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Abstract 
 
Increasingly, high-dimensional genomics data is being collected in many organisms. Here, we 

develop OrthoClust for simultaneously clustering data across multiple species. OrthoClust is a 

general computational framework that integrates the co-association networks of individual 

species by utilizing the orthology relationships of genes between species. It outputs optimized 

modules that are fundamentally cross-species, which can either be conserved or species-specific. 

We demonstrated the application of OrthoClust using the RNA-Seq expression profiles of C. 

elegans and D. melanogaster from the modENCODE consortium. A potential application of cross-

species modules is to infer putative analogous functions of uncharacterized elements like 

ncRNAs based on “guilt-by-association”. 
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Background 

Over the last decade, we have witnessed the burgeoning of comparative genomics. With the 

advancement of sequencing and other high-throughput techniques, ‘omics’-scale data has been 

generated in many species [1][2]. Apart from genomic sequences, one can now compare two or 

more species in terms of their epigenome, regulome, transcriptome or interactome etc. As a 

result, computational frameworks that integrate such system-level data from different species are 

of particular interest. While different kinds of ‘omics’ scale data reflect different facets of a 

biological system, many of these high-dimensional data can be projected onto a network. For 

instance, the expression profiles of genes or the histone modification patterns in their upstream 

regions can be used to connect genes to form various association networks. Data from different 

species thus form species-specific networks that can in principle be integrated by incorporating 

evolutionary relationship. 

 For a set of genes, features associated with the topological properties of networks open 

additional windows to interpret their genomics features and annotation. Among which the concept 

of network modules is particularly important from a systems biology perspective. Through 

identifying modules, one can reduce the complexity of biological systems by collapsing the vast 

number of interconnections amongst its constituents into a smaller number of interactions 

between the modules [3][4]. While different ‘omic’ data arrive at different networks, genes 

clustered together to form modules are likely to have a common biological role; for instance, 

being regulated by a common transcription factor, being part of a protein complex, or being 

presented in a same pathway. One of the most widely studied ‘omic’-scale data is genome-wide 

expression data. To analyze genome-wide expression profiles, network-based algorithms [5] 

together with approaches like hierarchical clustering [6], self-organized maps [7], spectral 

techniques [8] and superparamagnetic clustering [9] have been developed and extensively used 

since the dawn of the microarray era. While these methods have provided valuable biological 

insights, they were aimed at clustering within individual species only. A natural generalization that 

performs clustering across multiple species will therefore be instructive, especially because the 

recent advancements of transcriptome profiling techniques like RNA-Seq have generated 
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tremendous amounts of genome-wide expression data across many different species [10][11].  

Here we present OrthoClust, a novel network based framework for clustering data across 

multiple species. OrthoClust integrates the networks of individual species using orthology 

relationships of genes between species. As connected genes within a species and orthologous 

pairs across species connect genes with the same function within and across species 

respectively, OrthoClust naturally extends the idea of functional modules into a cross-species 

dimension. The essence of OrthoClust is a cost function that detects modules across species. We 

present a solution of the optimization problem by using simulated annealing. As expression data 

is one of the most important class of ‘omic-‘data, we demonstrated OrthoClust using the genome-

wide expression data of worm and fly generated by the modENCODE consortium, arriving at co-

expression modules that range being highly conserved to species-specific. We then studied the 

results with traditional single-species clustering and network alignment. As more and more 

system-wide data is generated across different species, the concept of orthology-based meta 

clustering demonstrated by OrthoClust can serve as a general computational framework for 

integration of other ‘omic’-scale data like protein-protein interactions. 

 

Results 

Cross-species Modules in a multiplex network 

A co-association network is a network representation of certain genomics data. The data can be 

rather simple like protein binding profiles, in which two genes are connected if their corresponding 

proteins can physically interact. In many cases, it can be high dimensional such as genome-wide 

expression profiles. In this scenario, two genes are linked in a mathematically abstract way if their 

expression values across a variety of conditions are highly correlated. Despite the origin of the 

network, from a topological standpoint, a module is an interconnected region in which the density 

of edges is higher than the average density of the whole graph. Constitutes of a module are 

presumably genes working in a coordinated fashion, i.e. have a specific function. We combined 

the co-association networks from different species to form a network with two types of edges 

representing two types of functional similarities. Mathematically this structure is a multiplex 
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network [12]. Genes in a species are connected if they are co-associated, whereas genes from 

different species are connected if they are orthologs. Figure 1 shows a simple example of such a 

multiplex network. We extended the concept of modules used in co-association networks of 

individual species in a novel cross-species fashion. Here a module may comprise genes from 

multiple species, characterized by the two types of functional similarity in a cross-species 

manner. Within a module, from a molecular viewpoint, genes from the same species most likely 

share the same function as they are co-associated, co-expressed or physically binding together. 

Orthologs across different species, from an evolutionary standpoint, also might have similar 

biological function. Intuitively, a module should consist of nodes that form clique-like structures 

within a co-association network, as well as nodes that are linked by orthology relationships 

between layers of co-association networks. Nevertheless, as shown in Figure 1, it is entirely 

possible that a module in the multiplex network consists of genes from a single species. In fact, 

this is the case when a novel function emerges for a particular species and the genes 

corresponding to the specific function do not have corresponding orthologs. 

