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Abstract [100 words…] 
Somatic alterations in regulatory regions can cause oncogenesis. Here we report a 
flexible framework to annotate and prioritize noncoding cancer drivers. Our method 
integrates large-scale genomics resources, such as conservation and functional 
studies, analyzes loss-of- and gain-of-function events, systematically associates 
regulatory elements with likely target genes, examines network topologies, creates a 
recurrence database from publicly available whole genome cancer sequences and uses 
a weighted scoring scheme to prioritize ‘high-impact’ variants. Cancer-specific 
knowledge, such as known cancer genes and sample-specific open-chromatin and 
transcriptome profiles are also incorporated. To evaluate performance, our method 
can predict deleterious variants from individual genomes. [[EK: Need to put a bit 
more about how good is performance and how evaluated.]] 
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Background  
Cancer genome sequencing generally identifies thousands of somatic alterations in 
individual cancer genomes. A few of them, called drivers, contribute to oncogenesis, 
whereas the majority are passenger mutations accumulated during cancer progression 
[1]. Systematic studies of human cancer genomes have discovered a wide range of 
cancer driver genes [2-6]. However, comparatively less effort has been invested in the 
noncoding portions of the genome. Recent discovery of recurrent somatic mutations 
in telomerase reverse transcriptase (TERT) promoter shows that regulatory variants 
may constitute driver events [7-10]. With the dramatic decrease of sequencing cost, 
international cancer consortia, such as TCGA (The Cancer Genome Altas) and ICGC 
(The International Cancer Genome Consortium), plan to perform large-scale cancer 
whole-genome sequencing in the near future. Thus, there is a great demand for high-
throughput computational methods analyzing those variants. 	
  
 
The important role of regulatory variants in various diseases has generated a great 
deal of interest in studying noncoding sequences [11-14]. In contrast to coding 
variants, functional impact of noncoding variants is more difficult to evaluate. 
Projects aiming to uncover potential regulatory sequences, such as The Encyclopedia 
of DNA Elements (ENCODE) [15] and sequence conservation studies [16, 17], 
provide an unprecedented opportunity to interpret noncoding variants. Disease-
associated single nucleotide polymorphisms (SNPs) identified by Genome-wide 
Association Studies (GWAS) are significantly enriched in ENCODE regions [18]. A 
number of tools have been developed using ENCODE data that suggest most likely 
causal variants in linkage disequilibrium with GWAS SNPs or annotate noncoding 
variants. These include Haploreg [19], RegulomeDB [20], ANNOVAR [21], GEMINI 
[22], FunciSNP [23] and VEP [24]. Recently, two computational approaches – 
GWAVA and CADD were published to predict the deleterious effect of variants 
genome-wide [25, 26]. These two methods utilized machine-learning models trained 
on potential pathogenic variants or nearly fixed/fixed human derived alleles to 
distinguish deleterious variants from neutral ones.  
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While much work has been done for germline regulatory variants, this is not the case 
for cancer somatic mutations. Through analyzing the variation patterns of inherited 
polymorphisms, we have published a prototype approach to identify potential 
noncoding drivers [17]. Here, we report a more comprehensive and flexible 
framework - ??? - to annotate and prioritize cancer somatic variants integrating 
various resources from genomic and cancer studies. Our method goes beyond the 
prototype in the following aspects. It 1) analyzes patterns of inherited polymorphisms 
among humans and evolutionary conservation across species to identify regions that 
are less likely to tolerate mutations; 2) integrates functional annotations and systems-
level information from various biological networks; 3) uses functional essentiality and 
prior knowledge of known cancer genes; 4) predicts loss-of- and gain-of- function 
mutations for transcription-factor (TF) binding; 5) identifies distal associations 
between regulatory sequences and target genes using various histone modifications; 6) 
estimates recurrence of somatic alterations in publicly available cancer whole-genome 
sequencing data; 7) uses a weighted scoring scheme based on natural polymorphisms 
to prioritize potential ‘high-impact’ variants and 8) has a flexible framework for users 
to incorporate case-specific data, such as open-chromatin and transcriptome profiles 
from corresponding samples. The framework consists of two modules – (1) a 
complex-to-regenerate data context created by processing large-scale data resources 
and (2) efficient and high-throughput variants prioritization pipeline. Users could 
either use the pre-existing or customized data context to prioritize variants. 
 
Besides mutations in the TERT promoter, no other regulatory drivers in TF binding 
sites are currently known. Thus, due to a lack of gold standard for regulatory cancer 
drivers, we used somatic recurrent mutations and known germline pathogenic variants 
to evaluate the performance of our method. Our method has good prediction power 
for both somatic recurrent and germline pathogenic regulatory variants, and more 
importantly it contains multiple cancer-specific features, such as differential gene 
expression detection between tumor and matched normal samples. As a test case, we 
also applied our method to an individual cancer genome with the known TERT 
promoter mutation. Our method is able to prioritize the variant and provides a 
functional hypothesis of its potential impact. This shows that our method can help 
researchers and clinicians to prioritize a few somatic regulatory mutations for further 
studies. 
 

