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We present MUSIC, a signal processing method for jdentification of enriched regions in the genome- - genome-wide enrichment of DNA binding proteins
wide read depth (RD) signal profiles from ChIP-seq experiments. The basic motivation behind MUSICjs and post translational modification of histones, or

histone modifications (HMs). Following a ChIP-Seq

twofolds: First, systematic noise introduced by non-uniform read mapability makes it challenging to \‘ experiment, the generated reads are mapped and it

. R . “\‘ is necessary to computationally identify the
process the enrichments. Second, many ChIP-Seq assays have a broad spectrum of enrichments, e.g. 'y enrichments in the read depth signal. Unlike the
H3k36me3 marks the active gene bodies whose lengths range from 100 bps to megabases, that makes it H\\‘ transcription factors that show punctate signal
. . . Y enrichments, the enrichments for many ChIP-Seq
necessary to analyze the signal at multiple scales that can be tuned by the user. Motivated by these, \‘\\\\\ assays manifest at much larger length scales (e.g.,
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experimental method for genome-wide measurement of DNA binding proteins (e.g. transcription \“\
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the basic first step for understanding the regulatory effects of the HMs and diffuse DNA binding proteins
on gene expression as more evidence is brought to light that these epigenetic factors are major driving

factors for disease manifestation like \cancer{. - {Comment [O1]: Citations on epigenetics and }
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Several popular methods for identification of broad enrichments include change point identification
within the formality of Bayesian inference (BCP), local island identification and clustering (SICER), local
thresholding and merging (MACS), and using local Poisson statistics to identify broad enrichments (SPP),
Wavelet based smoothing and identification of enriched regions (WaveSeq, Kharpikov et al).
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with 5 other methods with respect to accuracy, in terms of consistency with expressed regions, and

reproducibility. We show that ERs identified by MUSIC have higher F-measure and higher reproducibility
compared to other methods.
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MUSIC ALGORITHM: .
There are two factors that motivate the novel methodology behind MUSIC:

1. Mapability is an important aspect of read mapping and processing. For example, in the repetitive
regions the number of uniquely mapable positions decreases significantly. This, depending on the

W

makes it impossible to evaluate whether a decrease in the signal is due to low mapability or a decrease
in the modification levels. This becomes problematic especially in the intergenic and intronic regions
which contain many repetitive regions. Consequently, the broadly enriched intergenic and intronic
regions will be fragmented into many smaller enriched regions. It is worth noting that this problem is
less severe for the punctate enrichments like transcription factor binding.
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[[INTRODUCE THIS AS IMPULSE NOISE]]

In order to characterize the mapability of different regions, MUSIC generates the genome-wide multi-
that can map from any other position in the genome. In order to gain a perspective on the statistics of
multi-mapability signal, we aggregated the signal over different elements. This reveals, as expected, that -
the protein coding exons and promoter regions show the highest mapability (See Figure S1). The multi-
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These regions are then filtered with respect to significance computed in comparison with the control
signal to generate the scale specific enriched regions, SSERs. The SSERs at small scales represent the
small enrichments in the signal and the vice versa for SSERs at large scales. With multiple scales, MUSIC

Figure XX shows the flowchart of MUSIC (See Methods for more details,) Here we summarize each step -

briefly. The input to MUSIC are the sets of reads from the ChIP and control samples (Steps 1 and 2), and
the set of smoothing window lengths to be used in multiscale analysis. MUSIC first preprocesses the
reads and filters the PCR duplicates for both samples. Then MUSIC computes a scaling factor using linear
regression between the ChIP and control signal profiles. The slope of the regression is used as a
normalization factor for control.
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Then, in Step 3, the ChIP and normalized control signal profiles are generated, and the ChIP profile is
smoothed and corrected with respect to mapability using the multi-mapability profile. The correction
can be formulated as following:
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where x; and X; are the uncorrected and corrected signal values, respectively, at position i, m, is the
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The regions identified from the consecutive minima are rough and it is necessary to identify the location - {Deleted: features

of densest signal enrichment within each region. To achieve this, MUSIC performs a Poisson background - {Deleted: feature
based thresholding and p-value minimization to trim the ends and identifies the densest, or most
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To illustrate this, we processed multiple ChIP-Seq datasets (CTCF, Polymerase 2, and several HMs) from

chromosome 1. Figure 2 shows the distribution of SEF pileup signal for different datasets. In this plot, we
shown in the x-axis. As expected, CTCF, a punctate binding transcription factor, shows the least broad
enrichments compared to other datasets. H3k4me3 and H3k4mel, active promoter and enhancer HM
marks, show broader enrichments than CTCF. H3k36me3 and H3k27me3, which mark active and
repressed gene bodies, show broader enrichments and finally H3k9me3, an HM associated with large
heterochromatin domains, shows the broadest enrichments. Another interesting observation is that
H3k4me3, H3k4mel, and H3k36me3 have maxima at certain scales, which indicates that these HMs get
enriched at specific length scales that are observed very frequently. Finally RNA Polymerase Il signal
profiles show a high frequency of enrichments at small scales that shows more gradual decrease in

frequency as the scale increase.