 

Overview of OrthoClust  

Figure 2 shows the three major steps of OrthoClust: construction of the multiplex network, 

defining the cost function of the system and assigning nodes to modules by multiple runs of 

simulated annealing. 

 

Construction of the multiplex network The inputs of OrthoClust are the co-association networks of 

two or more species, and the orthology relationships between genes of the species of interest. Of 

course, co-association networks are results of raw data, and there are various ways to arrive at 

the networks depending on the specific data and biological purposes. OrthoClust combines 

individual layers of co-association networks by connecting genes in different species via their 

orthology relationships. To account for the fact that many orthologous pairs are not one-to-one 

but many-to-many, orthologous links are weighted such that the weights are normalized by the 

number of orthologs of each node (see Materials and Methods). 
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Defining the energy function in the multiplex network OrthoClust defines a cost function in order 

to detect modules in a multiplex network. Specifically, every node can take a discrete label σ 

ranging from 1 to q. Nodes with the same label will be assigned to the same module. q is 

therefore a parameter chosen to be the maximum number of modules allowed in the system. If 

the network has N nodes, there will be Nq ways (configurations) to assign nodes to modules and 

each configuration is characterized by a cost function H defined as  

𝐻 = − Λ!"! 𝛿!!!! +
!,!∈!!

Λ!"! 𝛿!!!! + 𝜅 𝑤!!!𝛿!!!!!
!,!! ∈! !!,!!!,!∈!!

. 

Here, S1 and S2 are the sets of genes for the two species respectively. Λ!" = 𝐴!" − 𝑘!𝑘! 2𝑚, with 

𝑘! = 𝐴!"!   and 𝑚 = !
!

𝑘!! . As A is a network adjacency matrix, the subtracted term is the 

expected number of links between nodes i and j in an ensemble of random graphs with the same 

degree distribution [13][14]. Its presence in H is to reduce the contribution of links between nodes 

with higher degree (i.e. hubs). The superscripts (1 or 2) correspond to the networks of two 

species. The value of the Kronecker delta 𝛿!!!! 
equals one if nodes i and j have the same label 

and zero otherwise. The cost function H is a generalization of existing network modularity 

functions [15][16]. In the standard modularity function, a network with high modularity means 

there is a high number of links between nodes in the same module, and low number of links 

between nodes in different modules. The novelty of OrthoClust is the last term regarding the 

orthologous links between nodes in different layers of the co-association networks. It sums over 

O(S1, S2), i.e. all the orthologous pairs between S1 and S2. As mentioned above, each pair of 

orthologs is weighted by 𝑤!" to take into account of the many-to-many orthology relationships 

(see Materials and methods). Configurations in which orthologs having the same label will lower 

the cost function. The relative contribution between co-association edges and orthologous edges 

is controlled by a coupling constant 𝜅 (for determination of the constant, see below). In the 

language of statistical physics, the entire framework can be interpreted as a spin system called a 

q-state Potts model [17], which is a generalization of the Ising model. The cost function 
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characterizes the energy of the spin (label) system and the optimal assignment of nodes to 

different modules is equivalent to the ground state of the Potts model. 

  

Assigning nodes to modules by multiple runs of simulated annealing To optimize the cost 

function, OrthoClust employs a standard simulated annealing procedure similar to one used in 

[18]. Labels are randomly assigned initially, and updated via a heat bath algorithm. The 

temperature of the system is gradually lowered until the flipping rate of labels is lower than a 

certain threshold (see Figure S1, Materials and Methods). Although the labels have divided nodes 

of the network into modules, we do not directly use the resultant configuration due to the 

probabilistic nature of simulated annealing, but perform the annealing process T times. By 

summarizing the results using a co-appearance matrix (a matrix whose elements (i,j) represents 

how often the two nodes i and j co-appear in the same module), OrthoClust arrives at a set of 

modules by thresholding the co-appearance frequency and looking for nodes that co-appear often 

(see Materials and methods). The sizes of the modules follow a power law distribution; tiny 

modules are therefore neglected (see Materials and Methods). OrthoClust is in general not very 

sensitive to the value of q. This is because, even though the system starts with many different 

labels (a high value of q), the large range of states will coalesce into a few modules and only a 

few labels will remain to cover the appropriate number of modules as the system cools down. In 

other words, the exact value of q is not very important as long as q is chosen to be large.  

 

Using OrthoClust for integrating expression profiles across species 

A particular application for OrthoClust is to cluster expression profiles across species. Since 

OrthoClust is a network framework, raw expression profiles should be transformed into individual 

co-expression networks. Many algorithms have been proposed for this purpose based on 

calculating the N by N Pearson correlation matrix [19][20][21][22]. For our application, we found 

that a rank-based algorithm in which each gene is connected to the top d genes with the highest 

(absolute) Pearson correlation works best for resolving modules [19] (see Materials and 

Methods). It is well known that co-expression networks in many different species are modular, 
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meaning that a subset of genes (a module) have a specific function [5][23][24][25], therefore it is 

interesting to explore how these modules emerge in a cross species fashion. Like various co-

association networks constructed by correlating high-dimensional data, a co-expression edge can 

have either a positive (+1) or a negative sign (-1) is assigned based on the sign of the correlation 

coefficient between two genes. Since anti-correlated genes do not work together, it is instructive 

to separate them into two different modules. This can be achieved by modifying the original cost 

function to separate the sets of positive and negative links in each species as specified by the 

superscripts (+ or -), i.e. 