Results and discussion 
Our framework first builds an organized data context by processing large-scale 
genomics and cancer resources into small-scale informative data and then annotates 
and prioritizes sample-specific somatic variants, especially regulatory single 
nucleotide variations [[EK: if you specifically say single nucleotide variants, referees 
are definitely going to ask what about genomic rearrangements, since they are so 
prevalent in cancer. So I suggest just say variants.]]. The workflow is depicted in 
Figure 1 and the detailed description is in Material and Methods. 
 
Variants in conserved regions 
Sequences that are under strong negative or purifying selection are thought to have 
important biological functions [16]. We utilized conservation data from different 
resources – cross-species conservation from GERP scores [27] and ultra-conserved 
elements [16], as well as population-level conservation from 1000 Genomes [17, 28] 
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to detect likely deleterious variants. Each variant will be annotated with the 
corresponding conservation information. Our framework also implements the method 
used in Khurana et al., [17] for users to find novel population-level conserved regions 
using depletion of common variants with user input polymorphisms or annotation 
data (Additional file 1).  
 
Variants in potential regulatory elements 
Regulatory elements, especially promoters and enhancers, are capable of regulating 
the expression of specific genes. We collect functional annotations from ENCODE 
[15] (transcription factor binding sites and the high-resolution motifs within them, 
enhancers from genome segmentations, ncRNAs and DNase I hypersensitive sites) 
and regions that are highly occupied by transcription factors (HOT) from Yip et al [29] 
to annotate potential regulatory elements. Different from variants in protein coding 
sequences, variants in regulatory regions exert their function in a spatiotemporal 
manner [13] [[EK: this could also be true for coding variants if gene shows 
spatiotemporal expression]]. Activation of regulatory elements is associated with the 
underlying epigenomic or open chromatin landscape, which is largely cell-line 
specific [30]. Therefore, we provide a module to incorporate sample-specific 
epigenomic profiles to denote corresponding activation or inactivation of regulatory 
sequences, for example …[[EK: need a bit more detail here]]. 
 
Regulatory mutations can cause transcriptional alterations by either loss-of or gain-of- 
function effects. Loss-of-function variants in transcription factor binding motifs are 
likely to cause deleterious impact [17, 31, 32]. Variants decreasing the position 
weight matrix (PWM) scores could potentially alter the binding strength of 
transcription factors, or even eliminate the binding. Our framework consists of a 
module to detect motif-breaking events – defined as variants decreasing PWMs 
(Material and Methods). Meanwhile, gain of new binding sites caused by somatic 
mutations can constitute driver events [7-10]. To the best of our knowledge, there is 
no automated tool to detect such events in whole tumor genomes. We developed a 
gain-of-motif scheme to scan and statistically evaluate [33] all possible motifs created 
by mutated alleles in promoter regions [[EK: is this correct]]. For each variant (SNV 
or indel), we concatenate it with +/- 29bp nucleotides around it and calculate sequence 
score for each possible motif against the PWMs. Gain-of-motif events are identified 
when sequence score with mutated allele is significantly higher than the background 
(p < 4e-8), whereas that with germline allele is not. Our scheme is validated by the 
detection of ETS motifs created by the two cancer drivers in TERT promoter 
(Additional file 1: Table S1).  
 
Correlating histone modifications with gene-expression data to identify likely 
target genes of distal regulatory elements 
To interpret likely functional consequences of noncoding variants, we 
comprehensively define associations between regulatory elements and genes through 
correlating various epigenetic modifications with gene expression levels. We 
considered the enhancer marks H3K4me1 and H3K27ac as two types of activity 
signals, and DNA methylation as an inactivity signal. Using ChIP-Seq and RNA-Seq 
data from the Roadmap Epigenomics Mapping Consortium (REMC), for each 
regulatory element-candidate target gene pair, we computed the correlations of 
H3K4me1 and H3K27ac and the anti-correlations of DNA methylation at the 
regulatory element with gene expression levels across ~20 tissue types (Material and 
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Methods). In total, we identified ~769K distal regulatory elements significantly 
associated with ~17K genes. All noncoding variants in these regulatory elements 
could be associated with potential target genes. To incorporate the ever-increasing 
amounts of genomic data, we include a pipeline for users to extend the data context 
with their own data, for example, users can input annotation regions or chromatin 
marks to find novel associations between regulatory elements and coding genes 
(Additional file 1).  
 
