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Abstract
Analysis of genome structural variations (SV) at breakpoint resolution is
fundamental to understanding the mutational processes generating them.
Previous analyses of SV breakpoints were limited by size distribution of
the analyzed sets and/or confidence in breakpoint resolution. Here we
described the discovery and analysis of the largest to date and
representative compendium of 8,943 confident breakpoints of deletions
relative to the reference genome in 1,092 samples sequenced by the 1000
Genomes Project. Using sequence features at breakpoints we classified the
deletions into likely mechanisms of origin: non-allele homologous
recombination (NAHR), transposable element insertion (TEI), and non-
homologous (NH) mechanisms. SVs in each class exhibit pronounced and
significant increase in the SNP and indel density around their breakpoints
and this is likely to be explained by relaxed selection acting on those
regions as their evolutionary conservation is also reduced. Density of all
substitution types increased close to TEI and NH breakpoints. However,
for NAHR breakpoints, we observed both increase and decrease for
densities of different substitutions, e.g., increase for C to T and depletion
for C to A densities associated with increase in CpG di-nucleotide motifs.
Furthermore, based on association of NAHR SVs with active genomic
regions, open chromatin state, and early replication timing we suggest
these events originated in cell prior to replication. NH SVs with extra
sequence at a junction often have an identifiable template sites for the
sequence, which are located at a rather defined distance of 2-7 kbps from
the breakpoints and replicate later than regions of breakpoints. This may
consistent with the existing hypothesis that collapsed replication fork at
breakpoint has to wait for the unwinding of proximal DNA to switch
template and restore replication.

 
 
Results
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Figure 1. Deriving confident set of
breakpoints. A) Conceptual steps for the
derivation. Breakpoints from local target
assembly are filtered by mapping reads to
putative junctions. B) Null model for
breakpoint filtering. C) Comparison of
different breakpoint sets. Note, the pilot set
{REF} was included in the derivation as one
of the call sets. Integrated set {REF} was bias
towards large non-repetitive deletions for the
purpose of reliable genotyping, resulting in
mobile element insertions being strongly
under represented.

Deriving the confident set of breakpoints
We performed
comprehensive deletions
discovery {REF PHASE1},
targeted breakpoint
assembly {REF TIGRA-
SV}, breakpoint mapping
with two pipelines {REF
AGE CROSSMATCH},
stringent filtering (Fig. 1A),
and experimental validation
(see Methods). Due to
often-inconsistent results of
contig alignment and
breakpoint mapping by
different aligners and
processing pipelines we
applied stringent filtering to
ensure physical continuity
of flanking and inserted (if
any) sequences at
breakpoints. For filtering
we utilized unmapped reads
and empirical null model

(Fig. 1B). Briefly, the model used inner sequences adjacent to deletion
breakpoints to construct junctions simulating random sequence, i.e., null
sequence junctions. Note, this model imitates biologically relevant
sequence homologies around breakpoints. We realigned unmapped reads
to real and null junctions and optimized criteria to consider a read
supporting a junction by interrogating alignments to null junctions, as
such alignments represent random noise.
For the resulted set we performed PCR amplification across breakpoints
and Intensity Rank Sum (IRS) test {REF PILOT} as a validation exercises
(see Methods). We further performed ad-hoc filtering of deletions to
reduce systematic false positives arising as a result of using split-read
information during calling, assembly, and filtering. In particular, we did
not include deletions having breakpoint signature of variable tandem
repeats in the final set. The final set consisted of 8,943 deletion
breakpoints with consistent FDR estimates from PCR and IRS validations,
i.e., of 6.8% and 6.4% for deletion existence from PCR and IRS,

respectively, and 13.7% for deletion presence with correct breakpoints
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Figure 2. Co-aggregation of SNPs and
deletion breakpoints found in the analyzed
samples. A) Normalized SNP densities
increased while conservation decreased in
400 kbps regions around breakpoints of each