𝐻 = − Λ!"!!𝛿!!!! − Λ!"!!𝛿!!!! +
!,!∈!!!,!∈!!

Λ!"!!𝛿!!!! − Λ!"!!𝛿!!!! + 𝜅 𝑤!!!𝛿!!!!!
!,!! ∈! !!,!!!,!∈!!!,!∈!!

. 

The minus sign in front of the negative links means the effects of the negative links are opposite 

to the positive links, meaning that in the favorable configurations, nodes in a same module are 

likely to be connected by positive links, nodes from different modules tend to be connected by 

negative links.  

 

Simultaneous clustering of expression profiles in worm and fly via OrthoClust 

As a demonstration, we applied OrthoClust to the transcriptomes of worm and fly generated by 

the modENCODE consortium [26]. In this analysis, the initial number of spin states q was chosen 

to be 250. We summarized the results of T (T=32, see below) annealing runs using a N-by-N co-

appearance matrix, where N is the size of multiplex network (the total number of genes in worm 

(20377) plus fly (13623) in this case). As shown in Figure 3A, there are blocks of worm and fly 

genes along the diagonal. These blocks consist of genes that co-appear often in various runs of 

annealing, representing different worm and fly modules. Of particular interests are the blocks of 

worm and fly genes that co-appear with high frequency in the off-diagonal positions. For instance, 

as highlighted in Figure 3A, a block of worm genes and a block of fly genes form a conserved 

module. As expected, they share a significant fraction of GO terms (P=3.3 × 10-16, 

hypergeometric test). Figure 3B shows the common GO terms between a set of worm genes and 

a set of fly genes in the conserved module. Most of the common GO terms refer to fundamental 
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biological functions like RNA processing and cell cycles processes. On the other hand, blocks 

that do not overlap in the off-diagonal positions correspond to specific worm and fly modules. For 

instance, GO terms related to chitin activities were found in certain fly specific modules. At a 

global level, we found that the size of modules follows a power-law distribution with an exponent 

of -1.89 (see Figure S2). The power-law distribution observed includes certain large modules. 

Practically, one could implement extra steps to break down these large modules recursively. 

 

Separation of Modules in the GO space 

As OrthoClust divides genes into modules based on how they are separated topologically in the 

multiplex network, it is instructive to examine systematically how these modules are separated in 

functional space as defined by GO terms. To do so, we constructed a metric to quantify the 

similarity between all worm and fly genes (both intra-species and inter-species) based on the 

overlap of GO terms. More specifically, we represented the relationship where gene i is annotated 

with GO term j by an adjacency matrix B, and further defined a matrix G such that 

𝐺!" = 𝐵!" log
!
!!"!

. In matrix G, the contribution of a GO term j to a gene is weighted by its inverse 

document frequency, a quantity commonly used in text-mining [27]. High-level GO terms present 

in many genes will be weighted down [28]. The similarity score between two genes k1 and k2 was 

defined as the cosine of the two corresponding vectors (the k1
th row and the k2

th row in the G 

matrix). As shown in Figure 4, for the 150 modules obtained by clustering all worm and fly genes, 

the overlap between genes within a module is much higher than the overlap between genes 

across modules (P=3×10-83, Wilcoxon test). Nevertheless, since two orthologous genes tend to 

have very similar GO terms, we further investigated whether such a high level of overlap between 

genes within a module is merely the consequence of orthology. We therefore repeated the 

analysis by removing all orthologs inside the modules. We found that the overlap between genes 

within modules is still significantly higher than the overlap across modules (P=1.5×10-45, Wilcoxon 

test, see Figure S3). Thus, we conclude that in terms of GO annotation, OrthoClust has 

separated genes with different functions into different modules. 
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Benchmarking modules based on co-regulation patterns 

Apart from GO analysis in Figure 4, we further tested whether genes inside a module are indeed 

more functionally relevant by examining the number of common regulators they possess. We 

identified the binding targets of a set of worm and fly transcription factors based on ChIP-Seq 

experiments generated by modENCODE consortium (see Materials and methods). These ChIP-

Seq experiments and the RNA-Seq experiments for expression profiles were performed under 

similar developmental stages. We then counted for all pairwise combinations of modules, the 

number of common transcription factors for each pair of genes (see Figure S4). We found that 

pairs of genes within a module, in average, have more common transcription factors than pairs of 

genes in different modules (a 2.6 fold increase in worm and 1.6 fold increase in fly). This analysis 

is consistent with general observations that a transcription factor tends to regulate targets sharing 

similar biological functions. 

 

Effects and the determination of the coupling constant κ 

The cost function of OrthoClust takes into account two types of edges: co-association edges and 

orthology relationships. The coupling constant κ determines the relative contribution of the co-

association links within a species and the orthologous links across species. A low value of κ 

means networks are likely to be clustered independently whereas a high value of κ means 

orthology links are more important and the label of a node tends to be aligned with its ortholog 

rather than its neighbors in the same network. In the clustering of gene expression profiles, we 

employed two independent methods to quantify the effects of tuning κ and determine its optimal 

value. First of all, we made use of a set of 1288 metagenes obtained from [23] as our gold 

standard. These metagenes were constructed based on orthologs whose expression 

relationships are conserved across multiple species including worm, fly and human. A metagene 

consists of genes from different genomes (worm and fly in this case) that presumably share the 

same function by considering their expression values across different conditions. Unlike our 

clustering approach, which is based on the optimization of a global cost function, metagenes 

were inferred by examining the likelihood that individual co-expression edges are transferred from 
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one species to another in a local manner. This complementarity makes the set of metagenes a 

good gold standard for validation. Following our clustering framework, the constituents of a 

metagene should appear in the same module. As shown in Figure 5A, for a low value of κ, 

clustering was performed independently and it was rare that the worm and fly components of a 

metagene fall into the same module. Nevertheless, both the worm and fly networks have high 

modularity, meaning the two networks were independently well separated into modules. On the 

other hand, for a high value of κ, most of the metagenes satisfied the criterion whereas the 

resultant modularity of individual networks became low. The value of κ can be tuned so as to 

balance this tradeoff.  