Network analysis of variants associated with genes 
Unlike germline mutations, somatic alterations are not expected to be under organism-
level evolutionary selection pressure and thus are more likely to affect functional 
centers in gene interaction networks [34]. Network studies have found that cancer 
genes possess high topological centralities, even higher than essential genes [17, 34]. 
We use the regulatory element-target gene pairs to connect noncoding variants into a 
variety of networks: protein-protein interaction, regulatory and phosphorylation 
networks [17, 36, 37]. For each noncoding variant, we calculate the scaled network 
centrality (the percentile after ordering centralities of all genes in a particular 
network) of the associated gene in each network (Material and Methods). Amongst 
the different network centralities, we use the maximum centrality as the network 
disruptive measure of the variant. The higher this value, the more likely the variant 
would be deleterious. We make the scheme flexible so it can integrate user networks 
in addition to the pre-collected networks.  
 
Gene prioritization: using expression and prior knowledge of target genes 
Interpretation of the functional impact of noncoding variant can be greatly enhanced if 
the function of its target protein-coding gene is known. Many cancer genes are known 
to play a crucial role in cell proliferation and DNA repair. We incorporate prior 
knowledge of genes, such as known cancer-driver genes [2, 38], genes involved in 
DNA repair [39] and actionable genes (‘druggable’ genes) [40] to annotate noncoding 
variants that are more likely to be involved in cancer development and growth or their 
associated genes could be used as drug targets. In addition, user-specific gene lists can 
be easily input (Additional file 1).  
 
Variants in regulatory elements may disrupt the expression of coding genes. 
Differential expression of target genes in cancer samples indicates the potential effect 
of noncoding variants. We provide a “differential gene expression analysis” module to 
detect differentially expressed genes in cancer samples (relative to matched normal) 
from RNA-Seq data. Lists of differentially expressed genes can be generated and used 
to annotate variants.  
 
Weighted scoring scheme to prioritize variants 
All of the above features are used to annotate and score variants. To integrate the 
various features to predict ‘high-impact’ somatic alterations, we developed a weighted 
scoring scheme, taking into account the relative importance of each feature. In 
general, features can be classified into two classes - discrete and continuous (Figure 
2). Discrete features are binary, such as in ultra-conserved elements or not. For 
continuous features, taking ‘motif-breaking score’ as an example, the values would be 
the changes in PWMs. We weighted each feature based on the mutation patterns 
observed in natural polymorphisms (Material and Methods). Features that are 
frequently observed are less likely to contribute to the deleteriousness of variants and 
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thus are weighted less. We calculated the Shannon entropy to denote the importance 
of each feature. For each cancer mutation, we score it by summing up the entropies of 
all its features (details in Material and methods). Variants ranked on top of the output 
are those with higher scores and are most likely to be deleterious. 
 
Performance on regulatory cancer somatic variants and germline pathogenic 
variants 
Currently only two known regulatory variants in TF binding sites are thought to act as 
cancer drivers. Hence, to evaluate the performance of our scoring scheme, we used 
recurrence to approximate the deleteriousness of somatic variants. Recurrence is 
considered as one potential sign of positive selection amongst tumors and is more 
likely to be associated with driver events [3]. We examined recurrence from two 
different perspectives – recurrence at the exact same-site and recurrence in the same 
regulatory element. First we obtained regulatory somatic variants from COSMIC [41] 
and classified them as same-site recurrent or non-recurrent (Material and Methods) 
[26]. Our method scores recurrent variants higher than non-recurrent ones (Wilcoxon 
rank-sum test: p-value < 2.2 e-16; Figure 3A). Variants that occur in more than 2 
samples have higher scores than those that are in 2 samples. Next we evaluated 
variants in recurrent regulatory elements. We ran our pipeline on 119 breast cancer 
samples [42], and classified variants as occurring in recurrent elements or not 
(Material and Methods). We found that variants in recurrent elements get significantly 
higher scores (Wilcoxon rank-sum test: p-value < 2.2e-16; Figure 3B) than variants 
elsewhere. Similar patterns are observed with other cancer types (Additional file 1: 
Figure S4). In summary, our method can predict potential ‘high-impact’ somatic 
variants.  
 
We note that cancer is a very heterogeneous disease and distinct molecular subtypes 
may involve unique oncogenesis mechanisms. Thus, tumor samples from different 
patients may contain different driver events. These unique drivers would not show 
recurrence across samples. Furthermore, in the absence of large sample sizes, it might 
be impossible to detect recurrence of mutations across multiple samples. Our method 
would be especially useful in such scenarios, since it has the ability to prioritize non-
recurrent deleterious variants in each cancer sample. Moreover, even when a 
noncoding driver event could be detected due to recurrence, its functional relevance 
and hence the biological mechanism by which it acts is largely unknown. Our method 
provides an in-depth annotation of such variants, including the relative contribution of 
each feature to its deleteriousness. This knowledge would greatly help understand the 
potential mechanisms by which the variant acts as a driver. 
 
