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Previous work in network analysis
Increasing big data from diverse sources provide much information in a more complex way than
before. The formalism of networks provides a common language for understanding a wide range of
complex systems. Network science has progressed rapidly in the past decade as large network
datasets have become available in a variety of fields. Our knowledge of biological networks, neural
networks, social networks, and the Internet has expanded greatly because of technological
advances that have made collecting network data easier. The important task of understanding and
interpreting this new kind of big data can be advanced using the common language of networks to
compare and contrast differént classes of complex systems.

/NA %ﬁ%k we developed methods for predicting networks from individual genome
featuresl23 Later, we combined different biological datasets to increase the power of our network
prediction algorithms+4¢7-9 and developed new machine learning techniques.1? In 2008, this work
placed first in the Dialogue for Reverse Engineering Assessments and Methods (DREAM, www.the-
dream-project.org) competition for the in silico network prediction challenge. In addition, we have
participated in many experimental network determination projects (e.g., (Borneman et al., 2006; Li
etal., 2004), in a continual effort to refine our methodologies and keep them at the cutting edge. We
have also participated in many experimental network determination projects.1215 We have
constructed many web tools for network analysis including Topnet,¢ tYNA,17 and PubNet.18 W
have developed several methods to construct networks based upon genome features (Jansen et al.
2002). Based on this work, we combined several heterogeneous biological datasets to increase the
power of prediction (Edwards et al., 2002; Lu et al., 2005; Xia et al,, 2006) and we developed n¢w
machine-learning techniques to support these research goals (Yip et al., 2009). In addition, ‘we
developed a method to study network rewiring on all currently available biological networks. We
noted that biological networks show a decreased rate of change at large time intervals. However,
different types of biological networks consistently rewire at different rates (Shou et al., 2011).

N STINC . . . .
Cellular networks are also organized in the form of interacting modules, whereby nodes in a
module tend to have a larger density of edges connecting them. Biologically, the genes within a
module of a genetic regulatory network are co-regulated. We developed various methods to identify,
the functional modules of various networks. For example, by mapping gene-expression data ont
the regulatory network of yeast, we identified different sub-networks that are active in different
conditions (Luscombe et al., 2004). We developed a method to extract metabolic modules from
metagenomic data, enabling us to identify pathways that are expressed under different
environmental conditions (Gianoulis et al., 2009), and a computational framework using spectral
analysis to identify connection patterns across three datasets, and applied it in a variety of genomic
contexts including chemogenomics data (Gianoulis et al. 2011). We have also developed a way to
identify nearly complete, fully connected modules (cliques) present in network interactions (Yu et
al, 2006) and we have been using networks to map various kinds of functional genomics data
(Gerstein et al., 2010 and 2012). We also defined a module as all accessible nodes downstream of a
top regulator and investigated the overlap (share of regulators) between modules. We have found
that the modules in E. coli are more independent ared to those within the call-graph of the
Linux kernel (Yan et al., PNAS 2010). @

Previous work on modeling gene regulatory networks
Various regulator factors control gene expression in a ngtwork way. Transcription factors and
histone modifications are two interrelated components that Yegulate the transcriptional output of a
gene. To quantify the relationship between TF binding and gene expression, we have constructed
linear and non-linear models (see Fig. X) that utilize the binding signals of multiple TFs in the
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coding genes (Cheng and Gerstein, 2012). Similarly, we have also constructed models to predict
gene-expression levels based on histone modification signals at different positions proximal to the
TSS of different genes (Dong et al., 2012; Gerstein et al.,, 2010). We applied these models in multiple
organisms ranging from yeast to human. Using the machine-learning approaches we developed for
identifying individual proximal and distal edges together with miRNA target prediction (and other)
algorithms, we have completed the highly ambitious goal of constructing highly integrated
regulatory networks for humans and model organisms based on the ENCODE (Gersteln etal, 2012)

and modENCODE datasets (Negre et al,, 2011). CD@/$—)_Z/ 2 TH L /0

Proposed work

We aim to develop predictive models to identify gene regulatory networks and mechanisms
underlying network connections. For example, to identify regulations of TF/histone modification
(HM) from proximal and distal DNA regions, we will apply our machine-learning methods to model
gene expression and changes in gene expression based on the amount of TF binding and/or histone
modification close to the transcription start site of a gene. By including data from ChIA-PET on
distant chromatin interactions, we will define a list of distal regulatory interactions between
enhancers and putative target genes. We will build an enhancer model that utilizes the TF binding
and/or histone modification signals in candidate enhancers as the input to predict the expression
1evels of their putative targets.

S

j%’eyom% topologies of regulatory networks, to take into account whether gene expression
as an activating or a repressive influence, we will try to integrate logical circuits from Very-large-
scale integration design in electronic chips into our analyses. In many cases, the regulatory factors
controlling gene expression can be modeled using Boolean models and logical circuits (Arnosti and
Ay, 2012; Bonnet et al., 2013; Buchler et al,, 2003; Mangan and Alon, 2003; Tu et al.,, 2013). We plan
to utilize the Boolean network approach to define the cooperation between regulators (i.e., TFs,
miRNAs and IncRNAs). Also, to incorporate the interactions between various genomic features, we
to build prediction models based on Dynamic Bayesian network (DBN), which is a probabilistic
ical model that describes dependencies and conditional independencies for a set of random
ariables over adjacent time points (Zou and Conzen, 2005). It provides a coherent framework for
predicting random variable behavior through the integration of prior knowledge and new data. We
consider DBN to be an extension of our previous TF/HM modeling due to its ability to incorporate
the prior multiplex regulatory network from above, and to simultaneously model local regulatory
behavior (e.g., direct regulation) and global regulatory behavior (e.g., indirect regulation and/or

conditional independence).
We will further use system modeling such as Ordinary Differential Equations (ODEs) in control
theory using time-series data to model the regulatory network comprising multiple types of
biomolecules, including ge eins (i.e., TFs) and DNA-protein complexes.
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