from PCR. We have further confirmed XXX% of the breakpoint
sequences with OMNI SNP genotyping array, and 39% of breakpoint
sequences in trios with high coverage and long read data (Table S1).
Overall, these breakpoints are of higher quality than those derived in the
pilot phase of the 1000 Genomes Project {REF PILOT} and are of better
representation across length scale than the one used recently by the project
{REF PHASE1}, as it was limited to large non-repetitive events that
could be well genotyped (Fig. 1C). By using BREAKSEQ software {REF
BREAKSEQ}, we further performed classification of the deletions by the
likely mechanisms of their origin using sequence signatures at breakpoints
into the following classes: non-alleles homologues recombination
(NAHR), transposable element insertions (TEI), and non-homologous

(NH) events. Note, our set
consists of deletions relative
to the reference genome but
the final set does contain
bona fide insertions of
transposable elements {REF
BREAKSEQ}. The final set
contained 13% of NAHR
deletions, 25% of TEIs, and
61% of NH deletions. It
should be noted that NAHR
and TEI events are more
difficult to discover as
having repeats between and
at breakpoints, thus, this set
is still likely to still under
represent those events.
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Figure 3. Analysis of NAHR. A)
breakpoint incidence on Chromosome1
with first eigenvector of Hi-C data
attached. B) Sorted Hi-C first
eigenvector on the whole genome and
incidences of breakpoint. C) Emperical
distribution given by permutation
shows the depletion of NH and
enrichment of NAHR in open
chromatin is statistically significant.
 

400 kbps regions around breakpoints of each
class. B) Densities increase for substitutions
of all types around NH and TEI breakpoints.
Increase of C>T substitutions around NAHR
breakpoints is explained by enrichment of
CpG motifs.
 

 
Variant co-aggregation with deletion breakpoints

To analyze association of variants
with deletion breakpoints we
aggregated SNPs and indels found
in the same group of individuals
around the breakpoints. In order to
reduce the contamination of our
analysis with false positive calls
we only used the variants that
reside in the confident sites as
defined by mask of the 1000
Genomes Project {REF} and
calculated density with respect to
the number of such sites.
Normalized densities (see
Methods) of both SNPs and
indels increased in 400 kbps

regions around breakpoints of each class (Fig. 2A and S1). Note, such
scale is significantly larger than 450-650 bp insert size of sequencing
libraries. Therefore, the observed increase is not likely to be caused by
false calls due to compromised mapping around SV breakpoints, rather
likely to be explained by co-occurrence of different variants in genomic
regions with reduced selection, as evident by aggregated conservation
score decreasing around breakpoints on par with the increase in SNP
density. Besides overal SNP density, densities of individual substitution
types also increase close to NH and TEI breakpoint (Table S2). However,
it is not the case for NAHR breakpoints, for which C to T substitutions are
enriched while T to A and C to A are depleted (Fig. 2B; Table S1).
Further analysis, by removing CpG di-nucleoties from consideration,
revealed that increase in C to T is due to enrichment of CpG motif,
exclusively, around NAHR breakpoints, i.e., not around NH or TEI
breakpoints (Fig. 2B). The motif is known to be highly mutable and,

Mark Gerstein

Mark Gerstein

Mark Gerstein



particularly, for C to T substitutions when methylated. Thus, this analysis
revealed potential association of NAHR breakpoints with regions of
methylation. Another interesting observation was that the increase in indel
density was highest for NAHR breakpoints (Fig. S1).
 