[[EK: This paragraph should be shortened to two sentences and added at the end of 
first para in this section. Details can go in supplement. The last sentence is not very 
clear to me.]] Lack of consistent variants calling procedure, quality of COSMIC 
somatic mutations varies. This is a potential caveat when considering recurrence with 
COSMIC data. As shown in Figure S2, percentage of variants in pseudogenes 
increases as the number of recurrent samples increases. We suspect that reads 
containing these variants should probably be mapped to parent genes of pseudogenes, 
instead of the noncoding genome. After excluding variants in pseudogenes, the trend 
of prediction scores persists (Additional file 1: Figure S3). 	
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Though designed primarily for somatic mutations, our framework contains several 
features that are applicable to germline variants. Thus, we also tested the ability of our 
method to distinguish germline pathogenic variants from neutral ones. We obtained 
pathogenic regulatory variants from HGMD [43] and three sets of controls from 
Ritchie et al [26] – ‘unmatched’, ‘matched TSS’ and ‘matched region’ (Material and 
Methods). ‘Unmatched’ control consists of potential neutral polymorphisms randomly 
selected from 1000 Genomes Project. Restrictions of ‘2Kb around TSS’ and ‘1Kb 
around HGMD variants’ are applied to ‘matched TSS’ and ‘matched region’ controls, 
respectively. Our method scored HGMD variants higher than all controls, with AUC 
scores of 0.86 (for ‘unmatched’), 0.73 (for ‘matched TSS’) and 0.62 (for ‘matched 
region’) (Figure 3C and 3D). Results from CADD [25] using the same dataset are 
shown in Additional file 1: Figure S5 (AUC scores: 0.75 (‘unmatched’), 0.68 
(‘matched TSS’) and 0.61 (‘matched region’)). As negative sets are much larger than 
positive set, one concern with AUC scores is that the prediction power may come 
from the ability to predict negatives instead of positives. Thus we examined precision 
and recall to capture the ability of our method to predict positives (Additional file 1: 
Figure S6). Generally speaking, our method has good prediction power for pathogenic 
regulatory variants. In addition, GWAS SNPs show higher scores than matched 
common polymorphisms (mean values: 0.41 vs. 0.34, p-value < 2.2e-16; Material and 
Methods; Additional file 1: Figure S7).  
 
[[EK: This section below needs to be connected with the first para of previous 
section – I think it should be shortened and moved after discussion of recurrence 
in preceding section]] Recurrence database from whole-genome sequencing 
One important approach to identify cancer driver genes is to examine their recurrence 
across multiple samples. We extended the concept to noncoding regulatory elements. 
Our method can detect recurrent same-site mutations, genes and regulatory elements 
from multiple cancer samples. 
 
With the increasing number of cancer samples being whole-genome sequenced, we 
are able to study the recurrence patterns in regulatory sequences. Similar to the cancer 
recurrent gene database in cBio [44], we developed the recurrence database (coding 
genes, noncoding elements and the same-site mutations) for whole-genome 
sequencing data. Currently, we have collected somatic alterations from 570 samples 
of 10 cancer types [42, 45, 46]. For each cancer type, loci or sites with recurrent 
mutations in at least two samples are identified with our framework (Table 1). We 
also incorporated recurrent somatic noncoding mutations from COSMIC [41] into our 
database (Material and Methods). Variants in user-input tumor genome are compared 
to the recurrence database and the results in different cancer types are reported in the 
output. The database will be updated with newly available dataset.  
 
A case study: somatic variants from an individual cancer genome 
High recurrence of the TERT promoter mutations implicates their important roles in 
oncogenesis [7]. Among the 570 cancer samples we collected, 7 samples contain the 
TERT promoter mutation (chr5: 1295228). We used one Medulloblastoma sample as 
an example to prioritize regulatory variants from whole-genome sequencing. Amongst 
the 2,183 somatic single nucleotide variants, the TERT promoter mutation ranks 
among the top 0.64% (14th). When analyzing all 100 Medulloblastoma samples with 
our method, this mutation is found as a recurrent one. In our scoring scheme 
considering recurrence across samples, the mutation ranked the 2nd. Our method 
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further suggests potential functional impact of this variant. As shown in Table 2, this 
mutation occurs in ENCODE regulatory regions, creates a novel ETS binding motif 
and potentially affects a highly connected and known cancer gene –TERT. It is also 
found in another 5 liver samples and 54 COSMIC samples in our recurrence database. 
Besides DNA sequences, epigenomics or transcriptome could also be altered in cancer 
genomes. These data provide sample-specific activation or inactivation signatures of 
regulatory sequences. If provided, our framework is flexible in integrating those data 
into our annotation scheme (refer to Additional file 1 for details).  
 
We also applied CADD and GWAVA on the Medulloblastoma sample. CADD 
ranked the TERT promoter mutation as 224th (10.3%) and GWAVA ranked it as 10th 

(0.46%), 25th (1.15%) and 129th (5.92%) with ‘unmatched’, ‘matched TSS’ and 
‘matched region’ models, respectively. Upon detailed analysis of GWAVA 
‘unmatched’ model, we found that the high ranking of this mutation is not due to the 
functional importance, but model bias influenced by the feature - distance to TSS 
(Additional file 1: Figure S8). Compared to GWAVA, both our method and CADD 
can predict deleterious variants distant to TSS.  
 
