LARVA Update: Performance
Improvements and P-value
Calculations

Featuring the return of LL and his A.N.T.I.C.S.

(Amazingly Nifty and Timely Insectoid
Computational System)

Annetatien Variation subgroup
2014-03-17

Previously...

Discovered that LARVA-SAM’s efficiency was held
oack by the use of files to communicate results

petween processes

— CPAN Parallel::ForkManager module has the same
problem

Decided to migrate to true interprocess

communication with OpenMPI

Interface between Perl and MPI was kludgy

Decided to rewrite the entire software suite in C+
+, since the Perl MPI module was translating all
the MPI commands into C anyway

) And now...
Same scalability as before

Up to 40x speedup over Perl version!

Running Time of LARVA-SAM (C++/0OpenMPI version) Under Various
Parameter Settings

18

16

16

14

14

12

10

Running Time (min)

all prostate vs. all prostatevs. Gr4 gliomavs. Gr4gliomavs. all prostatevs. all prostatevs. Gr4gliomavs. Gr4gliomavs.
KEGG exons KEGG exons KEGG exons KEGG exons 3 N

| 11
Inrand=120 1 nrand=300

LARVA-SAM Code Profile (C++/OpenMPI version)

25

23.625

20

[uny
wuv

9.875

Running Time (sec)

=
o

3.375

0

Data import step (avg) Random variant placement LARVA-Core step (avg) MPI collection step (avg) Data export step
(avg)
Step

New code profile indicates that none of the support steps dominates over the LARVA-Core
step. And apparently, C++ has a much more efficient random number generator.

30

25

Running Time (min)
[N N
[0, o

[any
o

CPU core count influence on
performance

Running Time vs. CPU core count - Query=all prostate vs. KEGG,
nrand=180

——

CPU cores

Diminishing returns as # CPU cores increase, but what is the optimal number of cores?

5

Determining the Optimal Number of
CPU Cores

 Decided to determine this based on the
performance gain relative to the number of CPU

cores added

* For two timing tests t1 and t2, where tl.ncpu <
t2.ncpu, calculate performance gain as follows:

|t2 Junning _time —tl .running _ time| / (tl running _ time)

t2.ncpu—tl.ncpu
* Example:

— t1: 2 cores, 23 min [13-23|/(23)
. Perf _gain =
— t2: 4 cores, 13 min 4-2

~0.217

:ent performance improvement per
core

-ent performance improvement per

Determining the Optimal Number of
CPU Cores

Percent performance gain/cores Percent performance gain/cores

added nrand=120 added nrand=120

o A\ // Ny N yd
0.5 /
\ S/ 0.4 \ 4

os N\ //

0.2
O ——————— [T S
(5]
O T T T 0 T
2 4 8 15 30 2 4 8 15 30
CPU cores # CPU cores

ent performance improvement per

Percent performance gain/cores Percent performance gain/cores

[J]
o 0.1
(5]

added
added nrand=300
nrand=180 o .
0.6 , g
0.5 *s' 0.4
0.4 € 03
3
0.3 8,
0.2 E
. E,
g5 0.1
g 0 T T T T
0 § 2 4 8 15 30
o
CPU cores *é # CPU cores 7

Other Planned Features of this
Presentation

* Perl version of LARVA could only do nrand of a few
hundred feasibly

— Found that significance test p-values varied by orders of
magnitude at that level

— Running on much higher nrand important
e Evaluation of C++ LARVA at nrand approaching 10,000

— And determine variance of p-values

— Find threshold nrand at which p-value does not change
appreciably at higher nrand values

e Goblin01 server crashed over the weekend
— Results not available

