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B Significance 
In this proposal we aim to prioritize rare, non-coding variants associated with cancer. This work represents a 
collaboration between a computational scientist (Mark Gerstein) and an experimental cancer genomicist (Mark 
Rubin).  Gerstein and Rubin have worked together for most of the last decade, co-publishing many papers dur-
ing that period.   
B-1 Much recent progress in annotating the non-coding genome, making it ripe for var-
iant annotation 
Annotating non-coding regions is essential for investigating genome evolution [1], for understanding important 
biological functions (including gene regulation and RNA processing) [2], and for elucidating how SNPs and 
structural variations may influence disease [3]. Many projects related to annotating the noncoding genome 
have recently come to completion. The Encyclopedia of DNA Elements (ENCODE) Project recently provided a 
comprehensive catalogue covering much of the entire human genome [4]. In addition, the model organism 
ENCODE (modENCODE) Project presents an extensive genomic annotation of drosophila [5] and C. elegans 
[6] and a way to relate this to human. Furthermore, large-scale mRNA and miRNA sequencing have been ap-
plied to elucidate the functional landscape of regulatory variations in the human genome  [7, 8, 9, 10]. Similar 
efforts have been directed toward annotating human epigenomic data to investigate underlying disease mech-
anisms [11]. Moreover, the important role of regulatory variants in various diseases have generated a great 
deal of interest in identifying and annotating the expression of Quantitative Loci linked to specific genes [12, 
13]. 
B-2 Non-coding variants, most of which are regulatory, are significant to the study of 
diseases but less well studied than coding variants 
Numerous studies have been conducted on the mutations to coding portions of the genome. However, com-
paratively less effort has been invested in the investigation of disease-related disruptions to noncoding portions 
of the genome. Nevertheless, a few initial studies indicate that variants in non-coding regions of genome signif-
icantly influence the associated phenotype [14] and are often implicated in various diseases[15, 16]. Much of 
the non-coding variation is contributed by regulatory variants, where cis- and trans-acting variation in the hu-
man genome can modulate gene expression [17] and this gene expression variation has been implicated in 
cancer and other diseases [18, 19, 20, 21, 22, 23]. Specific examples are expression quantitative trait loci 
(eQTLs) and variants associated with allele-specific behavior. It has been shown that a significant fraction 
(26%-35%) of inter-individual differences in transcription-factor (TF) binding regions coincides with genetic var-
iation loci and that about 5% of transcripts levels are associated with inherited variant states [24]. Genotype-
transcript associations have been reported at large for multiple types of inherited variants [8, 9, 25, 26, 27], 
however experimental evidence of inherited variants allele-specific effect on enhancer/promoter activities and 
transcriptional influence (short and long range) are lacking. 
B-3 Rare variants are significant to study of cancer & disease in general 
There have been a large number of GWAS studies [28], which have primarily focused on the identification of 
common genetic variants. They have neglected the role of rare variants (particularly in noncoding regions) in 
various diseases [29]. However, growing evidence suggests that these rare genetic variants have strong ef-
fects and can act as a primary driver of many human diseases, including cancers [30]. Increased disease sus-
ceptibility is often attributed to the cumulative effect produced by multiple rare variants [31]. For instance, bioin-
formatic and biochemical analyses indicate that rare germline variants in the CHEK2 gene [32] and PALB2 
gene increase the risk of breast cancer  [33]. In addition, a rare variant (rs138212197) in the HBOX gene [34] 
and a rare SNP (rs188140481) in the telomeric region of the 8q24 locus were found to be associated with pros-
tate cancer [35].  
B-4 Rare variants in cancer patients in similar functional elements as somatic variants 
may be associated with disease risk  
In cancer studies, particularly related to tumor sequencing, prior studies have primarily emphasized the identi-
fication of somatic over germline variants. For instance, the current TCGA call sets do not even contain "offi-
cial" germline calls. However, rare germline and somatic variants have often been observed in the same genet-
ic element across multiple individuals. The reciprocity between germline and somatic variants may increase the 
risk of cancer in such individuals, and we plan to identify these elements using data on large populations. Mul-
tiple experimental studies support this point of view. Germline and somatic mutations in the promoter region of 
the telomerase reverse transcriptase (TERT) gene have been observed in cutaneous melanoma [20]. Similarly, 
many somatic and germline mutations in the T53 gene and GALNT12 coding exons were implicated in Sonic-
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Hedgehog medulloblastoma (SHH-MB) tumors [36] and colon cancers [37], respectively. The interplay be-
tween somatic and germline variants in hMSH6 and hMSH3 genes has been shown to be associated with gas-
trointestinal cancer [38]. A similar association was discovered between two germline SNPs and somatic muta-
tions in the EGFR signaling pathway in colorectal cancer [39]. In recent years, there has been a growing inter-
est in understanding the contribution of germline and somatic variants in tumor expression [18]. Similar studies 
have been proposed to investigate whether these associations augment the risk of triple-negative breast can-
cer and prostate cancer among African American populations. 
C Innovation 
Our method will combine various large-scale genomics data to interpret rare non-coding variants associated 
with increased cancer risk. Currently no computational pipeline exists with focused analysis for germline vari-
ants associated with increase cancer risk. Moreover, large-scale consortia, such as the 1000 Genomes and 
ENCODE, have produced data that can be used to interpret other genomic studies. However, these resources 
have not been fully exploited to understand the functional implications of variants associated with increased 
cancer risk. The integration of these data would be an important innovative component of our approach. The 
specific innovative components of our approach are listed below.  
C-1 Identifying and interpreting rare non-coding variants associated with increased 
cancer risk using population-scale polymorphism data 
The GWAS catalog contains many common variants associated with diseases. However, as discussed above, 
many rare variants increase cancer susceptibility. Currently, no standard methods exist to functionally interpret 
such variants, especially in non-coding regions. Thus, our approach will be the amongst the first for functional 
interpretation of these variants. The 1000 Genomes consortium has created a deep catalog of genetic variation 
across many populations. Our approach will use the allele frequencies of variants in ~2,500 individuals from 
1000 Genomes data to understand which genomic regions are tolerant to common mutations without confer-
ring disease risk. We will then use this knowledge to identify rare variants that may be associated with in-
creased disease risk. 
C-2 Using non-coding annotations to understand the likely biological role of non-
coding variants 
The ENCODE consortium has annotated non-coding regions of the genome. One of the major aims of these 
annotations is to help understand genetic variants that cause disease by misregulation of gene expression. 
Our approach will be innovative since it will be amongst the first methods that use ENCODE data to interpret 
variants that increase cancer susceptibility. 
C-3 Using knowledge of somatic cancer-causing variants to identify germline variants 
associated with increase cancer risk 
We will use knowledge of somatic variants that constitute cancer driver events to identify germline variants as-
sociated with increased cancer susceptibility. Thus, our approach will be innovative in analyzing somatic and 
germline variants in an integrative fashion. 
C-4 Analyzing variants in ncRNAs 
Most previous studies for functional interpretation of noncoding GWAS variants have primarily focused on 
regulatory regions associated with transcription factor binding sites or regions of open chromatin. Our ap-
proach will also analyze variants in ncRNAs and thus this will form another major innovative component of our 
approach. 
C-5 Functionally validating rare variants 
Rare variations in regulatory regions of genome can have a paramount influence on biological processes and 
might function as primer for recurrent somatic mutations in adjacent genomic regions or might contribute to 
long range changes in chromatin regulation. Using a comprehensive panel of cell lines and genome editing 
tools like the CRISPR-CAS system we introduce the rare variations in the cell lines and study effect on cellular 
physiology. This innovative approach will allow us to generate a catalogue of biological outcomes that can be 
attributed to a rare variation in a physiological setting. 
D Approach 
D-1 Approach Aim 1 - Convert the prototype FunSeq non-coding somatic variant pipe-
line to prioritize germline variants and elaborate it with new features 
D-1-a Preliminary Results for Aim 1 