In order to evaluate the accuracy of the enriched, we compared the ERs from MUSIC with 5 other
algorithms that identify ERs from ChIP-Seq data: BCP, SPP, MACS, SICER, and PeakRanger. We ran all the
algorithms using H3k36me3, and H3k27me3 ChIP-Seq datasets for GM12878 and K562 cell lines from
ENCODE project. H3k36me3 correlates well with expressed transcript regions and this allows us to build

quantifications (in RPKMs) from ENCODE RNA-seq dashboard and thresholded the expression levels of
the transcripts and filtered the transcripts with low expression. The expressed transcripts are then
merged to generate the final set of expressed regions. Rather than selecting one expression threshold,
we selected thresholds between 0 and 1 units of RPKM increasing with steps of 0.01 so as to evaluate

[[Parameter selection for this comparison]]

Accuracy Measures:

To measure the accuracy of ERs, we used sensitivity (the fraction of the coverage of correctly predicted
of correctly predicted ERs to the coverage of identified ERs). In order to combine the sensitivity and PPV
into one accuracy measurement, we used F-measure, which is the harmonic mean of sensitivity and
positive predictive value (See Methods). Having one measure of accuracy enables us to easily compare
the accuracy of methods with changing RPKM thresholds,,

Figure 3a and b shows the F-measure of the H3k36me3 peak calls for different methods with respect to
the changing RPKM cutoffs used to identify expressed regions. MUSIC has higher F-measure than all the
other methods for GM12878 at all expression cutoffs, followed by BCP. For K562, MUSIC has higher F-

measure than all other methods for expression cutoffs smaller than 0.8 then falls slightly below BCP. It
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should be noted that RPKM cutoff of 0.8 is a very stringent threshold for identifying expressed
transcripts.

For assessing the importance of mapability correction, we ran ER identification without mapability
correction and computed the F-measure of the ERs. Fig 3c shows the F-measure versus RPKM threshold.
Using mapability map significantly increases the accuracy of peak calls and shows the importance of
utilizing the mapability correction in ER identification.

I[DISCUSS RESULTS ON REPRODUCIBILITY]]

Polymerase Il binding data from ENCODE project. Polymerase shows distinct patterns of binding such
that the depending on the state of polymerase, i.e., elongating or stalled, the ChIP-Seq enrichment
becomes more broad and more punctate for elongating and stalled polymerase, respectively. In
addition, the stalled and elongating polymerase can be distinguished by comparing the detected amount
of transcription at the polymerase binding.

For evaluating the relation between the expression and the enrichment broadness as measured by SEF
pileup signal, we processed and computed the SEF pileup signal (100 bases to 2.5 megabases) using the
ChlIP-Seq dataset for RNA polymerase Il (Pol2b) from ENCODE project. For each protein coding gene, we
computed the maximum value of the SEF pileup signal within the promoters. This gives us, at each gene,
an estimate of the broadness of polymerase binding at the promoter. Next, we also quantified the gene
expression levels in RPKMs. Finally, we plotted the joint distribution of SEF signal and gene expression
level for each gene which is plotted in Fig. 5. Visual inspection of this plot reveals two components: The
maximum of one component can be located at SEF pileup signal at 9 and log expression (log expression
level at 2. This component can be associated with actively transcribed genes. The maximum of other
component is located at SEF pileup signal at 9 and log expression level at 0. Although the maximum does
not have a distinguishable local maximum, it can be spotted by looking at the distribution from two
different orientations, as in Fig. 5a and 5b.

We present a novel method, MUSIC, for the identification of enriched regions in ChIP-Seq experiments.
Although MUSIC can be used to identify enrichments in any ChIP-Seq experiment, we concentrated on
identifying histone ChlIP-Seq experiments in this paper. MUSIC utilizes a multiscale decomposition of the

data. Mapability is an important aspect of peak calling from next generation sequencing data especially
for identifying the broad domains of enrichment since the read depth profiles are highly correlated with
the mapability map. We showed that MUSIC outperforms other methods in terms of accuracy of

We showed that MUSIC outperforms other methods in terms of accuracy ot -

H3k36me3 peaks in comparison with the expressed transcripts identified from the expression data from
ENCODE project.