Another method we used to examine the effects of κ is the similarity measure between 

genes based on their GO annotation as described in the previous section. The similarity scores 

between each pair of the 34,000 worm and fly genes define a weighted network W, where the 

nodes are the genes and the edges are weighted by the pair-wise scores. Since the weighted 

network is not a multiplex network but a single-layered network, its modularity can be quantified 

by a more traditional modularity function for weighted network defined as 𝑊!" −
!!!!
!!!" 𝛿!!!!, 

where 𝑘! = 𝑊!"! , 𝑚 = !!
!!
 and 𝜎! is the module label of node i [29]. A high modularity score 

means highly similar genes (in terms of GO annotation) are grouped in a module whereas distant 

genes are separated. In principle, this weighted network based on GO annotation serves as a 

benchmark for the multiplex network defined by OrthoClust. A favorable way of assigning nodes 

to modules by OrthoClust therefore should also be a favorable way to divide the weighted 

network into modules. As shown in Figure 5B, for each value of κ, we found the way to assign 

nodes to the modules by OrthoClust and then calculated the corresponding modularity score of 

the weighted network. When the value of κ is too high or too low, the modularity score of the 

weighted network is low. The κ that maximizes the modularity score of the weighted network 

should therefore be optimal κ for OrthoClust. Combing Figure 5A and Figure 5B, we picked κ=3 

as our optimal value. 

 

Weight associated with the orthology relationships 
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Orthology relationships between species connect layers of co-association networks. While the 

coupling parameter κ defines the overall relative contribution between intra-species and inter-

species connections, the weight of each orthology connection could in principle be adjusted. It is 

very common that in eukaryotes many orthologs are many-to-many instead of one-to-one, 

mathematically forming various bipartite cliques in the multiplex network. We tested OrthoClust by 

treating all the orthologous pairs equally in the cost function. We found that most of the cliques 

cannot be resolved, and their nodes got assigned to a single module (see Figure S5). It means 

the cost function is in favor of the huge cliques and bias against the conserved clusters that are 

linked by one-to-one orthologs. To account for this effect, OrthoClust therefore weights down the 

orthologous link of a node by the number of orthologs it possesses. As shown in Figure S5, the 

weighted approach works better in resolving the huge cliques. 

 

Comparison with single-species clustering 

The aim of OrthoClust is to perform clustering across multiple species in an integrated fashion. 

Naively, one could construct a cross-species module by perform clustering on individual species 

separately and concatenate the modules of different species by the orthologs they share. To 

examine this alternative approach, we performed single species clustering on the expression 

profiles of worm and fly separately using various standard methods (see Materials and methods). 

We then tested for each combination of worm and fly modules, whether or not there is an 

enrichment of orthologs between them based on a simple hypergeometric test (see Materials and 

methods). We found that even though there are certain combined worm-fly modules with 

significant enrichment of orthologous gene pairs, the enrichment is lower than the cross-species 

constructed by OrthoClust (Figure 6). This is of course not surprising because OrthoClust takes 

into account of the orthology relationships in the algorithm. Nevertheless, the analysis suggested 

that by using merely the co-expression data, it is in general less effective in finding the 

corresponding sets of genes in two species responsible for the same function. To show the result 

is not a consequence of the particular mathematical form of the cost function imposed by 

OrthoClust, we ran OrthoClust with κ=0. As there was no coupling between two species in the 
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cost function, the resultant sets of worm fly modules were essentially clustered independently. 

Again, we found that the combined worm-fly modules have lower enrichment of orthologous pairs 

compared to the case with optimal κ=3. Interestingly, this analysis also manifests how the 

coupling term in the cost function bring two sets of independent modules closer together in terms 

of the sharing of orthologs. 

 

Comparison with network alignment 

The concatenation of networks using orthology relationships resembles the problem of cross-

species network alignment [30][31]. To compare OrthoClust with network alignment, we applied 

IsoRank [31] to align the worm and fly co-expression networks (see Materials and methods). 

Again, using the metagenes obtained from [23] as gold-standard, we found that 88% of 

metagenes were aligned by IsoRank (Figure S6), as compared to 81% by OrthoClust. Although 

IsoRank slightly outperformed OrthoClust in identifying the corresponding functional genes 

between two species, it does not immediately report how these pairs form clusters. Motivated by 

ref. [32], we looked for co-expression edges in two networks whose nodes are aligned by 

IsoRank. By connecting such edges in the network, we generated aligned subgraphs that could 

potentially be interpreted as modules conserved across two species. Among the gene-pairs that 

are predicted to be in the same module, we found that 43% are consistent with OrthoClust. The 

percentage is rather low probably because aligned subgraphs do not really possess the 

properties of clusters signified by the dense connections between genes within a species. 