Association of breakpoints with chromatin states and active regions
(this is still very much in progress)
We used two states of chromosome interactome as defined by Hi-C
experiment {REF HI-C} and roughly corresponding to open and closed

chromatin, to investigate for any correlation of breakpoints with DNA
open and active chromatin. We tested for the occurrence of breakpoints in
genomic bins of 1 Mbps assigned to either state. To determine the
significance of our findings we circularly permuted the chromatin states
along the genome, thus preserving their relative arrangement but
randomizing their position relative to breakpoints, to simulate noise (see
Methods). We observed that NH breakpoints are depleted for open
chromatin while NAHR breakpoints are enriched (Fig. 3). We had
previously observed {REF FIG} that NAHR breakpoints are associated
with active chromatin marks and this observation is also confirmed with
the new set of breakpoints derived in this study (Fig. S2). Similarly,
previously observed {REF FIG} enrichment of NAHR with enhancers was
replicated in this study (p-value=PPP) on a larger set of YYY enhancers
{REF FUNSEQ} (see Methods).
Change in expression of nearby genes? Arif’s results.
To elaborate on these results we analyzed the association of DNA
methylation {REF} with breakpoints of each class, and strong association
was observed for TEI and NAHR breakpoints (Fig. 3D). In particular, the
methylation was 15 times higher (p-value=PPP) than background around
TEI breakpoints and 2.5 times higher (p-value=PPP) than background
around NAHR breakpoints. Methylation of transposable elements is
expected, as this a way for a cell to silence their activity {REF}. The
potential relevance methylation of NAHR breakpoints will be discussed
below.
 
Recombination motif….Recombination hot spot?
 
3D shows only the correlation with hypomethylated regions in human
sperms. The peak denotes “Hypomethylation” instead of
“Hypermethylation”. Although it looks weird at first glance, people know
for long that TEIs are hypomethelated in sperms for some unknown
region. I think so far what we can present is:
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NAHR breakpoints are enriched in Dynamical Methylated Regions
(DMRs) (REF DMR) while all other types show depletion in these
regions. XX% NAHR breakpoints fall into DMRs regions and those
regions are hypermethylated in most cell types. →→ Regulatory
elements, in line with our previous analysis on Hi-C. Indication that
NHAR might play an important role in diseases?
NAHR breakpoints are hypomethylated in human sperm….I don’t

think that tells us much. C>T in CpG does not happen during
meiosis/mitosis exclusively.

 
Micro-insertion at breakpoint deletions and relation with replication
timing
Multiple studies have reported existence of micro-inserted sequences at
deletion breakpoint. In our dataset we observed 2,391 (27%) deletions
with micro-insertions ranging in length from 1 to 96 bps with majority of
less than 10 bps in length (Fig. 4A). Those are likely to be explained by
existence of base mismatch and/or indel close to deletion breakpoints in
the aligned contig. Mismatches and indels are penalized and including
them in the alignment decreases the overall alignment score, while
aligning few bases between the mismatch/indel and breakpoints cannot
compensate for the alignment score decrease. As such, an aligner chooses
not to align those few bases and report as micro-insertion. Given our
alignment parameters (see Methods) it is likely that micro-insertions
shorter than 10 bps arise due to such effect. An enrichment of point
mutations close to deletion breakpoints has been previously described
{REF LUPSKI} and was also observed in this study on a larger scale (Fig.
1). We, therefore, performed the following analyses for micro-insertions
longer than 10 bps.
In agreement with previous finding {REF Conrad Kidd}, micro-insertions
were observed almost exclusively (83%) for NH events. Replication based
mechanisms were suggested to generate deletions with micro insertions
that are copies of some sequence in the genome {REF Lupski}. To test for
this possibility we semi-manually determined the likely genomic origin,
i.e., template site, of 133 (37%) inserted sequences of which 114 were 20
bps or longer, constituting 42% of all micro-insertions of such length.
Other micro-insertions did not map to the reference genome, mapped only
partially, or mapped to multiple locations. We categorized template sites
as those: i) within deletion, total of 49; ii) outside deletion but on the same
chromosome, total of 52 (39%); and iii) on a different chromosome, total
of 25 (19%). Seven template site spanned either of breakpoints and were

.

