LARVA Update: Performance
Improvements and P-value
Calculations

Featuring the return of LL and his A.N.T.I.C.S.

(Amazingly Nifty and Timely Insectoid
Computational System)
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Previously...

Discovered that LARVA-SAM’s efficiency was held
oack by the use of files to communicate results

petween processes

— CPAN Parallel::ForkManager module has the same
problem

Decided to migrate to true interprocess

communication with OpenMPI

Interface between Perl and MPI was kludgy

Decided to rewrite the entire software suite in C+
+, since the Perl MPI module was translating all
the MPI commands into C anyway




) And now...
Same scalability as before

Up to 40x speedup over Perl version!

Running Time of LARVA-SAM (C++/0OpenMPI version) Under Various
Parameter Settings
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LARVA-SAM Code Profile (C++/OpenMPI version)
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New code profile indicates that none of the support steps dominates over the LARVA-Core
step. And apparently, C++ has a much more efficient random number generator.
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CPU core count influence on
performance

Running Time vs. CPU core count - Query=all prostate vs. KEGG,
nrand=180
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# CPU cores

Diminishing returns as # CPU cores increase, but what is the optimal number of cores?
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Determining the Optimal Number of
CPU Cores

 Decided to determine this based on the
performance gain relative to the number of CPU

cores added

* For two timing tests t1 and t2, where tl.ncpu <
t2.ncpu, calculate performance gain as follows:

|t2 Junning _time —tl .running _ time| / (tl running _ time)

t2.ncpu—tl.ncpu
* Example:

— t1: 2 cores, 23 min [13-23|/(23)
. Perf _gain =
— t2: 4 cores, 13 min 4-2

~0.217
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Other Planned Features of this
Presentation

* Perl version of LARVA could only do nrand of a few
hundred feasibly

— Found that significance test p-values varied by orders of
magnitude at that level

— Running on much higher nrand important
e Evaluation of C++ LARVA at nrand approaching 10,000

— And determine variance of p-values

— Find threshold nrand at which p-value does not change
appreciably at higher nrand values

e Goblin01 server crashed over the weekend
— Results not available