D-1-a-i We have considerable experience annotating non-coding regulatory regions of the genome  
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Our proposed work is based on our experience in non-coding annotation. We have made a number of contribu-
tions in the analysis of the noncoding genome, as part of our extensive 10-year history with the ENCODE and 
modENCODE projects.  Our TF work includes the development of a method called PeakSeq to define the bind-
ing peaks of TFs [40], as well as new machine learning techniques [41]. In addition, we have also proposed a 
probabilistic model, referred to as target identification from profiles (TIP), that identifies a given TF’s target 
genes based on ChIP-seq data [42]. Furthermore, we have developed machine-learning methods that inte-
grate ChIP-seq, chromatin, conservation, sequence and gene annotation data to identify gene-distal enhancers 
[43], which we have partially validated [44]. We have also constructed regulatory networks for humans and 
model organisms based on the ENCODE [45] and modENCODE datasets [46], and completed many analyses 
on them[6, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]  

D-1-a-ii We have considerable experience processing RNA-seq data and annotating ncRNAs 
We also have extensive experience conducting integrated analyses of large sets of RNA-seq data, such as 
through the ENCODE, modENCODE, BrainSpan and exRNA consortia [4, 6, 61]. In particular, for general 
RNA-Seq analysis, we have developed RSEQtools, a computational package that enables expression quantifi-
cation of annotated RNAs and identification of splice sites and gene models [62]. In addition, we have devel-
oped IQseq, a computationally efficient method to quantify isoforms for alternatively spliced transcripts [63]. 
Comparisons between RNA-Seq samples, and to other ge-
nome-wide data, will be facilitated in part by our Aggregation 
and Correlation Toolbox (ACT), which is a general purpose 
tool for comparing genomic signal tracks [64]. We have also 
developed a ncRNA-finder [65]. Finally, we have developed 
statistical models relating gene expression levels to chromatin 
marks and TF binding [45, 66, 67, 68]. 

D-1-a-iii We have extensive experience in Allelic Analysis 
A specific class of regulatory variants is one that is related to 
allele-specific events. These are cis-regulatory variants that 
are associated with allele-specific binding (ASB), particularly of 
transcription factors or DNA-binding proteins, and allele-
specific expression (ASE) [69, 70]. We have previously devel-
oped a tool, AlleleSeq, [58] for the detection of candidate vari-
ants associated with ASB and ASE. Using AlleleSeq, we have 
spearheaded allele-specific analyses in several major consor-
tia publications, including ENCODE and the 1000 Genomes 
Project. [45, 56, 61] Overall, we found that there is a substan-
tial number of genomic elements associated with ASB and 
ASE [61] and that these allelic variants are under differential 
selection from non-allelic ones [45, 56]. By constructing regu-
latory networks based on ASB of TFs and ASE of their target genes, we further revealed substantial coordina-
tion between allele-specific binding and expression. [45] Furthermore, we have provided the AlleleSeq tool, 
lists of detected allelic variants, and the constructed personal diploid genome and transcriptome of NA12878 
on \cite{alleleseq.gersteinlab.org}. Since then, we updated the AlleleSeq tool, and the resource has been used 
in the scientific community, as exemplified by the number of citations and publications using our data as refer-
ences. [71, 72]. 