.
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Figure 4. Analysis of micro-insertions (MI) at
deletion junctions. A) Most of MIs are up to 10
bps in length and can be explained by
mismatch/indel close to breakpoint leading to
unambiguous alignment. Larger MIs are
typically found for NH deletions. B) Length of
micro-homology (MH) at deletion junction. For
deletions with MIs and identifies template site
MH are calculate for 5’-ends/3’-ends of the
deletion and the template site (Fig. S3). C) The
distribution of the nearest distance between
template site and either of the breakpoints
exhibits distinct peaks in the ranges 10-100 bps
and 2-7 kbps. D) The different in replication
time between template site and breakpoints
reveals later replication of template sites when
template site is outside the deletion (p-value <
0.03 by binomial test). The effect is even more
significant (p-value < 0.01) when excluding
difference of up to 0.01 as such small values are
comparable to measurement error.

excluded from analysis.
It was previously observed that NH events typically have few bases of
homology around their breakpoints and template site {REF BREAKSEQ,
KIDD, CONRAD, LUPSKI}. We do confirm this observation (Fig. 4B
and S3A) for blunt deletions and those 108 template sites located on the
same chromosome as the corresponding deletion. However, no sequence
micro-homology around breakpoints was apparent for deletions having

template site on a different chromosome (Fig. S3).
The distribution of the
nearest distance between
template site and either of
the breakpoints revealed
relative preferred
arrangement (Fig. 4C).
The template site was
located either within
10-100 bps or in the
range from 2 to 7 kbps of
one of the breakpoints.
Interesting that proximal
template sites typically
occur within the deleted
sequence and, perhaps,
can be explained by co-
occurrence of two indels,
discovered as a one
deletion, or as deletion
with a nearby indel. In
other words, micro-

insertion is genomic sequence between two proximal variants. However,
the other peak (around 2-7 kbps) in the distribution could signify the
mechanism(s) leading to generation of micro-insertions. We hypothesize
that the distance to template site could be related to DNA packing in a cell
or to the length of DNA to wrap around the replication bubble. To
investigate this further we compared replication times of breakpoints and
template sites.
It was previously noted {REF Koren} that breakpoints of deletions
generated by different mechanism show different association with
replication time. We confirm those observations: NAHR deletions are,
typically, associated with early replicating regions, HN with later ones,
while TEIs show no significant relation to replication time. Furthermore,

Mark Gerstein



template sites outside deletions, typically, replicate later (Fig. 4D) than
breakpoint regions (p-value < 0.03 by binomial test). However, that was
not the case for template sites within deletions or on a different
chromosome (Fig. S3). The former can be easily rationalized, as
replication time can be determined only on a large scale and is, typically,
the same within entire deleted region. The reason for the latter, however,

is not clear. But, note, the distinct relation of such sites with replication
time may stress the earlier observation from sequence micro-homology
analysis, that deletions with template site on the same and different
chromosomes are, in fact, different (Fig. S3).
 
Discussion

We provide large, less biased, and high quality dataset of breakpoints
They aggregate with SNPs and indels. Perhaps, expected (the indel
paper uses much smaller scale, about 5% increase in +/- 2kb regions)
Methylation correlates with meiotic recombination. Use CpG SNPs
as surrogates {REF PMID: 19158364}. They corrected the C>T on
CpG by the number of CpG and total SNPs
Increased SNP due to increased CpG. This is observed before (higher
CG% around NAHR). A result of gene conversion (as we made in
BreakSeq)
DMR association with NAHR suggests that NAHR might be more
likely to cause diseases?
Hypothesis about ssDNA in relation to NAHR event and C>T
mutations

Meiosis? Recombination?
Insight into template switching from mapping inserted sequence and
correlation timing.
We did not find significant association between NH and ASR

 
 