Output format and performance 
FunSVPT is a Linux/Unix based tool with a web-server available at 
funseq2.gersteinlab.org. The code is also posted under GitHub - 
http://gersteinlab.github.io/FunSVPT/. It takes VCF or BED formatted cancer variants 
and generates results in either BED or VCF format (refer to Additional file 1 for 
examples). Users can retrieve or visualize results in concise tables through the web 
interface (Additional file 1: Figure S9 and S10).   
 
FunSVPT runs in a tiered fashion. Building data context from bulk of data resources 
is time-consuming. Currently FunSVPT takes about one week (on ~20 4-core 3.00-
Ghz 16GB RAM PowerEdge 1955 nodes) to rebuild the data context based on pre-
processed genomics data, such as ENCODE peak calls. The data context will be 
updated regularly to keep it up-to-date. Users can input additional data to customize 
the data context upon the existing one. Variant prioritization step is quite efficient. It 
takes ~2-3 mins to prioritize one genome with thousands of variants on a QEMU 
Virtual CPU version (cpu64-rhel6) @ 2.24-GHz 1 processor Linux PC with 20GB 
RAM, and a 500 GB local disk. Time comparison with CADD and GWAVA is in 
Additional file 1: Table S4 (FunSVPT is two times faster with equal number of 
variants). In addition, FunSVPT implements parallel-processing fork manager for 
efficient memory utilization to tackle multiple genomes in a single run. With a 
flexible and modularized structure, researchers can restructure the pipeline to 
incorporate more data and new features.  
 

Conclusions 
We have developed a method integrating various genomic and cancer resources to 
prioritize cancer somatic variants, especially noncoding ones. User data can be easily 
integrated into the framework. We believe that the software would be useful for 
researchers to identify a few somatic events among thousands for further in-depth 
analysis to understand the mechanisms underlying oncogenesis.  
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Material and Methods 
Data resources 
We collected polymorphisms from 1000 Genomes Project Phase 1 [28], GERP scores 
and ultra-conserved elements from [16, 27], sensitive/ultra-sensitive regions from 
[17], functional genomics data from ENCODE [15] and histone modifications ChIP-
Seq and gene expression RNA-Seq data of 20 cell-lines from REMC [47]. Cancer 
driver genes are the union of genes from Vogelstein et al., cancer gene consensus and 
COSMIC [2, 38]. Actionable genes are from [40]. Binary protein-protein interaction 
network is from InWeb [48] and HINT [49]. Regulatory and phosphorylation 
networks are obtained from Gerstein et al., [36] and Lin et al., [37] respectively. 
Whole-genome somatic alterations contain 506 cancer genomes from Alexandrov et 
al., [42] and 64 prostate cancer samples from [45, 46].  
 
High-impact variants in motifs: Nucleotide resolution effect 
User-input variants are first filtered against natural polymorphisms based on user-
defined minor allele frequency (MAF) threshold to get rid of unlikely somatic variants 
(hg19). Currently, SNVs and small indels (<=20bp) will be analyzed (large indels and 
SVs will be filtered in the first step).  
 
1. Motif breaking 
When variants hit transcription factor binding motifs under ENCODE Chip-Seq peaks, 
we examine their motif breaking or conserving effect using position weight matrixes 
(PWM). Motif-breaking events are defined as variants decreasing the PWM scores, 
whereas motif-conserving events are those that do not change or increase the PWM 
scores [32] (we calculate the difference between mutated and germline alleles in the 
PWMs). Variants causing motif-breaking events are reported in the output together 
with the corresponding PWM changes. Transcription factor PWMs are obtained from 
ENCODE project [15], including TRANSFAC, JASPAR motifs.  
 
2. Motif gaining 
Whole genome motif scanning generally discovers millions of motifs, of which, a 
large fraction are false positives. To restrict motif scanning, we focused on variants 
occurred in promoters (defined as -2.5kb from transcription starting sites) or 
regulatory elements associated with genes. For each variant, +/- 29bp are 
concatenated from human reference genome (motif length is generally <30bp). For 
each PWM, we scan the 59bp sequence. For each candidate motif encompassing the 
variant, we evaluate the sequence scores using TFM-Pvalue [33] (with respect to the 
PWM). Given a particular PWM (frequencies are transformed to log likelihoods), 
sequence score is computed by summing up the relevant values at each position in the 
PWM. If the p-value with mutated allele <= 4e-8 and the p-value with germline allele 
> 4e-8, we define the variant creating a novel motif. The process is repeated for all 
PWMs and all variants. The sequence score changes are reported in the output.  