 
D-1-a-iv We have extensive experience in relating annota-
tion to variation & based on this experience have devel-
oped the prototype FunSeq pipeline for Somatic Variants 
We have extensively analyzed patterns of variation in non-
coding regions along with their coding targets [44, 45, 73]. 
We used metrics, such as diversity and fraction of rare var-
iants, to characterize selection on various classes and 
subclasses of functional annotations [73]. In addition, we 
have also defined variants that are disruptive to a TF-
binding motif in a regulatory region [4]. Further studies by 
our group showed relations between selection and protein 

Fig 1: Network adapted from Rozowsky et al. (2011) 
\cite{21811232} depicting allele-specific regulation of 
the expression of genes and transcriptionally active 
regions (TARs) by binding of transcription factors 
(TFs). Edges represent regulation of TFs in allele-
specific fashion to genes and TARs. Pink and blue 
denote maternal and paternal entities respectively. 
Circles represent TARs, squares genes and green tri-
angles TFs used in publication. We would have many 
more TFs for pipeline than 7 shown here. 
 

Fig 2: Detailed description of FunSeq workflow. 
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network structure, e.g. hubs vs periphery [55, 57].In a recent study [56], we have integrated and extended the-
se methods to develop a prototype prioritization pipeline called FunSeq. FunSeq identifies sensitive and ultra-
sensitive regions, i.e. those annotations under strong selection pressure as determined by human population 
variation. It also prioritizes variants based on network connectivity and their disruptiveness (e.g. finding motif 
breakers) and identifies deleterious variants in many non-coding   functional elements, including transcription-
factor (TF) binding sites, regions of active chromatin corresponding to enhancer elements and regions of open 
chromatin corresponding to DNase I hypersensitivity sites. By contrasting patterns of inherited polymorphisms 
from 1092 humans with somatic variants from cancer patients, FunSeq allows for identification of candidate 
non-coding driver mutations [56]. In this study, we integrated large-scale data from various resources, including 
ENCODE and 1000 Genomes Project, with cancer genomics data. Using FunSeq, we identified ~100 non-
coding candidate drivers in ~90 WGS medulloblastoma, breast and prostate cancer samples. 
 

D-1-b Research Plan for Aim 1  
We plan to convert the current FunSeq prototype from its focus on somatic variants 
to allow the identification of rare variants associated with high functional impact. 
We will do some simple improvements (i.e. incorporating GERP scores and ultra-
conserved regions for identifying conserved regions between species) and some 
major changes outlined below.  
D-1-b-i Identifying gain-of-function mutations 
for TF binding sites in addition to loss-of-motif 
events 
Loss-of-function variants are more likely to 
cause deleterious impact [56, 73, 74]. When 
variants occur in TF binding motifs, the 
change in position-weight matrix (PWM) can 

be calculated. Variants decreasing the PWM scores could potentially alter 
the binding strength of transcription factors, or even cause loss-of-motif 
events. Many studies have shown that gain of new binding sites caused 
by somatic mutations can constitute driver events [19, 20, 75, 76]. How-
ever, an automated tool to detect such events in whole genomes is not 
available. Such events in germline genomes might also be associated 
with increased disease risk. We will create a gain-of-motif scheme to scan 
and statistically evaluate [77] all possible motifs created by variants com-
pared to the human reference genome. Gain-of-motif events are identified 
as those that give a sequence score with mutated allele in the PWM sig-
nificantly higher than the background. Note that in these analyses, deter-
mining the ancestral allele of the variant is essential to resolving between 
loss-of-function or gain-of-function since the functional impact of the vari-
ant reflects the historical event when the polymorphism was first intro-
duced in the human population. 

D-1-b-ii Identifying likely target genes of distal regulatory elements & 
then assessing impact of variants on network connectivity 

To interpret likely functional consequences of non-coding variants, we will define associations comprehensively 
between many non-coding regulatory elements and target protein-coding genes. We will consider the enhancer 
marks H3K4me1 and H3K27ac as two types of activity signals, and DNA methylation as an inactivity signal. 
We will collect all bisulfite sequencing, ChIP-seq and RNA-seq data from the Roadmap Epigenomics project 
[78]. Then we will identify significant associations between regulatory elements and candidate target genes 
through computing the correlations of active signals and anti-correlations of inactive signals with gene expres-
sion levels across different tissue types.  

We will use the regulatory element - target gene pairs to connect the non-coding variants into a variety 
of networks -- e.g. regulatory the network, metabolic pathways, etc. We know that disruption of highly connect-
ed genes or their regulatory elements is more likely to be deleterious [55, 57]. For each non-coding variant, we 
will calculate scaled network centrality (compute the percentile after ordering centralities of all genes in a par-
ticular network) of the associated gene in various networks. If the associated gene participates in multiple net-
works, we will use the maximum network centrality as the disruptive measure of the variant. In addition to hubs, 

Fig 4: Filtering of somatic variants from a 
prostate cancer sample leading to identifi-
cation of candidate drivers 
	  

Fig 3: Application of variants 
filtering scheme to Venter’s 
genome. Number of SNVs in 
various categories shown. 
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we will also prioritize based on bottlenecks and positions at the top of hierarchies [45]. We will make the 
scheme flexible so it can integrate user-supplied networks.  

Moreover, the interpretation of the functional impact of variants can be enhanced if the function of its 
target protein-coding genes is known. We will incorporate prior knowledge of genes, such as known cancer-
driver genes [79] and actionable genes (‘druggable’ genes) [80] into our annotation scheme. We will also make 
the scheme flexible so it can integrate gene expression studies in cancer cases vs controls to increase predic-
tive power for identification of functional variants (e.g. using DESeq[81]). 

