LARVA Update: Performance Improvements and P-value Calculations

Featuring the return of LL and his A.N.T.I.C.S.

(Amazingly Nifty and Timely Insectoid
Computational System)

Annotation Variation subgroup 2014-03-17

Previously...

- Discovered that LARVA-SAM's efficiency was held back by the use of files to communicate results between processes
 - CPAN Parallel::ForkManager module has the same problem
- Decided to migrate to true interprocess communication with OpenMPI
- Interface between Perl and MPI was kludgy
- Decided to rewrite the entire software suite in C+ +, since the Perl MPI module was translating all the MPI commands into C anyway

And now...

Same scalability as before Up to 40x speedup over Perl version!

Running Time of LARVA-SAM (C++/OpenMPI version) Under Various Parameter Settings

LARVA-SAM Code Profile (C++/OpenMPI version)

New code profile indicates that none of the support steps dominates over the LARVA-Core step. And apparently, C++ has a much more efficient random number generator.

CPU core count influence on performance

Running Time vs. CPU core count - Query=all prostate vs. KEGG, nrand=180

Diminishing returns as # CPU cores increase, but what is the optimal number of cores? $_{5}$

Determining the Optimal Number of CPU Cores

- Decided to determine this based on the performance gain relative to the number of CPU cores added
- For two timing tests t1 and t2, where t1.ncpu <
 t2.ncpu, calculate performance gain as follows:

$$|t2.running_time - t1.running_time| / (t1.running_time)$$

$$t2.ncpu - t1.ncpu$$

Example:

- t1: 2 cores, 23 min

- t2: 4 cores, 13 min

$$Perf_gain = \frac{|13 - 23|/(23)}{4 - 2} \approx 0.217$$

Determining the Optimal Number of CPU Cores

Other Planned Features of this Presentation

- Perl version of LARVA could only do nrand of a few hundred feasibly
 - Found that significance test p-values varied by orders of magnitude at that level
 - Running on much higher nrand important
- Evaluation of C++ LARVA at nrand approaching 10,000
 - And determine variance of p-values
 - Find threshold nrand at which p-value does not change appreciably at higher nrand values
- Goblin01 server crashed over the weekend
 - Results not available