 
Methods
Discovery and merging
Deletions discovered by five CNV callers {REF} were merged with the
set of breakpoints discovered in 180 pilot samples of the 1000 Genomes
Project {REF}. The merged set contained 113,649 deletion calls. For each
call we collected read pairs around its boundaries in samples where
deletion was discovered and assemble them with TIGRA-SV {REF} into
contigs spanning breakpoints. The contigs were aligned to the deleted
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regions with CROSSMATCH {REF} and AGE {REF} to identify deletion
breakpoints (see below). This way we inferred 36,237 breakpoints, of
which 17,947 (50%) breakpoints were exactly the same by two
approaches, 9,537 (26%) breakpoints were different by the two
approaches, and 8,753 (24%) were uniquely inferred by either one of the

approached. In cases when there were different breakpoints inferred from
the two alignments we chose breakpoints from AGE alignments, as AGE
method was specifically designed to align contigs with structural
variations. Given large disagreement between the two approaches we
further filtered breakpoints by aligning unmapped reads to sequence
junctions of the deletions (see below and Fig. 1). Based on PCR
validation, we further performed ad-hoc filtering of deletions to reduce
systematic false positives arising from using synonymous split-read (SR)
approaches: deletion calling by SR, breakpoint derivation from assembly
(which is SR based), and filtering from read mapping to junction (which is
SR like). To summarize, all filtering steps were: i) removing breakpoints
not passing criteria for support by mapped reads to their junction (see
below); ii) removing deletions classified as VNTR, as their breakpoints
are in very repetitive regions; iii) removing breakpoints found by only
split-read calling approaches Delly, Pindel, and assembled in the pilot, as,
in case of mistake, assembly/filtering is likely to repeat it; iv) removing
deletions with breakpoints inferred from only CROSSMATCH
alignments; v) removing deletions called by only one method with
breakpoints inferred from only AGE alignments. The first three filters
were the most effective in removing false positive calls (Fig. S4). The
final set consisted of 8,943 deletion breakpoints with consistent FDR
estimates from PCR and IRS tests, i.e., of 6.8% for deletion presence from
PCR, 13.7% for deletion presence with correct breakpoints from PCR, and
6.4% for deletion presence from IRS test. FDR for deletion breakpoints
includes mistakes when deletion is not present but also includes cases
when the breakpoint is incorrectly determined (Fig. S4).
 
Defining breakpoints from CROSSMATCH alignments
 
Defining breakpoints from AGE alignments
Assembled by TIGRA-SV contigs of at least 100 bps in length were
aligned to the corresponding predicted deleted region extended by 2 kbps
downstream and upstream. AGE was run with option ‘-indel –match=1 –
mismatch=-10 –go=-10 –ge=-1’, specifying: that contigs are expected to
have insertion/deletion, that score for base match is 1, that mismatch
penalty is -10, that gap opening penalty is -10, and that gap extension



penalty is -1. Alignments consistent with the predicted deletion were
selected to identify deletion breakpoints. The consistency was defined by
the following criteria: i) at least 90% of bases in a contig are aligned; ii)
there must be at lest 98% of identical bases in entire alignment; iii) there

should be at least 97% identical bases in alignment of each flank, i.e.,
downstream or upstream from the deletion; iv) each flank must have at
least 30 base pairs aligned; v) regions between breakpoints must have 50%
reciprocal length overlap with the predicted deletion bounds; vi)
breakpoints should be within 200 bps of the predicted deletion bounds;
vii) alternative alignments, if any, must satisfy all of the conditions above.
In case of multiple contigs alignments satisfying the above condition, the
one for contig with highest coverage, as per assembly, was chosen to
define breakpoints.
 