 

Robustness analysis 

Simulated annealing was employed to optimize the cost function defined by OrthoClust. To 

reduce the effects of the stochastic nature of simulated annealing, we constructed the co-

appearance matrix by repeating the annealing process R times. To determine R, we ran 

independent trials of R runs, resulting at different co-appearance matrices and thus different sets 

of clusters. We then compared the consistency between two sets of clusters by considering if two 

genes have been assigned to the same module by trial 1, whether or not they are assigned to a 
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common module in trial 2. This is essentially done by calculating a confusion matrix (see 

Materials and methods). By pairwise comparison of independent trials, we found that the overlap 

between trials increases as R increases (see Figure S7). More specifically, the overlap increases 

from 46% for R=8 to 65% for R=32, and 75% for R=64. Statistical significant results shown for the 

R=32 in the previous analysis showed the value offers a reasonable compromise between 

computational cost and robustness. We then further superposed different trials to construct a co-

appearance matrix with 128 runs, and thus a set of “most accurate” clusters. We then calculated 

the consistency between the ultimate set with sets constructed with smaller values of R (see 

Figure S7). We found that the average consistency between clusters generated with R=32 and 

the ultimate set is 76%. 

 

Mapping uncharacterized elements to modules  

Apart from understanding the modular nature of biological processes, clustering expression 

profiles is very useful for inferring the putative functions of uncharacterized proteins [33] as well 

as ncRNAs [34][35]. The essence of this approach is “guilt by association”: if an uncharacterized 

element is highly co-expressed with a core set of genes, one can infer the function of the gene 

based on the functions of genes within the core set. Nevertheless, most core sets were 

constructed by single-species clustering. The cross-species modules constructed by OrthoClust 

can potentially serve as anchor to relate uncharacterized but analogous elements from different 

species. To explore this avenue, we constructed modules using a set of core worm and fly genes 

(worm-fly orthologs) by OrthoClust (see Materials and Methods, Figure S8), arriving at a set of 21 

core worm-fly modules with similar proportions of worm and fly genes (see Supplementary 

Dataset 1). We further investigated the functions of these modules based on their enriched GO 

terms (see Materials and Methods). For each module, by clustering the enriched GO terms, we 

assigned a list of representative keywords as their characteristic functions (see Figure 7). For 

instance, module 1 is signified by neurological system-process and module 2 by cellular-lipid-

metabolism. As expected, many genes in these modules have orthologous partners within the 

module. In 18 out of the 21 modules, the fraction of genes with orthologous partners is higher 
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than 80%. 

 We then mapped worm and fly ncRNAs to the 21 modules based on their expression 

profiles (see Materials and methods). Though there is no gold standard available to evaluate 

systematically the performance of the mapping, we found examples suggesting that ncRNAs from 

different species could be linked together in terms of their potential functions. For instance sphinx, 

the fly lncRNA expressed in the brain, was shown to be involved in regulation of male courtship 

behavior [36]. In our analysis, this lncRNA was mapped to module 1 which is characterized by 

neurological system process and behavior. On the other hand linc-10 and linc-104, worm 

lincRNAs that are highly expressed in male-related stage [37], were mapped to the same module.  

In addition to the mapping, we also found that some modules are enriched with different classes 

of ncRNAs (see Figure S9). The list of worm and fly ncRNAs we tested and the modules they 

mapped to can be found in Supplementary Data 2. 

 

Generalization to N species 

OrthoClust is a general framework not only applicable to the clustering of expression profiles but 

in general other genomics data in the form of co-association network. In addition, the framework 

can be readily applied to more than two species by modifying the cost function. In general, for N 

species, the cost function will have N terms for the co-association networks, and N(N-1)/2 terms 

for the orthologs between all pairs of species. For instance, if N=3, the cost function can be 

written as 

𝐻 = − Λ!"! 𝛿!!!! +
!,!∈!!!!!,!,!

       𝛿!!!!!
!,!! ∈! !!,!!

+ 𝛿!!!!!
!,!! ∈! !!,!!

+ 𝛿!!!!!
!,!! ∈! !!,!!

. 

Here, S1, S2, S3 stand for three different species. The inner summation is the modularity function 

for the network of a single species. The outer summation sums the three networks together. The 

extra terms represent the coupling (with coupling constant κ) between 3 pairwise combination, 

namely the orthologous pairs represented by O(S1,S2), O(S2,S3) and O(S1,S3). The coupling 

constant κ can be determined by the same approach we explained in the example of two species. 

Of particular interest are the 1-1-1 triplets that consist of three genes from three species which 
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are orthologous to one another in an one-to-one fashion, i.e. for triplet (gS1, gS2, gS3), apart from 

gS1, there exists no other gene in S1 which is orthologous to gS2, gS3 and vice versa. In this 

definition of H, a 1-1-1 triplet tends to have the same label. For simplicity, we do not specifically 

include a 3rd-order coupling term. Nevertheless, the 1-1-1 triplets are of particular importance 

among all the orthologous triplets because they correspond to particularly conserved biological 

function. Genes performing less conserved functions are more likely to undergo gene duplication 

and end up with many-to-many orthologs. 

