 1000 -->1500 1500 -->2000 2000 -->4000
nrand setting

Number of Significance Threshold Crossings

19



Significance Threshold Crossings at

w 16 15
=T]
=
F 14— 13
° 12
© 12 +—
2 10 10 10
£ 10 +— 9
3]
'.E “nsam
8 p
51
= 6 “ nannot
1]
é nvar
-E 4
80
< 2
(=]
b
a 0
§ 500 --> 1000 1000 --> 1500 1500 --> 2000 2000 --> 4000
Z .
nrand setting
Tables
Lucas Lochovsky 3/17/14 6:59 PM
. . . . F, tted: N derli
Table 1: A list of the variant datasets, annotation datasets, and nrand settings used ormatted: Mo underiine
to test the timing of LARVA-SAM. Each combination of variant dataset, annotation L boeiouslhy) & i (00 PV
. . .. . . Formatted: No underline
dataset, and nrand setting was used in the timing tests in Fig. 3.
P Lucas Lochovsky 3/17/14 7:01 PM
" " " | Formatted: Line spacing: single
Variant Datasets Annotation Datasets nrand settings “1
- ) Lucas Lochovsky 3/17/14 7:01 PM
Collection of GENCODE v15 exons 120 “ Formatted: Line spacing: single
prostate cancer (~191,000 annotations) ' Luces Lochovsky 3/17/14 7:01 PM
samples (10,356 Formatted: Line spacing: single
variants) X X AN .o Lochovsky 4/1/14 10:31 AM
Giinel grade 4 KEGG pathways’ 300 « Formatted: Font:ltalic
lioma set (1710 member genes (58,770 Lucas Lochovsky 4/1/14 10:31 AM
variants) annotations) Formatted: Font:ltalic
Lucas Lochovsky 4/1/14 10:34 AM
Table 2: A subset of the LARVA-SAM significance test data produced by running Formatted: Font:ltalic

LARVA-SAM with the prostate sample collection as the vfiles, and the KEGG pathway
data as the afiles. Data was produced for nrand settings of 500 and 1000 (shown), as

Lucas Lochovsky 4/1/14 10:34 AM
Formatted: Font:ltalic

well as 1500, 2000, 4000, 6000, 8000, and 10,000 (not shown). P-value stability was J Lucas Lochovsky 4/1/14 10:34 AM
determined by comparing the p-values of equivalent LARVA-SAM analyses run at I/
different nrand settings. In this sample data, the p-value for the neuroactive ligand /// SCEEECOE SEIAACRIGECY

receptor interaction pathway changes from being insignificant at p=0.05 at Formatted: Font:ltalic

rand=500 to being significant at nrand=1000. We sought to find the prand for |

Lucas Lochovsky 4/1/14 10:37 AM
Formatted: Font:ltalic

20



which the p-values had stabilized enough that these significance threshold crossings
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