- { Deleted:

- /[ Deleted: using SEFs

- [ Deleted: SEFs

__ — | Deleted: [[FOLLOWING IS THE AGGREGATION

PLOT OF Pol2s2 data: 4 quandrants in the
expression/broadness plane]]q

| _ - /[ Deleted: filtering

h { Deleted: correction

| Deleted: MUSIC, to our knowledge, is the first
peak caller that takes mapability into account for
identifying broad domains of enrichment at
nucleotide level.




believe this customizability will prove very useful for processing the datasets generated using ChlIP-Seq
experiments for which broad binding profiles are observed.

[[There is no mode for one sample analysis, which is reasonable bc ...]]

There are several limitations of MUSIC. Currently, MUSIC cannot be directly used on genomes with high

chromosomal aberrations, i.e., copy number variations. Although the Poisson background model partly

compensates for this by modeling the read distribution over a large window, the current significance
estimation by binomial p-value computation does not correct for these effects and can therefore
generate spuriously high number of peak calls on regions with high copy numbers. This is a limitation

We describe signal processing pipeline underlying MUSIC in more detail.
Control Scaling Value Computation:

Mapability Correction and Enrichment Feature Enhancement: Given the read depth signal at each
nucleotide position, MUSIC generates the per nucleotide multi-mapability signal and corrects for the
mapability based loss of signal using following filtering:

Xi =Lmax[xi: median({xa}ae[i—lc/g,g'-tngl| mg < mexonic)]

mapability aware filtering. Using this filtering, MUSIC infers the signal values for positions with low
mapability using the median of the values at nearby positions with multi-mapability signal lower than
1.2. We selected this value since it is the smallest multi-mapability signal profile value, i.e. most

observations. This window length depends on the distribution of length of the non-mapable region
lengths. Different window lengths did not seem to affect the results too much for our tests on human
genome.

This filtering is inspired from the dilation operation in image processing, which is a morphological filter
and has been used, in combination with other filters, for image enhancement. In our experiments, we
observed that the operation defined above tends to enhance the significant features and does not
change the significance of the background regions.
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Multiscale Enrichment Feature Identification: Multiscale signal processing has been used in the context
of wavelet transform™~\cite{XX,XX,XX} to process ChIP-Seq data and for peak calling. In this paper, we are
using a more general form of multiscale filtering, namely the multiscale decomposition™\cite{XX}. MUSIC
utilizes a median filtering based smoothing for generating a multiscale decomposition. We selected to
use median filtering since it has many applications in signal processing for performing signal smoothing
with edge preserving. Given a window length, i.e. the scale, median filtering can be formulated as:

x; = median T yefiLeisle] |2 Ls € Ubegin s Lena)
272

v

Where x; is the it" value of the decomposition at scale level s for which the smoothing window length
is lg, and X is the mapability corrected signal profile. The window length [ is chosen from a geometric

series with the factor o~\cite{XX} to make sure that the larger scales do not dominate the generated

features.

The multiscale decomposition enables automatic identification of blobs in the signal profiles at different
scales with very small computational requirement. MUSIC uses a fast and efficient method to implement
the median filtering by storing the histogram of the signal values in the window and processes only the
new and obsolete signal values that enter and leave, respectively, the current window to update the
histogram when moved to the next window.

all the local minima points in the decomposition. MUSIC utilizes regions between minima points as the
regions of enrichment. For this, MUSIC computes the derivative of the signal at each point as the

difference between consecutive values:

X7 = (6 = x-1)

where x'} is the derivative of the smoothed signal x;. MUSIC assigns the local extrema points at the

points where the derivative changes sign:

={i|x"7 <0andx'}_; > 0}

Imin
Imax

={i|x{>0andx}_; <0}

Where I, and I, are the sets of positions of minima and maxima of x;

specific candidate enriched regions of xis are identified as the regions between the consecutive minima.

Comparison of Smoothed Signal in Candidate Enriched Regions: For the candidate enriched regions in
each smoothing scale, MUSIC uses the value of smoothed signal levels and unsmoothed signal levels for
assessing the quality of enriched region. A scale specific candidate enriched region is filtered if the ratio
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of the maximum of smoothed signal to the maximum of the unsmoothed signal within the candidate
region is higher than the smoothing ratio threshold, y. In other words, MUSIC removes the candidate

enriched region [i, j]_at scale s, if

max({xé}ae[i,j])

max({xa}ae[i,j]) '

This test is designed as a simple and efficient check to evaluate whether the signal within the candidate

region identified at the scale level s is severely smoothed. This way MUSIC efficiently detects and avoids

overmerging of consecutive regions that have high signal enrichment and are close to each other. In

addition, MUSIC removes the enriched regions whose signal levels are severely smoothed. By default y
is set t0 0.25.