Filtering breakpoints by mapping unmapped reads to breakpoint
junctions
Most of the reads utilized in assembly were from 30 to 70 bps in length,
i.e., rather short. This fact complicates assembly and makes it rather prone
to mistakes, particularly, in repetitive region, for which deletion
breakpoints are enriched. Therefore, to ensure physical (rather than
artificial, as a results of assembly error) continuity of flanking and inserted
(if any) sequences at breakpoints we performed breakpoint filtering by
utilizing unmapped reds. For each derived deletion breakpoint we
constructed breakpoint junction sequence by joining 100 bps downstream
with 100 bps upstream of the breakpoints. Micro-insertion (if exists) was
inserted in the middle. The set of all 36,237 junctions sequences from 200
to 298 bps in length comprised junction library. Unmapped reads were
mapped to the junction library using Bowtie 0.12.7 {REF} with the
options ‘--best --strata -v 3 -m 1’, requiring to make ungapped alignment
with at most 3 mismatches and report unique alignments only. Prior to
mapping, and the same way it was done by BWA {REF} during
alignments preparation by the 1000 Genomes Project, the reads were
trimmed at low quality 3’-end up to the average base-quality of 15. Reads
mapping with less than 3% of mismatches of their length and having
aligned bases in downstream and upstream flanking sequences were
retained as supporting the junction they aligned to. We chose a particular
cut off d on the number/fraction of bases aligned to each flank to choose
reads supporting breakpoints. Breakpoints that had supporting reads from
two different individuals passed the filter. This requirement ensures that
breakpoints passing the filter are for heritable germline deletions, as
singletons could be of somatic origin.



In total, we attempted realigning 15.8 billion reads to the junction library.
Given the large number of realigned reads and large size of the junction
library, some of the read mappings could be by chance. To discriminate

between real and random mappings we developed an empirical null model
(Fig. 1C). The model is based on imitating the junction library with semi-
random sequence, thereby, creating null junction library and mapping
unaligned reads to that null library. Such mapping will represent a random
noise and can be used for optimization of values of d. The library is
generated from inner sequences of deleted regions (Fig. 1C). Such an
approach is advantageous in that it allows preserving genomic (e.g.,
nucleotide content and sequence homology at breakpoints) and data
features (e.g., read coverage) associated with the loci of breakpoints.
We realigned all unmapped reads to the null junction library and varied
the values of d to find the cut off at which the number of null junction
passing the filter will be <5% of the number of real junctions passing the
filter at the same cut off (Fig. S5), i.e., we aim at <5% in-silico FDR. This
criterion let us to setting value of d at 13 bps. The empirical null model
allowed us to stratify the precision of breakpoint by various categories.
For example, and as expected, we observed that breakpoints found by only
one approach (either AGE or CROSSMATCH based) have higher in-silico
FDR. The order of breakpoints of different classes by corresponding
in-silico FDR was (from lowest to highest): NH, TEI, NAHR, and VNTR.
This is also expected, as in the same order breakpoints of different classes
have progressively more repeats around their breakpoints.
To summarize, the developed empirical model captures essential
biological features of breakpoints, not biased by using data loci different
from the breakpoints, and allows translating random mapping into
estimated FDR. We suggest that such empirical model can be used to
estimate FDR of genotyping known breakpoints from sequencing data.
When, however, applied to breakpoint filtering/validation one should keep
in mind that the approach may not account for systematic false positives
arising during structural variant calling by split-read method(s), as was
observed in our analysis (see above).
 
PCR and IRS validations
 
Comparing with OMNI genotypes
A set of 11,472 breakpoints derived in the pilot of the 1000 Genomes
Project was tested on a custom SNP array designed by ILLUMINA and
named OMNI 2.5s array. The pairs of probes were designed such that one
probe would hybridize to the reference allele and the other one to



breakpoint sequence, i.e., to the alternative allele. The probes were
different in only one nucleotide to mimic probes for SNP genotyping.

Accordingly, all the downstream hybridization signal processing was
performed with standard software for SNP array analysis.
Probe design, hybridization in 431 individuals, and genotyping quality
control resulted in confident array derived genotypes for 4,385 (38%)
breakpoints. XXX of our confident breakpoints were in this set (Table S1)
and 292 individuals were both sequenced by the 1000 Genomes Project
and genotyped by this array. Comparison of samples genotyped as having
a deletion by array and by mapping reads to sequence junctions, as we did
for filtering breakpoints, revealed that individuals with deletion genotype
by read mapping represent almost a perfect subset of those genotyped by
arrays (Fig. S6). This is easy to rationalize by noting that individuals in
the 1000 Genomes Project were sequenced at shallow 4-8X coverage, thus
not likely to have many reads covering breakpoint sequences, particularly,
in the case of heterozygous deletion. Furthermore, requirement for reads
mapped to deletion sequence junction to extend at least 13 bps across the
junction in each direction further reduces the number of reads that we
consider supporting deletions.
 