D-1-b-iii Detailed variant prioritization for ncRNAs  
The original FunSeq focused on TF binding sites. Here, we will expand FunSeq to better prioritize variants in 
ncRNAs, in a parallel fashion to what we have done for binding sites. We will first prioritize ncRNAs based on 
their within-human selection pressure and conservation across multiple species, identifying sensitive regions. 
For within-human selection, we will prioritize annotations showing higher nucleotide diversity and fraction of 
rare variants [73]. We will look at GERP scores [82] for inter-species conservation. 
We will divide ncRNA annotations according to their subcategories, expression levels, and specificity of ex-
pression in cell lines. We will take into account subcategories including transfer RNAs, miRNAs, 5S ribosomal 
RNAs, small nucleolar RNAs, small nuclear RNAs, and long non-coding RNA. Expression levels of ncRNAs 
will be obtained from the ENCODE where RNAseq was performed on dozens of cell lines  
\cite{http://genome.crg.es/encode_RNA_dashboard/hg19}. We will prioritize ncRNAs that have higher expres-
sion levels and those that are ubiquitously expressed in many cell lines. 

Furthermore, we will annotate genomic variants with secondary structures of ncRNAs. Our preliminary 
data have shown that more rigid structures, such as stem regions, are under stronger selection pressure, and 
that those variants that incur a larger free energy change of the structures tend to be rarer in the human popu-
lations. We will also quantify the effect a mutation stabilizes or destabilizes the RNA structure by computing the 
difference in folding free energy changes of the RNA before and after the introduction of the mutation. RNA 
secondary structures will be predicted using RNAshapes [83]. After we do this, we will be able to define RNA-
disruptive variants analogously to how LOF variants are defined for coding regions or motif-breakers are de-
fined for TF binding: we will define variants that disrupt secondary structures of ncRNAs as those that no long-
er form a complementary base-pairing or a wobble base-pairing when mutated. (Again the correct identification 
of the ancestral allele will be important here.)  

Finally, we will explore the relationship of ncRNAs with network connectivity by associating ncRNAs 
with canonical genes through expression correlations, sequence complementarity, etc. For instance, miRNAs 
are known to regulate the expression level of its target genes. We will identify coding genes associated with 
miRNAs by correlating their expression levels based on RNAseq. In addition, we will also search for potential 
miRNA binding target by examining sequence complementarity in 3’UTR regions of coding genes to the seed 
regions, i.e. the first 2-7 bp of the mature miRNAs, using TargetScan [84]. We will then examine the selection 
pressure in ncRNAs that are associated with genes in network hubs vs. periphery.  

D-1-b-iv Variant prioritization based on Allelic activity & eQTL association (AlleleDB module) 
The evident regulatory roles of the allele-specific variants assert that they will be useful in identifying functional 
variants. However, currently, there is no prioritization scheme that integrates ASB and ASE regulatory variants. 
Previous analyses have been primarily variant-specific or focused mainly on a deeply sequenced individual, 
GM12878 [45, 56, 61]. Furthermore, an enrichment of rare variants among allelic variants [7] implies that a di-
rect overlap of variants in a prioritization pipeline will not be applicable. (That is, we would not expect any of the 
allelic variants to directly overlap the rare variants prioritized by FunSeq.) Therefore, to enable the incorpora-
tion of allele-specific variants into the annotation pipeline, our strategy is to aggregate allelic variants into 
meaningful regions, or what we term ‘allelic’ genomic elements. We define ‘allelicity’ as the degree of how al-
lele-specific a particular genomic element or category of elements is averaged over all the allelic variants in it. 
This is a continuous measure with a range of values as opposed to a binary variable of whether a variant is 
allele-specific. For example, an ‘allelic’ class of TF binding site might possess more allele-specific ASB variants, 
or a particular class of elements such as enhancers and promoters might be more allelic than another. In a 
similar vein, we also plan to extend this approach to integrate another category of regulatory variants: quantita-
tive trait loci (QTL), such as Dnase I sensitivity QTLs (dsQTLs), splice QTLs (sQTLs) and expression QTLs 
(eQTLs). All the results will be housed in a central repository, which we called the AlleleDB. This will be used 
as part of the pipeline to prioritize variants, by up-weighting those input variants that are found in our list of al-
lelic and eQTL elements. 
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D-2 Approach Aim 2 - Implement an efficient & easy to use FunSeq pipeline & run on all 
the germline variants in TCGA/ICGC 
In this aim we will provide an efficient implementation of FunSeq, including a weighting system to bring togeth-
er all its features, call all the rare germline variants in sequenced tumor genomes, and then run FunSeq on 
them to develop a prioritized variant and element list.  Overall, using FunSeq prioritization plus screening out 
the common variants will allow us to identify the rare variant on a haplotype block with the greatest impact. We 
note that unlike GWA studies, which look for association signal, our method prioritizes variants based on func-
tional information. Thus, the variants identified by our pipeline are most likely the causal variants. Furthermore, 
we will analyze the element-wise recurrence of these rare variants with somatic variants.  
D-2-a Preliminary results in developing efficient tools & calling variants on a large-scale 
We have significant experience in developing high-throughput tools for bioinformatics research. Our tools take 
the form of web services, distributed open source programs, annotation databases and distributed virtual ma-
chines. Many of the latter are hosted on Amazon Web Services Elastic Compute Cloud (AWS-EC2). In particu-
lar, for the analysis of high-throughput genomic experiments we have developed pipelines for analysing, RNA 
expression [85, 85, 86], alternative splicing [63], fusion transcripts [87], and copy-number variation [88]. We 
have developed pipelines for the analysis of regulatory networks [45, 47, 89, 89] and protein–protein interac-
tion networks [50, 90, 91, 92, 93, 94]. 