Candidate Enriched Region End Trimming using Poisson Distribution Model: MUSIC trims the ends of

divides genome into 1 megabase windows and for each 1 megabase window estimates the mean of all o ‘[ Deleted: first

the values. Using this as the mean parameter u of the Poisson distribution, MUSIC selects a threshold
that satisfies 5% false positive rate:

T = argmin{Fy (t) > 0.95}, X, ~ Poisson(u))
t

Where Fy, represents the cumulative distribution function of X, , which is distributed as Poisson with

mean u. For a feature with start and end at positions i and j, respectively, the trimmed end coordinates

are given as:
l-l = argmin(xa > -[)’ a € [l:]] //{Deleted: argming (x, > 1),a € (i,))
v . a e
jl = argmax(xa > ‘[)’ a € [l,]] /{Deleted: argmax,(x, > 1),a € (i,))
v _a . __ ___ _______________________________ e

Where i’ and j' are the trimmed start and end coordinates, respectively. The features that do not pass
the threshold are removed from the candidate peak list.
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which the p-value of the region is minimized. This maximizes the compactness of the merged feature
regions. The end-refined merged feature regions are the candidate regions of enrichment before p-value
computation.
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j' = argmin(p(i’,a |, =@—1+ 1))),a € [i,j]
a

where p(a,b | L, ) represents the p-value for the peak starting at a and ending at b with the length of

Pval
p-value window given by L, . (Refer to p-value computation.)

Yixi Xix;
XXy Xixi

where Y}; x;” and X); x; is the total signal on the positive and negative strand within the start and end

<0.5

min

coordinates of the ER, respectively.

P-value computation and FDR Estimation: \We use one-tailed binomial test to compute the p-values for

each end-refined merged feature region. We first count the number of reads in the chip sample (n¢p;p)

and control sample (n ontror) that overlap with the region, then compute one tailed p-value as:

N chiptN/conrol
n.,. +n ’ ’
= chip control 05(nchip+ncontrol)
P .
T
T=nlchip+1

! ’ . . .
Where n¢p;p, and ngopero; are the normalized read counts for the region:

/ _ TNchip
nChip - Pval
lchip
n _ Ncontrol
control —
lcontrol Pval

Where lpml is the length of the p-value computation window and p refers to the p-value value for the

peak. Larger values of [ increase the significance of regions (See parameter selection). We correct for

Pval
the p-values using the Benjamini-Hochberg procedure to generate the corrected p-values, i.e., g-values:

Npeaks

Qi =pi X —
l

where Npeqis is the total number of peak regions and i is the rank of the peak in the peak list sorted
with respect to increasing p-value. By default, MUSIC uses g-value cutoff of 0.05. The filtered peaks are
reported in BED format with their g-values in the score field.
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Multi-Mapability Signal Generation: MUSIC can generate per nucleotide multi-mapability signal
profiles. For this it is required to have a read mapping program installed on the system. Currently MUSIC
uses bowtie2~\cite{XXX}, a very popular fast read mapping algorithm, by default. MUSIC first fragments
all the chromosomes to the read length of interest, maps all the fragments to the genome using
bowtie2 with 2 mismatches and reporting of maximum of 5 multimapping positions per fragment. Then
MUSIC uses the mapped reads to build the mapability signal profile. The regions with high signal
corresponds to regions with low mapability. Then MUSIC processes the mapability profile to store space
since it does not require the whole mapability signal profiles. We generated mapability maps for hg19
genome for read lengths of 36, 50, 76, 100, and 200 bps that are available for download with MUSIC.
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Accuracy Measures: For evaluating the accuracy of H3k36me3 peak calls, we computed sensitivity,
positive predictive values:

Sensitivity = covg(P N G)
ensitivity = covg (G)
covg(PNG
ppy = <29 NE)
covg(P)

Where covg(P) is the coverage of peaks, covg(G) is the coverage of expressed gene bodies and
covg (P N G) is the coverage of the overlap between expressed gene bodies and peaks. We combined
these two accuracy measures to compute F-measure, computed as:

2 X Sensitivity X PPV
(Sensitivity + PPV)

F — measure =

For H3k4me3 peaks, we used all the promoters (TSS of the transcript £2500 bps). For these, we use a
slightly different approach to compute sensitivity and PPV:

#(SNP)

Sensitivity = #0S)



#(PNS)

PPV = #(P)

Where #(S), #(P), #(P N S) represent number of active promoters, number of peaks, and number of
peaks that overlap with active promoters, respectively.