Confirmation of breakpoints in high coverage trios
[Breakpoint validation was performed OR We validated XXX% of
breakpoints] in trios using HiSeq 2500 long read high coverage data from
the Broad Institute.
The reads in the HiSeq 2500 data were 250 bp in length, with the majority
of pairs having insert size of ~400 bp. This implies that the reads in most
read pairs significantly overlapped in sequence, typically with length ~100
bp. In our validation method, we merged overlapping read pairs to
construct longer reads, where the identity of bases in the overlapping
sequence were selected from the read in the pair with the higher quality
score. Therefore, these longer reads contained more reliable sequences
than either of the reads in the original pair alone, and were easier to align
[TO??] by virtue of their increased lengths.
 
The 8,943 breakpoints in our set were genotyped in trios by CNVnator,
and 4,385 breakpoints had genotypes consistent with deletions in trios
(<1.5 or <0.5, for diploid and haploid regions, respectively). Read pairs in
the HiSeq 2500 data with coordinates in the vicinity of these regions were
merged to form longer reads as described above, where the length of a
given pair’s overlapping sequence was estimated assuming a binomial
distribution for the number of mismatched bases in the overlap



(p_mismatch=0.75, n=length of the overlapping sequence). We selected

overlap lengths that minimized the p-value under this assumption (i.e.,
given k mismatches in a overlap of length n, the probability that at most k
mismatches would occur by chance). We only considered merged read
pairs that exhibited a low ratio of number of mismatches to overlap length
(<0.2) and low p-values (<1e-10) to increase the reliability of the overlap
estimates. Our method, when tested using these criteria on NA12878 read
pairs with known overlaps, yielded correct overlap estimates 99.9483% of
the time (6057303 of 6060436 read pairs).
We then determined if these longer reads demonstrated support for the
4,385 breakpoints that had genotypes consistent with deletions in the trios.
We first used AGE alignment to select longer reads that contained
sequences consistent with deletions. [HOW DID find_support.pl
DETERMINE SUPPORT?]. We considered a given breakpoint to be
validated by the reads if the plurality of the reads constructed in the
vicinity of that breakpoint had both coordinates and microinsertion lengths
that matched those of the breakpoint.    [WHAT IS RELEVANT DATA
TO INCLUDE?]
 
Aggregation calculation
 
 
Intersection with open/closed chromatin
We used the Hi-C data generated on human lymphoblastoid cell line
(GM06990) (REF PMID: 19815776). The bin size is 1Mb and we counted
the breakpoints of different mechanisms fall into each bins. Then we
calculated the percentage of breakpoints with positive eigenvectors, that
is, in an open chromatin state. The number is compared with an empirical
distribution generated by circular permutation to calculate p-value. The
circular permutation is made by joining the end of bin array with the
beginning to make it circular. Then we rotate this circular array to every
possible position and calculate the percentage of active chromatin state
each time.
 
After dropping the original position and two adjacent positions,
distributions of NH and NAHR passed the Shapiro–Wilk test of normality.
Therefore we used normal distribution to determine their p-value. For
STEI, it does not show a significant change in the empirical distribution
and it does not pass the normality test.
 
(Do you want me to use purely empirical prob. distribution or normal



approximation (normality test + Z-score give NH and NAHR a much
lower p-value. But STEI does not pass the normality test. Is this
statistically sound?)
 
 
Double-strand break analysis
We used an aphidicolin generated double-stand break map of HeLa cell
line (REF PMID: 23503052). We counted the number of breakpoints fall into the
bins provided in the original dataset. We compared the number the number
with the empirical distribution generated by circular permutation.
 
Intersection with enhancers
 
Mapping template sites
 
Replication time analysis

 
 
 
 
 
 
 



Figure S6. Make it 3-way Venn diagram with Pilot.
 