Associating regulatory elements to genes  
We define both proximal and distal associations. For proximal associations, we assign 
variants in gene promoters, introns or UTRs to their nearby genes. For distal 
associations, in addition to those identified in [29], we further expand the method to 
all ENCODE non-coding regulatory elements and identified ~769K regulatory 
elements significantly associated with ~17K genes (see below). The association 
confidence is reported in the output for each regulatory element - target gene pair.  
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Correlating histone modications with gene-expression data to identify likely 
target genes of distal regulatory elements 
1. Definition of distal regulatory modules (DRMs) 
We started with a list of regulatory regions from three different types, namely 
transcription factor binding peaks (TFP), DNase hypersensitive sites (DHS) and 
Segway/ChromHMM-predicted enhancers. All regulatory regions at least 1kb from 
the closest gene according to the Gencode v7 annotation [50] were defined as a distal 
regulatory module (DRM). 
 
2. Identifying potential regulatory targets of each DRMs 
We grouped different transcripts of a gene sharing the same transcription start site as a 
transcription start site expression unit (tssEU). For each DRM, we first considered all 
tssEUs within 1Mb from it as its candidate targets. We then correlated some 
activity/inactivity signals at a DRM and the expression of its candidate target tssEUs, 
and called the ones with significant correlation values as potential DRM-target pairs 
as follows. 
 
At the DRMs, we considered the enhancer marks H3K4me1 and H3K27ac as two 
types of activity signals, and DNA methylation as an inactivity signal. The activity 
level of each DRM was defined as the number of sequencing reads aligned to the 
DRM from the corresponding ChIP-seq experiments. The methylation level of a DRM 
was defined as follows. For each CpG site 𝑖 within a DRM, we counted the number of 
reads that support the methylation of it (𝑚!), and the total number of reads covering it 
(𝑛!). The methylation level of the DRM was then defined as the ratio of their sums 
across all CpG sites in the DRM, !!!

!!!
 . For each tssEU, we defined its expression 

level as the number of RNA-seq reads aligned to the [TSS-50, TSS+50] window. 
Both the activity signal levels and gene expression levels were normalized by the total 
reads, then multiplied by one million to keep them within an easily readable range of 
values. 
 
We collected all bisulfite sequencing, ChIP-Seq and RNA-Seq data from the 
Roadmap Epigenomics project website [47] (EDACC release 91). We considered 19 
tissue types with data for both the activity signals and gene expression, and 20 tissue 
types with data for both the inactivity signal and gene expression. For RNA-seq, we 
used the paired-end 100bp Poly-A enriched data sets. For experiments with replicates, 
we used the mean value across the replicates as the expression level of a gene. 
 
For each DRM-candidate target pair, we computed the correlations of their 
activity/inactivity and expression levels across the different tissue types. We 
computed both value-based Pearson correlation and rank-based Spearman correlation. 
The statistical significance of each correlation value was evaluated by computing a p-
value based on one-tailed tests using the built-in functions in R. Briefly, for Pearson 
correlation, the correlation values would follow a 𝑡 distribution with 𝑛 − 2 degrees of 
freedom (where 𝑛 is the number of tissue types) if the samples were drawn 
independently from normal distributions. The Fisher’s Z transformation was used to 
compute the p-values. For Spearman correlation, the p-value was computed based on 
a procedure proposed by Hollander and Wolfe [51]. For activity signals, we 
considered the right tail, which means we looked for correlations significantly more 
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positive than would be expected by chance. For inactivity signals, we considered the 
left tail, which means we looked for correlations significantly more negative (i.e., 
strong anti-correlations) than would be expected by chance. All p-values were then 
adjusted for multiple hypotheses testing using the Bonferroni, Holm, Benjamini-
Hochberg (BH) or Benjamini-Yekutieli (BY) methods. 
 
Differential gene expression analysis 
We incorporated a module to detect differentially expressed genes in cancer samples 
(relative to matched normals) from RNA-Seq data. When provided with gene 
expression files, our module calls NOISeq [52] when having RPKMs and DESeq [53] 
with raw read counts (from reads-mapping tools) to detect differentially expressed 
genes. Genes that are up- or down- regulated with FDR < 0.05 (with biological 
replicates) and FDR < 0.1 (without replicates) in cancer samples are identified and 
annotated in the output.  
 
Network analysis of variants associated with genes 
For each variant associated with genes, we examine their network properties in 
various networks. For each network, we calculate the centrality position (cumulative 
probability after ordering centralities of all genes increasingly) of the associated gene. 
If one variant is associated with multiple genes or the associated gene participates in 
multiple networks, the maximum cumulative probability is used as the continuous 
value for centrality score. Scripts are provided to calculate network centralities 
(Additional file 1). User can easily incorporate other networks in this analysis.  
 
Recurrence database from whole-genome sequencing 
We analyzed somatic alterations from 570 samples of 10 cancer types to create the 
recurrence database. For each cancer type, recurrent genes, regulatory elements and 
mutations detected are stored as entries in the database. We also collected recurrent 
somatic regulatory variants from COSMIC (version 68). Recurrent variants are 
defined as identified in whole-genome sequencing data and observed in at least 2 
samples. 
 