 

Discussion  

In this study, we have presented OrthoClust, an orthology-based network framework that 

performs data clustering across multiple species. Due to the rapid increase of data from many 

species, a novel meta-clustering framework that integrates data from different species will be 

highly useful for comparative genomics. In OrthoClust, a module is defined based on evolutionary 

information as well as co-association information. A conserved module groups genes from 

multiple species corresponding to a common biological function; whereas a species-specific 

module consists of genes that are responsible for a specific function novel to a species. Though 

we have focused on expression data for illustration, OrthoClust can be readily applied to other 

high-dimensional data like histone modification patterns, or protein-protein interactions by 

appropriately modifying the cost function. For instance, in the context of interactome, OrthoClust 

can be used to detect modules in protein-protein interaction networks in a cross-species context 

and examine the evolution of protein complexes. 

In single-species clustering, a conserved gene can be grouped to a species-specific 

module simply because of their strong tie. By incorporating orthology relationship between 

species, OrthoClust detects better the conserved modules. The concept of cross-species 

modules complements the principle of “guilt by association” because it may potentially lead to 

functionally analogous elements across species. This is of fundamental interest for elements like 

ncRNAs because only short regions of ncRNAs are constrained by structure or sequence-specific 

interactions [38]. Compared to protein-coding genes, this discrepancy in selection pressure 
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makes it very hard to find orthologous ncRNAs by their sequence. RNA-Seq experiments have 

found that over 60% of the genome is transcribed, and many transcriptionally active regions 

(TARs) were identified [39]. Therefore, mapping onto OrthoClust modules based on expression 

profiles serves at least as an intermediate step to inferring the putative functions of the vast 

amount of TARs. 

 The essence of OrthoClust is a global optimization process. There are two aspects worth 

mentioning. First, as pointed out by several studies, finding network communities or modules 

using a global objective function has the issue of resolution limit [40][41]. The limit explains the 

existence of giant modules detected by OrthoClust. In principle, this could be complemented by a 

recursive scheme. Nevertheless, an extra coupling parameter λ can be added to the definition of 

Λ such that  Λ!" = 𝐴!" −
!!!!!
!!

. The parameter can control the size of resultant modules [18] but it is 

commonly chosen to be 1 by convention. In principle, the coupling parameter can be tuned to 

obtain a better resolution, or to obtain sizes that are more biologically relevant. Such a procedure 

is essentially a regularization process from the perspective of machine learning. Second, to 

minimize the cost function, we used simulated annealing as a conceptual demonstration. Though 

it is theoretically possible to obtain the optimal solution, it is computational expensive. There are 

faster approaches for module identification for single-layered network, for instance spectral 

techniques [15]. It is possible to generalize the concept for our particular multiplex network. A 

recent study combining various co-expression networks from the same species based on tensor 

computation point to a similar direction [42]. As simulated annealing scales not very well as the 

number of species increases, the analytical approaches described may present more efficient 

solutions. 

To a certain extent, OrthoClust resembles the problem of network alignment. 

Nevertheless, the two problems are quite different. The essence of network alignment is to 

understand how individual nodes and edges in one network have their counterparts in another 

network, whereas OrthoClust focuses on whether genes working together in one species would 

preserve the collaboration in another species. Network alignment thus involves greater 

topological details, and to a certain extent it is a harder problem. As many of the networks 
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constructed are rather incomplete and there are possibly false positives, detecting modules is in 

general less sensitive to these errors compared to network alignment. It is worthwhile to point out 

that while the original motivation of some network alignment algorithms like IsoRank is to detect 

orthologous relationship between two species [31], what OrthoClust does could essentially be 

interpreted as refining the orthology relationships between two species via their corresponding 

co-association network. The rationale is actually important because common orthology detection 

approaches focus on the sequence level [43]. Because of the resemblance of network alignemtn 

and cross-species clustering, one could also modify OrthoClust by replacing the orthology 

relationships using aligned gene-pairs. As OrthoClust is a flexible computational framework, such 

modification would be technically straightforward but conceptually interesting to explore.  

 

Materials and methods 

Datasets of transcriptome and orthologous pairs  

Transcriptome profiling data from worm and fly were generated by the modENCODE consortia 

using RNA-Seq. The expression values of worm and fly were measured across 33 and 30 

developmental stages [26]. The total 11467 worm-fly orthologous pairs (including 1-to-1, 1-to-

many, many-to-many relationships from 5769 unique worm orthologous genes, 5507 unique fly 

orthologous genes) between worm and fly were downloaded from the modENCODE website as 

they were compiled by the consortium [26]. At the genome-wide level, there are 20377 worm 

genes and 13623 fly genes. For each species, expression values in different developmental 

stages or cell lines were log-transformed, standardized and Pearson correlation coefficients were 

calculated for each pairs of genes. 

The list of ncRNAs in worm and fly were obtained from wormbase [44] and flybase [30],  

including lncRNA (228 in worm, 852 in fly), miRNA (211 in worm, 215 in fly), snoRNA (141 in 

worm, 287 in fly) and tRNA (236 in worm, 238 in fly), all of which have a comparatively substantial 

number of RNAs (>100) in both worm and fly. 

 

More details on OrthoClust 
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The cost function 

To take into account the fact that many orthologous pairs are not one-to-one but many-to-many, 

the contribution of a pair of orthologs to the generalized modularity function is not 1, but 

normalized by the number of orthologs. For example, if gene i from species 1 is orthologous to 

𝑑!
(!) genes in species 2 including gene j’ whereas gene j’ in species 2 is orthologous to 𝑑!!