We have much experience in large-scale germline variant calling through being active members of the 
1000 Genomes Consortium, especially the Analysis Group and Structural Variant (SV) subgroups where ma-
jority of the variant calling tools are developed [95, 96, 97, 98]. We will use the Broad’s Genome Analysis 
Toolkit (GATK) [99] for variant calling, which we have already extensively used previously [56]. For rare vari-
ants, we will define them as variants not in 1000 Genomes (phase 1 or pilot) -- the “outersect” with 1000G -- as 
we did previously in the ENCODE production rollout [4, 56]. Also, we will call some SVs, which are important 
contributors to human polymorphism, have high functional impact and are associated with disease [100, 101, 
102]. We have developed a number of SV calling algorithms, including BreakSeq by comparing raw reads with 
a breakpoints library (junction mapping) [103], CNVnator by measuring read depths [104], AGE by refined local 
alignment [105], PEMer for paired ends [106], array-based approaches [107] and a sequencing-based bayesi-
an model [108]. 
D-2-b Research Plan for Aim 2  

D-2-b-i Do SNP & a limited amount of SV calling for all WGS Germline Variants in TCGA + ICGC  
We currently have access to a combined >500 whole genome sequences from whole-genome sequencing of 
tumor-normal pairs (WGS) done by the Sanger Institute, The Cancer Genome Atlas (TCGA) [109], and various 
prostate cancer sequencing projects. (Most of this is available through dbGaP [110], to which we have ob-
tained protected access subject to annual renewal.) We anticipate access to another ~2000 WGS genomes 
from International Cancer Genome Consortium (ICGC) [111] and TCGA. To call variants uniformly, we will run 
GATK with standard parameters on the TCGA+ICGC WGS results then filter the results. Additionally, we will 
run our CNVnator, BreakSeq and PEMMer software [103, 104, 106] on this data to identify copy number vari-
ants. We will filter against 1000 Genomes Phase 1 to define a pool of rare variants. We estimate within a single 
WGS the total germline SNPs will be ~3 million total variants and ~100,000 rare variants (in addition to 
~10,000 somatic variants) and that each genome will take ~1 hr to process on our parallel cluster.  

D-2-b-ii Analysis of recurrent germline & somatic variants (LARVA module)   
We will develop a model to study the recurrence of both germline variants and somatic mutations across multi-
ple cancer patients. We will aim to see if there are prioritized germline variants that affect the same element as 
somatic ones, in different individuals. On a simple level, recurrence would be a variant at exactly the same po-
sition in two individuals. However, this is exceedingly unlikely for rare or somatic variants [97]. Thus, we will 
consider mutational burden spread over elements, which include transcribed features, regulatory features, and 
groups of genes related through a common pathway or protein interaction subnetwork. 

Our mutation recurrence discovery procedure has three stages. Given a cancer patient cohort, we will 
first identify recurrences in the somatic variants. We will then do the same for the rare, germline variants. The 
third step involves looking for connections between the two sets: elements that contain recurrent somatic vari-
ants and rare germline variants imply that the germline variant may be functionally connected with respect to 
cancer. The absence of common variants from these elements would serve as further evidence for a functional 
connection to cancer. We have developed a computational framework for identifying these types of recurrent 
variation, named Large-scale Analysis of Recurrent Variants and Annotations (LARVA). Given a set of cancer 
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patient whole genome variant calls, and a set of genome annotations, LARVA will pick out the recurrent vari-
ants, recurrently mutated annotations, and recurrently mutated subsets of annotations. 

LARVA also has a module for computing the statistical significance of its results by simulating the crea-
tion of WGS variant calls with randomized variant positions. These random datasets, which otherwise contain 
the same number of samples and variants, are used to determine the null distribution of variants across the 
annotation set for comparison with the actual variant data. LARVA determines the positions of variants for its 
random variant datasets using a null mutation model designed to reflect the factors affecting the neutral muta-
tion rates of different genome regions, and represents an extension of an exome null mutation model devel-
oped for MutSig [112]. These factors include the genome-wide DNA replication timings, since later replicating 
regions are more error-prone due to the depletion of free nucleotides [113]. Histone marks for H3K4me1 and 
H3K4me3 are used because they are anti-correlated with SNV density [114]. Also included is the whole ge-
nome RNA-seq data from the ENCODE project [4], representing the connection between expression and tran-
scription-coupled repair [115]. Finally, the SNV density data from the 1000 Genomes Project [97] is used to 
reflect differences in genome regions’ levels of natural population variation. The whole genome weight function 
is defined over discrete 100,000-bp-long regions of the genome, and is defined as follows for each region r: 
 
weight(r) = log(CDF(r.replication_timing)) + log(1-CDF(r.H3K4me1)) + log(1-CDF(r.H3K4me3)) + log(1-
CDF(r.expression)) + log(CDF(r.SNV_density)) 
 
Individual variant positions are selected by first choosing a region according to this weight function, then pick-
ing a position within that region with uniform probability. 