Datasets and Data Processing: We downloaded ENCODE ChlP-Seq from UCSC genome browser. The
RNA-seq expression quantifications are downloaded from ENCODE RNA Dashboard. For the transcript
quantifications, we used the average RPKM values for the transcripts from two replicates that satisfied
the reproducibility criteria that iIDR smaller than 0.1.

SUPPLEMENTARY MATERIAL

Mapability is an important factor for processing genome wide signals. This stems from the fact that the
signal levels at region with low mapability will show a systematic decrease at the nucleotide resolution.
We used the multi-mapability signal profiles generated by MUSIC (See Methods) and aggregated the



signal on different regions (Fig. S1). Promoters and the regions downstream of TSS into the first exon
show significantly higher mapability compared to random regions, regions that are upstream into the
intergenic side of the genes show significantly lower mapability compared to . In addition, introns show
slightly higher mapability compared to random regions and exons show are much more mapable than
random regions. Transcription start sites and mid points of exons show almost the same amount of
average multi-mapability, 1.2 reads.

Comparison of H3k4me3 ER accuracy with Other Methods:

For H3k4me3, we used the active promoter identification accuracy per top set of peaks of each method
for comparison. Although we did not have a negative set for H3k4me3 peaks, unlike H3k36me3, since
H3k4me3 is predominantly associated with promoters, we assumed that the top peaks from peak calling
will be enriched in active promoters. Starting from the top peaks (sorted with respect to the score
reported by each method), we computed the F-measure for promoter identification for each method
with changing fraction of coverage of top peaks for the top 30 megabases of the peaks. This way we can
evaluate the accuracy of peak calls with changing peak rank. For each peak caller, we sorted the peaks
with respect to the reported score. MUSIC tends to perform as one of the best (with MACS) for the
accuracy of the top peaks.
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Next we evaluated the distribution of the distance between the ends of gene bodies and the ends of
H3k36me3 peaks to identity whether the peak ends match with the annotated ends of the genes. Figure
XXX shows the distribution of smallest peak end to gene end distance for all the peaks for all the
methods. The median values are highlighted in the plots to compare the methods with each other.



MUSIC has the second smallest median value following BCP.
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We also evaluated the reproducibility of the peaks generated by the peak callers. We used the replicates
generated by ENCODE with the same HM datasets to assess reproducibility of peak calling. Figure XXX
shows the average of fraction of the overlapping regions to the total coverage of each replicate. MUSIC
has higher reproducibility for H3k27me3 and H3k36me3 than all other methods except for K562
H3k36me3 dataset, where BCP has slightly higher reproducibility than MUSIC. For K562, MUSIC has
highest reproducibility for H3k27me3. For H3k36me3, BCP has slightly higher reproducibility than
MUSIC. Overall, MUSIC has higher or comparable reproducibility with respect to other peak callers.
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uses a mapability correction procedure coupled with multiscale signal processing based approach to
identify the significant enrichment features (SEFs) that represent the significant enrichments at different
length scales in the signal. By piling up the SEFs, MUSIC generates a genome-wide signal that can be
utilized for quantifying the broadness of enrichment at each location. We show the utility of SEFs and
SEF pileup signal within two applications
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we identify the enriched regions (ERs) using the SEFs and
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Second, in order to showcase a novel application of the SEF pileup signal, we concentrate on processing
the
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for Polymerase Il binding. The broadness of enrichments in signal profiles for polymerase binding can be
used as an indicator of the polymerase
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state, i.e., stalled or elongating.

|
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We process the SEF pileup signal at protein coding gene promoters and demonstrate the bimodality of
the joint distribution of signal broadness at the promoter versus the gene
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sites, or peaks, from ChlIP-Seq experiments

Page 1: [8] Deleted Ozgun 2/22/2014 3:08:00 PM I

Identification of the broad enrichments in the read depth signal profiles, however, did not receive the
same amount of attention. The
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Remaining of the paper is as follows. We first describe the MUSIC algorithm and identification of SEFs.
Next we present identification of ERs and compare the accuracy and reproducibility of MUSIC other ER
identification methods. Then we focus on joint processing the signal profiles for Polymerase Il and gene
expression levels. Finally, we present the algorithmic details of MUSIC in Methods.
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a novel application of the enrichment features identified by MUSIC to
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The p-values are corrected by Benjamini-Hochberg procedure\cite{XXX}. The final corrected p-values are
thresholded with respect to 0.05 for identification of significant ERs. MUSIC can be utilized to determine
ERs from precomputed SEFs (“-get_ERs_per_SEFs”), or identify ERs from reads (“-

get_peaks_per_reads”).