(!) genes 

in species 1 including gene i, the weight wij’ is defined as ( !

!!
! +

!

!
!!
! )/2. For simplicity, this 

modification is not displayed in the main equation.  

Simulated annealing 

Standard simulated annealing was employed. Spin values were randomly assigned initially, and 

updated via a heat bath algorithm. The initial temperature was chosen in a way such that the 

flipping rate (the probability that a node changes its spin state) was higher than 1-1/q. The 

temperature was gradually decreased with a cooling factor 0.9, until the flipping rate was less 

than 1%. 

 

More details on applying OrthoClust to cluster expression profiles 

Construction of individual co-expression networks 

Many algorithms have been proposed to transform raw expression profiles into individual co-

expression networks based on calculating the N by N Pearson correlation matrix [19][20][21][22]. 

There are two classes of algorithms: valued-based algorithms by thresholding the correlation 

coefficients, and rank-based algorithms in which each gene is connected to only a certain number 

of genes. We found that networks constructed by value-based algorithm are in general more 

difficult to resolve into smaller modules. Therefore, a rank-based algorithm in which each gene is 

connected to the top d genes with the highest (absolute) Pearson correlation was employed [19].  

The value of d was chosen in order to keep the sparsity of networks. More specifically, d is the 

smallest value such that all genes from individual species independently form giant connected 

networks In general, if d is very small, the resultant network by definition cannot form a giant 

connected graph. On the other hand, if d is very large, the network would not be sparse. In the 
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worm fly analysis, d was chosen to be 5. Even though the number of nodes and edges in the two 

co-expression networks vary, the average number of links per node is quite similar (6.29 for worm 

and 6.56 for fly).  

 

Decomposition of modules in worm and fly 

In the genome-wide worm fly analysis, a stringent threshold (0.95) for co-appearance was 

employed for the co-appearance matrix shown in Figure 3A. Nodes that ended up with the same 

spin value for more than 95% of trials were assigned to the same module. Tiny clusters were 

neglected, arriving at a set of about 150 modules covering about 80% of nodes. Proper GO terms 

were found in the remaining modules. 

 

Regulatory patterns of modules 

ChIP-Seq data of 26 fly transcription factors and 79 worm transcription factors across various 

developmental stages (together 220 experiments in worm and 93 experiments in fly) were 

downloaded from the modENCODE consortium. For each ChIP-Seq experiment, binding targets 

of the transcription factors were identified by TIP [45] with a q-value cutoff of 0.01. The results of 

these experiments were superposed together to form the transcriptional regulatory networks for 

worm and fly (12600 edges for worm and 1200 edges for fly). The number of common 

transcription factors for a pair of genes was determined based on the resultant networks. 

 

Comparison with single-species clustering 

Standard clustering procedures, including k-means, hierarchical clustering and PAM, were 

applied for transcriptome profiling data from worm and fly. By neglecting resultant modules of size 

less than 5 genes, xxx worm modules and xxx fly modules remained. For each combination of 

these modules, the number of orthologous pairs between worm and fly genes was counted. The 

number of orthologous pairs was then compared to the expected number 
!!!!
!!!!

𝑶𝒘𝒇, where nw and 

nf are the number of genes in the worm and fly modules, Nw and Nf are the total number of worm 

and fly genes, and Owf is the number of orthologous pairs between worm and fly. Only 
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combinations with the enrichment of orthologous pairs over (P<0.05, hypergeometric test) were 

kept for the display in Figure 6. Modules of size less than 5 genes generated by OrthoClust were 

also neglected in the comparison.  

 

Comparison with Network alignment 

We applied IsoRank to align the worm and fly co-expression networks. The sequence identity 

between pairs of worm, fly proteins were downloaded from ref. [31]. We tuned the intrinsic 

parameters α but we did not find systematic trends. We then used α=0.5 and looked for co-

expression edges in two networks whose nodes are aligned. Disconnected components formed 

by these aligned edges were used as potential seeds of conserved modules because they consist 

of sets of worm genes and fly genes that are perfectly aligned.  

 

Robustness analysis 

To compare two sets of clusters A and B, all possible N(N-1)/2 pairs of genes were divided into 4 

categories: I. Assigned to the same module by both A and B; II. Assigned to the same module by 

A but not by B; III. Assigned to the same module by B but not by A. IV. Assigned to different 

modules by both A and B. Because the number of pairs in IV (true negative to a certain extent) is 

orders of magnitude higher than the others, the overlap between A and B was defined as 

I/(I+II+III). The number of pairs in I can be viewed as the true positive. The method is motivated 

by Ref. [46]. 

 

More details on inferring the functions of worm fly ncRNAs 

Modules based on worm fly core set 

OrthoClust was applied to the set of orthologs between worm and fly, consisting of 5059 worm 

genes and 4863 fly genes. The coupling constant was determined using the same scheme 

illustrated in the main text. A set of 21 modules with its number of genes greater than 15 and with 

enriched GO terms was arrived. As expected, the similarity between genes within modules was 

higher than the similarity between genes across modules (P=1×10-83, Wilcoxon test). To annotate 
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the functions of a module, the enriched GO terms among genes were obtained using the tool 

REVIGO [47]. The enriched GO terms were clustered into groups labeled by representative 

keywords given by REVIGO. The list of keywords was displayed by tag clouds in which the size 

of a keyword is proportional to the number of GO terms in the group (http://tagcrowd.com/).  