D-2-b-iii We will implement FunSeq on a large scale & then run on all the variants to produce a shortlist of 
prioritized variants  

D-2-b-iii-1 We will modularize FunSeq to handle updates to a complex data context & simultaneously carry out 
efficient production runs 
We will develop a practical implementation of all of the new FunSeq modules proposed in aim 1 and then  inte-
grate them within FunSeq. Some of the modules may be useful as stand alone programs.  For instance, for 
AlleleDB, the results will both be integrated into the pipeline and also housed in a standalone AlleleDB data-
base. This can be navigated via a user-friendly interface for data mining and the casual user. It will also gener-
ate flat files for their queries and can be subsequently downloaded by the users for further analyses.  

Our implementation will allow us to modularize FunSeq into two components: (#1) building a complex-
to-regenerate data context and (#2) an efficient and high-throughput production run. To build the data context 
(#1), we will integrate large-scale publicly available data resources, such as polymorphisms from 1000 Ge-

nomes project [98], conservation data from [116, 117], 
functional genomics data from ENCODE [4] and REMC 
[78].  

We anticipate this step will be very time-
consuming, as we will process large scale genomic data 
into smaller summary files (e.g. associations between 
distal regulatory elements and likely target genes). The 
production run (#2) will prioritize variants from WGS 
based on the data context. The variant prioritization step 
needs to be quite efficient, so we can tackle >1000 ge-
nomes in fairly short time. The overall modularization of-
fers a flexible framework to for users to incorporate the 
ever-increasing amounts of genomic data to both rebuild 
the underlying data context and prioritize case-specific 
variants. We plan to make FunSeq an easy to use tool. It 
will be implemented as a downloadable tool, a web serv-
er, and a cloud instance.    
D-2-b-iii-2 We will develop a unified weighted scoring 
scheme for combining all FunSeq modules to consistent-
ly prioritize variants  
An integral part of the modular nature of FunSeq will be a 
way to combine the results of all of the modules into a 

Fig 5: Description of extended FunSeq workflow. 
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single variant score and consistent ranking. For this we will develop a weighted scoring system. Different fea-
tures may contribute differently to the deleterious impact of variants. We will use the mutation patterns ob-
served in the 1000 Genomes polymorphisms to assign weight values to features. Features that are frequently 
observed in polymorphisms will be weighted less, whereas those that are rarely observed will be weighted 
more. In general, features can be classified into two classes: discrete (e.g. “in a particular functional annotation 
or not”) and continuous (e.g. the PWM change in ‘motif-breaking’). We plan to use different strategies for the 
two classes. For each discrete feature d, we will calculate the probability p!that it overlaps a natural polymor-
phism. Then we will compute 1-Shannon entropy as its weighted value w!. This measure ranges from 0 to 1 
and is monotonically decreasing when p! is between 0 and 0.5.  
w! = 1 + p! ∗ log!p! + (1 − p!) ∗ log!(1 − p!)                                                                              (1) 
The situation is more complex for continuous features, as different feature values have different probabilities of 
being observed in polymorphisms. Thus one weight cannot suffice. For a continuous feature c, which is asso-
ciated with a score v!(e.g. PWM change), we will calculate feature weights for each v!. In particular, we will 
discretize at each value and compute w!

!! using (2). Now, when we come to evaluate the continuous feature c 
for a particular variant, we calculate its weighted value using the actual v! corresponding to the variant.  
w!
!! = 1 + p!!!

! ∗ log!p!!!
! + (1 − p!!!

!) ∗ log!(1 − p!!!
!)                                                                     (2) 

Finally, for each cancer variant, we will score it by summing up the weighted values of all its features. We will 
also consider the dependency structure of features when calculating the scores.  
D-2-b-iii-3 We will run FunSeq & Larva on all the variants & prioritize them  
We will run FunSeq on the rare variants resulting from our variant calling on all the TCGA/ICGA whole-genome 
sequences. We expect ~100K per genome and for those variants to recur at the exact same position only rare-
ly; thus, we will generate a prioritized list ~100M variants. We expect each rare variant to be on its own rare 
haplotype block; moreover, since we are explicitly screening out common variants, we expect only infrequently 
that there will be other variants on the same block. If we have multiple rare variants, we would expect  FunSeq 
to differentially prioritize them, making it relatively straightforward to identify the "functional" SNP in each block. 
This situtation contrasts with what one observes in prioritizing relatively "common" GWAS SNPs, where finding 
the "functional" SNP in a block is a major challenge. From this pool of ~100M prioritized variants, we will select 
those in the top quartile that also recur in same element as a somatic variant in another individual, based on 
LARVA analysis. We will further prioritize variants with germline recurrence in the same element. Overall, this 
analysis will yield a list of the top 200 variants and elements associated with them. (Note this might not be ex-
actly 200 elements, since it is possible that some of the same variants recur in the same element.) We will se-

lect 100 unique elements from this list and move them onto val-
idation as described below.  
D-3 Approach Aim 3 - Validate the Prioritized Variants 
D-3-a Preliminary results related to validation 
D-3-a-i Capture-Seq identifies rare physiologically relevant mu-
tations 
We have applied hybrid capture technology to sequence specif-
ic regions with high coverage. Specifically, we have developed 
a novel targeted next-generation sequencing (NGS) assay, 
suitable for FFPE and frozen material. The developed protocol 
is as follows. DNA is extracted from 3x1.5mm FFPE cores, us-
ing the Promega Maxwell 16 system. DNA quality is determined 
using Agilent FFPE derived DNA quality assessment kit in a 
subset of 
cases. 