Weighted scoring scheme 
1. Coding scoring scheme 
Please refer to [17]. Here is a brief description. The effect of variants occurred in 
coding regions (GENCODE 16 for the current version; users can replace this with 
other GENECODE versions) are analyzed with VAT (variant annotation tool) [54]. 
Variants are ranked based on the following scheme (each criterion gets score 1): 1) 
non-synonymous; 2) premature stop; 3) is the gene under strong selection; 4) is the 
gene a network hub; 5) recurrent; 6) GERP score>2.  
 
2. Non-coding scoring scheme (weighted scoring scheme) 
Features used to score non-coding variants are shown in Additional file 1: Table S2. 
In general, features can be classified into two classes - discrete and continuous. 
Discrete features are binary, such as in ultra-conserved elements or not. Continuous 
features: 1. GERP score, 2. Motif-breaking score is the difference between germline 
and mutated alleles in PWMs, 3. Motif-gaining score is the sequence score difference 
between mutated and germline alleles, 4. Network centrality score is the network 
position of the gene (the cumulative probability, see ‘Network analysis of variants 
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associated with genes’). If one variant has multiple values of a particular feature (e.g. 
breaks multiple motifs), the largest value is used.   
 
We weight each feature based on the mutation patterns observed in the 1000 Genomes 
polymorphisms. We randomly selected 10% of the 1000 Genomes Phase 1 SNPs 
(~3.7M) and run through our pipeline. For each discrete feature 𝑑, we calculate the 
probability 𝑝! that overlaps a natural polymorphism. Then we compute 1-Shannon 
entropy (1) as its weighted value 𝑤!. The value ranges from 0 to 1 and is 
monotonically decreasing when the probability is between 0 and 0.5 (in our study, the 
probability of observing each feature is below 0.5). 
 
𝑤! = 1+ 𝑝!𝑙𝑜𝑔!𝑝! + 1− 𝑝! 𝑙𝑜𝑔! 1− 𝑝!                                                                                                                          1  
 
𝑝! =

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠  𝑤𝑖𝑡ℎ  𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑑
𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠

 

 
The situation is more complex for continuous features, as different feature values 
have different probabilities of being observed in natural polymorphisms. Thus, one 
weight cannot suffice for varied feature values. For a continuous feature 𝑐, which is 
associated with a score 𝑣! (e.g. motif-breaking score), we calculate feature weights for 
each 𝑣!. In particular, we discretize at each 𝑣! and compute 1-Shannon entropy using 
(2). Then we fit a smooth curve for all 𝑣! to obtain continuous 𝑤!

!!. Now, when we 
come to evaluate the continuous feature 𝑐 for a particular variant, we calculate its 
weighted value (on the curve) using the actual 𝑣! corresponding to the variant.  
 
𝑤!
!! = 1+ 𝑝!

!!!𝑙𝑜𝑔!𝑝!
!!! + 1− 𝑝!

!!! 𝑙𝑜𝑔! 1− 𝑝!
!!!                                                                                        2              

 

𝑝!
!!! =

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠  𝑤𝑖𝑡ℎ  𝑠𝑐𝑜𝑟𝑒 ≥ 𝑣!   𝑓𝑜𝑟  𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑐
𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠

 

 
Taking ‘motif-breaking score’ as an example (Figure 2), for each score 𝑣, we 
calculated the probability of observing motif-breaking scores ≥ 𝑣 in polymorphism 
data, then used (2) to fit the smooth function. ‘nls’ function in R is used to fit curves. 
 
The criterion of ‘GERP >2’ has been commonly used to define conserved bases [15]. 
For GERP score, we chose to use sigmoid transformation to transform scores to the 
range 0~1. The parameters we chose make the sigmoid curve sharp at ‘GERP = 2’ 
(Figure S1). The sigmoid transformation preserves the ‘GERP > 2’ cut-off and makes 
the score continuous at the same time. We calculated (1) treating ‘GERP > 2’ as a 
discrete feature. Then we used 𝑤! ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  𝑣𝑎𝑙𝑢𝑒 to assign 
weighted value for each continuous GERP score.     
 
Finally, for each cancer variant, we score it by summing up the weighted values of all 
its features (3). Considering the situation that some features are subsets of other 
features, to avoid overweighting similar features, we take into account feature 
dependencies when calculating the sum-up scores. As shown in Table S2, when 
having leaf features, the weighted values of root features are ignored. For example, 
when a variant occurs in sensitive regions, the score of ‘in functional annotations’ is 
not used in the sum-up. Leaf features are assumed independent. Variants ranked on 
top of the output are those with higher scores and are most likely to be deleterious.  

Mark Gerstein
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𝑠𝑐𝑜𝑟𝑒 = 𝑤!

!

+ 𝑤!
!!

!