Mapping ncRNAs to modules 

Using RNA-Seq data generated by the modENCODE consortium, the expression profiles of 

ncRNAs were calculated under the same set of developmental stages as compared to the 

protein-coding genes. Annotation of ncRNAs was based on the latest version of wormbase [44] 

and flybase [48]. The ncRNAs were then mapped to the 21 modules based on the correlation 

between expression levels. More specifically, the correlation between the expression of the 

ncRNA and the expression of all protein-coding genes was calculated. A null distribution was 

constructed by randomly shuffling the expression values of the ncRNA 10 times, calculating the 

correlation coefficients between the randomized expression profile with expression profiles of all 

the protein coding genes, and pooling all values together. A set of protein-coding neighbors of the 

ncRNA was identified as the set of most correlated protein-coding genes with a false discovery 

rate of less than 5% with respect to the null distribution. The enrichment of the set of neighbors in 

every module was calculated by a hypergeometric test. The ncRNA would be mapped to a given 

module if P<0.01. An ncRNA could be mapped to multiple modules. 

 

Enrichment of different classes of ncRNAs in modules 

To obtain the enrichment of a particular class of ncRNA (miRNA, tRNA, snoRNA, lncRNA) with 

respect to the set of all ncRNA in a given module, a hypergeometric test was employed to 

calculate the significance of the fraction of mapped ncRNAs of this class to four classes in the 

module against the fraction of total mapped ncRNAs of this class to four classes across all 

modules. 
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Figure Legends 
 
Figure 1 

An example to illustrate the idea of modules in a multiplex network. The co-association networks 

of species A and B are linked together to form a multiplex network via orthologous relationship 

between genes. There are three modules. The middle one is a conservative module with genes 

from both species, corresponding to fundamental biological functions across different species. 

The left and right ones are specific modules consisting of genes from species A and B 

respectively. They correspond to novel function emerged in two species.  

 

Figure 2 

An outline of OrthoClust. The inputs of our pipeline are co-association networks from multiple 

species as well as orthology relationships. A cost function is defined based on the topology of the 

co-expression networks as well as orthology relationships. Each node can be in one of q possible 

states labeled by 1 to a. The cost function H is optimized by simulated annealing. In simulated 

annealing, labels are randomly assigned initially and are allowed to flip based on H. The 

temperature of the system is gradually lowered with a cooling factor α=0.9. The algorithm stops if 

the flipping rate is low enough. The labels of nodes at at the optimal configuration represent the 

assignment of nodes to modules. The algorithm is repeated multiple times. The resultant 

modules, represented by a set of Venn diagrams, could be specific or conserved. 
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Figure 3 

A. The co-appearance matrix of worm and fly genes. The worm and fly genes were sorted 

separately. Blocks along the diagonal are modules of worm and fly. Some blocks along the 

diagonal have strong co-appearance at the off-diagonal positions (see red circles as an example). 

These are conserved modules across worm and fly. In such modules, the corresponding worm 

and fly genes show strong overlap of GO terms (P=3.3 × 10-16, hypergeometric test). There are 

blocks along the diagonal that have no overlap at the off-diagonal positions (the blue pentagon 

and the green hexagon). They are the worm specific and fly specific modules. Such modules 

have rare overlap in terms of their GO terms (P<0.05, hypergeometric test).  

B. Enriched GO terms of a conserved module in worm and fly. Each circle represents a GO term, 

and the color code stands for statistical significance. The terms project onto a semantic space in 

which the geometric distance between GO terms mirrors their sematic distance. GO terms with 

similar meanings are pack together. GO terms correspond to fundamental functions like RNA 

biology, cell cycle, etc. 

 

Figure 4 

The similarity of gene pairs within modules versus the similarity of gene pairs between modules. 

Genes within modules are significantly more similar than genes from different modules.  

 

Figure 5 

A. The effects of κ on clustering. As κ increases, the modularity scores of worm (green) and fly 

(blue) co-expression networks decrease. The fraction of metagenes whose components are 

found in the same modules decrease as κ increases. 

B. The effects of κ on the modularity of GO reference network. The modularity peaks at κ=3, 

meaning that the modules defined by that particular value of coupling constant best separate the 

genes in terms of their GO annotations. 
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Figure 6 

Comparison between single-species clusters and cross-species clusters generated by 

OrthoClust. Pairwise overlapping of clusters generated by k-means, hierarchical clustering or 

PAM has little enrichment of orthologous pairs compared to cross-species modules generated by 

OrthoClust.  

  

Figure 7 

The set of conserved worm-fly modules and their annotated functions. The boxes represent 

modules. For each module, potential functions are summarized by keywords associated with 

enriched GO terms in a tag cloud. The font of a keyword is proportional to the frequency of 

occurrence of the corresponding GO terms in the module. The position of a module in the vertical 

direction represents the fraction of genes with orthologous partners in the module. 

 

 

Additional Files 

Additional file 1 -Supplementary Figures (.pdf) 

Additional file 2 –Supplementary Dataset 1(.csv) 

The list of worm and fly genes in the 21 core modules  

Additional file 3 –Supplementary Dataset 2(.csv) 

This file lists all worm and fly ncRNAs used in the analysis and modules they were mapped. The 

rows are ncRNAs. The columns are the modules. The values 1 and 0 mean whether a ncRNA is 

being mapped to a module or not. 
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