TruSeq library preparation is obtained using 1µg input 
DNA. Custom capture is performed using the NimbleGen 
SeqCap EZ library kit. Paired-end sequencing (2x75bp) 
is then performed using Illumina HiSeq 2500. Samples 
are multiplexed (5-7 samples per lane) to ensure a nomi-
nal coverage of ~25-40M paired-end reads per samples. 
Raw sequences are aligned to the human genome refer-
ence sequence (GRC37/hg19). This initial mapping is 
then refined following a series of computational steps to 

Fig 6: Capture efficiency of the assay. Fraction of 
reads in captured regions is reported, according to 
quality of the samples, ranging from highest quality (A) 
to lowest quality (C). 

Fig 7: Integrative Genome Viewer (IGV) snapshot of SPOP muta-
tion. Plot shows reads (grey) in the region of the SPOP gene 
where mutation was detected using hybrid capture. Colored 
bases identify variations with respect to reference genome. At 
mutation site total coverage is 280x with 187 (67%) and 93 (33%) 
reads supporting reference (A) and mutated allele (C), respec-
tively.  
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remove potential artifacts and increase the quality of the alignment. We then identify the somatic single nucleo-
tide variants by comparing the tumor against its matching normal. In our study, we analyzed 31 cases of local-
ized prostate cancer. We generated a total of ~1.340B paired-end reads  (average per sample ~24.4M; range: 
0.97M – 74M ).The average coverage per sample is ~177x (range: 3x – 510x). The average capture efficiency 
is 61.4% (range 45.5% - 70.8%; see Figure 6). These results suggest that it is feasible to obtain good coverage 
with archival material with this assay. We were able to identify the known mutations in these samples, including 
TP53 and SPOP (see Figure 7), and to nominate some new ones. In this study, we were successful validating 
genomic alterations in samples up to 10 years old. 

D-3-a-ii Low-frequency functionally active intronic &  intergenic inherited variants predisposing to cancer  
Emerging insights into the genetics of constitutional disease etiology demonstrate that germline polymorphisms 
are associated with a variety of diseases including Alzheimer’s, Parkinson’s, mental retardation, autism, schiz-
ophrenia [118]and cancer [119, 120]. Relevant to this proposal our group recently performed a large scale pro-
filing study for 2,000 individuals from the Tyrol Early Prostate Cancer Detection Program [121, 122]cohort. This 

cohort is part of a population-based prostate cancer-
screening program started in 1993 and intended to 
evaluate the utility of intensive PSA screening in reduc-
ing prostate cancer specific death. By genotyping DNA 
extracted from peripheral blood samples, we annotated 
the cohort on more than 5,000 CNVs and 900,000 
SNPs and then queried inherited low frequency dele-
tions variants [123] for their impact in driving prostate 
cancer [124] and the more aggressive form of the dis-
ease [125]. We reported on coding and non-coding 

functionally active risk variants. Among the top hits of the case-control study, an intronic variant in the Alpha-
1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase C (MGAT4C) demonstrated transcript 
abundance association with genotype states both in prostate and in lymphoblastoid cells, significant increase 

in cell and migration upon overexpression in 
benign and cancer prostate cell lines, and sig-
nificant decrease in proliferation upon knock 
down of MGAT4C expression with siRNA. In 
addition, we suggested that intergenic PCA risk 
variants affect gene regulation through modified 
transcription factor binding activity of the Activa-
tor Protein 1 (AP-1) [24, 26]. Altogether, we 
demonstrated that inherited variants may direct-
ly or indirectly modulate the transcriptome ma-
chinery of known oncogenic pathways in pros-
tate cancer facilitating carcinogenesis.  
D-3-a-iii In vitro characterization of SNPs within 
enhancer elements bound by AR and/or ERα 
The Tyrol Early Prostate Cancer Detection Pro-
gram cohort is a well characterized cohort with 
centralized data collection that ensures proper 
patients’ follow-up annotations and availability 
of well-preserved tissues and blood samples. 
The cohort currently includes more than 3,000 
men. As part of our Trento-Innsbruck-Cornell 

collaboration, we further studied the genetics of prostate cancer individuals coupling serum levels and ge-
nomics data. Specifically, we studied the impact of genetic variants relevant to the metabolism of Dihydrotes-
tosterone [126](DHT), the most potent form of androgen, and investigated the incidence of common genomic 
rearrangements with respect to PSA levels and age at diagnosis [127].  

 H3K4me1 
H3K4me1 

+ 
H3K3me3 

H3K27ac H3K9ac DNase FAIRE UNION 

AR 373 (136) 183 (55) 283 (98) 258 (83) 127 (39) 52 (16) 418 (148) 
ER 386 (102) 221 (60) 317 (82) 339 (90) 232 (56) 127 (32) 431 (113) 
AR+ER 17 (7) 9 (4) 14 (7) 17 (7) 6 (2) 3 (1) 22 (8) 

 Table 1: SNPs from human genome that intersect regulatory 
regions bound by AR and/or ERα . 
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AR responsive enhancer elements upon in silico selection