                                                                                                                                                                                          (3)         

 
Application to regulatory pathogenic and somatic cancer variants 
1. Noncoding somatic recurrent variants 
We obtained noncoding somatic variants form COSMIC (version 68). Recurrent 
variants (10,041) are defined as identified in whole-genome sequencing and observed 
in at least 2 samples. All other variants (1,311,389) are non-recurrent ones (with 
GENCODE 16). Because the same sample from different papers may have multiple 
ids, we also defined recurrence based on number of studies. Recurrent variants also 
have higher scores than non-recurrent ones (Wilcoxon test: p-value = 2.16 e-07). We 
calculated the percentage of variants located in pseudogenes. As shown in Figure S2, 
the percentage increases with the number of recurrent samples or studies.  
 
2. Noncoding somatic variants in recurrent regulatory elements 
We first identified recurrent regulatory elements across multiple cancer samples. Then 
we classified variants either in recurrent regulatory elements or not. As recurrent 
regulatory elements are functional annotations, to be a fair comparison, we defined 
variants in non-recurrent regulatory elements as those also in functional annotations. 
From 119 breast cancer samples, there are 24,443 and 126,217 variants in recurrent 
and non-recurrent regulatory elements respectively. The feature of recurrence is not 
considered in calculating scores for recurrent variants in 1 and 2. 
 
3. Germline pathogenic variants and matched controls 
Genome locations of pathogenic regulatory variants (from HGMD[43] - 1,614) and 
three sets of negative controls are downloaded from GWAVA [26]. The control sets – 
‘unmatched’, ‘matched TSS’ and ‘matched region’, contains regulatory 
polymorphisms in 1000 Genomes with minor allele frequency ≥ 1%. ‘Unmatched’ 
control has 161,400 polymorphisms randomly selected from 1000 Genomes. 
‘Matched TSS’ control includes 16,140 polymorphisms matched for distance to the 
nearest TSS. ‘Matched region’ control has polymorphisms within 1kb around HGMD 
regulatory variants (5,027). Allele information for HGMD variants is obtained from 
HGMD database. For controls, the alleles are from ENSEMBL BioMart, using 
reference SNP ids. 	
  
 
We downloaded pre-calculated CADD scores for 1000 Genomes variants and 
extracted corresponding scores for control sets. For HGMD variants, we used the 
online CADD server to obtain the scores.  
 
We compared prediction scores of HGMD variants with three sets of controls using 
various measures – TPR (true positive rate), FPR (false positive rate), precision and 
recall. We treated HGMD as positive set and controls as negative sets. For each 
possible score, we draw the cut-off to make our predictions and calculated - TPR = 
TP/(TP+FN); FPR = FP/(FP+TN); Precision = TP/(TP+FP); Recall = TP/(TP+FN). 
TP: true positive; FP: false positive; TN: true negative; FN: false negative. AUC score 
is the cumulative area under the curve of TPR and FPR.  
 
We also tested our method with GWAS SNPs (6,604) and matched controls (66,040) 
from [26]. Allele information is obtained from ENSEMBL BioMart.   
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Framework flexibility 
User data can be easily incorporated into our framework. Cancer-sample specific 
studies, such as histone modifications and gene expression, are especially important to 
evaluate variants impact. Please refer to ‘Additional file 1’ for usage.   
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Figures 

Figure 1  - Schematic workflow of FunSVPT. 

Figure 2  - Weighted scoring scheme.  
A) Features used in weighted scoring scheme; B) Motif-breaking scores and 
corresponding weighted values. 

Figure 3  - Application to pathogenic and cancer somatic noncoding variants.  
A) Score distribution of variants based on their recurrence in COSMIC; B) Score 
distribution of variants based on recurrent regulatory elements in 119 breast cancer 
samples; C) Prediction scores of regulatory variants from HGMD and controls; D) 
ROC curves comparing HGMD with controls;  
	
  

Tables 

Table 1  - Summary of recurrence database.   

Table 2  - Output for TERT promoter mutation in an Medulloblastoma sample.   
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Additional file 1 – Supplementary information 
This file contains supplementary figures, supplementary tables and software manual.  
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Table 1 
 
 

Cancer Type # Samples  # Somatic Mutations 
(SNV) 

# Recurrent 
Genes/Elements/Mutations 

AML 7 271~1068 1 
Breast 119 1043~67347 69,140 
CLL 28 522~3338 709 
Liver 88 1348~25131 74,144 
Lung Adeno 24 9284~297569 162,165 
Lymphoma B cell 24 1502~37848 4,233 
Medulloblastoma 100 44~47440 2,793 
Pancreas 15 1096~14998 2,591 
Pilocytic Astrocytoma 101 2~926 58 
Prostate 64 1430~18225 36,327 
COSMIC recurrent 
regulatory mutations - - 10,041 
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Typography 
  Please use double line spacing. 
  Please ensure that all special characters used are embedded in the text, 

otherwise they will be lost during conversion to PDF. 
  Genes, mutations, genotypes, and alleles should be indicated in italics, and authors 

are required to use approved gene symbols, names, and formatting. Protein products 
should be in plain type. 
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