Fig 8: Validation AR-responsiveness and impact of SNPs within identified 
putative enhancer elements. Left panel: Cells cotransfected with 
pCMV_EMPTY vector and the different pGl4.26 constructs. Only 
pGl4.26_locus 1_rs12242193_G/A reaches as much as 4 fold change. Center 
panel: Cells cotransfected with pCMV_AR vector and pGl4.26_locus 
1_rs12242193_G/A. Results show that the SNP has a role in transcription 
regulation when cells are supplemented with 100nM DHT (p=0.028, deter-
mined by Student’s t-test). Right panel: Cells cotransfected with pCMV_AR 
vector and pGl4.26_locus 2_rs9521825_G/A. When cells are supplemented 
with 100nM DHT the construct reaches as much as 80-fold hinting at strong 
enhancer role. All experiments performed from three biological replicate, 
each one consisting of three technical replicates. Error bars indicates 
standard deviation of the mean (SD).	  
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It has been shown that a significant fraction (26%-35%) of inter-individual differences in transcription factor 
binding regions coincides with genetic variation loci 
and that about 5% of transcripts levels are associated 
with inherited variant states [24]. Genotype-transcript 
associations have been reported at large for multiple 
types of inherited variants [8, 9, 25, 26, 128], however 
experimental evidence of inherited variants allele-
specific effect on enhancer activity are lacking. In order 
to study the potential role of inherited genetic variants 
within regulatory elements in the context of hormone 
dependent human, we have performed an unbiased 
computational search for AR/ERα bound enhancers 
elements containing SNPs followed by in vitro charac-
terization of selected variants. Table 1 shows counts of 
SNPs from the dbsnp137 set within AR [129] and/or 
ERα  (Chakravarty D, submitted) binding sites that intersect peak ENCODE data [4] generated from 20 cell-
lines and ChIP-seq experiments for H3K4m1, H3K4me1+H3K4me3, H3K9ac, H3K27ac, Dnase-seq and 
FAIRE-seq. For each marker the consensus was generated as the merge of all the regions that are present in 
at least 2 cell lines and comply with a set of filters. Figure 8 shows examples of AR-responsiveness and SNPs 
impact on putative enhancer elements in MCF7 cells (Garritano S, Demichelis F, unpublished).  

D-3-a-iv Reporter luciferase assays confirm validity of in silico TF 
binding sites 
Using and in silico approach we determined genome wide distribution 
of ERα in prostate cancer. Intriguingly, we observed a robust recruit-
ment to non-coding genome and identified several intergenic sites that 
correlated with high ERα occupancy. Analysis of recruitment vs tran-
script profiles confirmed that ERα recruitment was associated with 
productive transcription of long noncoding RNA. Recruitment of ERα 
upstream of NEAT1 lncRNA was addressed in greater details. Re-
porter assays using promoter luciferase constructs encompassing up-
stream regulatory regions of NEAT1 and corresponding to two ERα 
binding sites are described in Fig 7.Interestingly, we discovered that 

NEAT1 is associated with chromatin and regulates transcription of key prostate cancer genes. Recruitment of 
NEAT1 was evaluated by ChIP assay and influence on key target genes like PSMA was validated using ChIP 
and reporter assays (Fig 8). Functional validation of NEAT1 functions revealed a predominant tumorigenic role 
as overexpression of NEAT1 was sufficient to augment proliferation, invasion and migratory behavior of pros-
tate cancer cells (Fig 9). 
D-3-b Research Plan Related to Validation 

D-3-b-i Overview of validation strategy  
Identification of rare variants and understanding the influence thereof 
on repertoire of biological responses will afford us a unique oppor-
tunity to understand causal role of these variations on other somatic 
mutations associated with diseased states including but not limited to 
cancer. The functional role of prioritized targets will be evaluated us-
ing a panel of cell lines that will serve as invitro-model to simulate 
effects in vivo. Once tested in cell line model we expect to extend 
these studies further to animal. We will use prostate cancer as a 
model for the validation but we expect that the results will be general-
izable to a number of cancers.   
First, we would perform an initial screen to determine whether any of 
the variants are associated with cancer in a different cohort of indi-
viduals or are associated with differential gene expression and RNA-
seq.  We will use both the Tyrol cohort (described above) and the 
Early Detection Research Network (EDRN) 
\cite{http://edrn.nci.nih.gov/} prostate cancer cohort with thousands 

Fig 9:Promoter luciferase assay were performed using promoter 
reporter vectors encompassing ERα binding regions upstream 
of NEAT1. Luciferase assays confirmed ERa is recruited and 
drives transcriptional output from NEAT1 promoter 
	  

Fig 10: Promoter luciferase assay confirm 
NEAT1-ERα  axis is involved in regulation of 
PSMA, a key prostate cancer gene. 
	  

A!

B!

Fig 11: NEAT1 is a driver of oncogenic cascade 
(A) Cell proliferation assays were performed in 
VCaP and VCaP ERα expressing cells trans-
fected with control or NEAT1 siRNA and estro-
gen treatment (10nM). (B) (left) Quantitative bar 
chart for depicting the relative cell counts ob-
tained at the completion of the invasion assay 
performed in VCaP ERα control and NEAT1 
shRNA expressing cells, (**) p < 0.01. (right) 
Soft agar assays were performed with VCaP 
control and NEAT1 expressing cells. Quantita-
tive bar-plot analysis of stained colonies at 21 
days are shown), (***) p < 0.001.	  
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of prostate cancer individuals as well as normal controls. The prostate cancer cohort include men enrolled at 
three sites as part of the Prostate Cancer Clinical Validation Center that prospectively enroll individuals at risk 
for prostate cancer at Beth Israel Deaconess Medical Center (Harvard), at the University of Michigan (Michi-
gan) and at Weill Cornell Medical College (Cornell). Cases are defined as men diagnosed with prostate cancer 
and controls are men who have undergone prostate needle biopsy without any detectable prostate cancer and 
no prior history of prostate cancer.  
We will first take the highest prioritized variants then subject them to validation. Overall we plan to start the val-
idation pipeline with the top ~100 elements identified from the computational FunSeq prioritization (as de-
scribed above). We will perform Hybrid capture assay (described in preliminary data), on 400 cases (patients 
with cancer) from the above-mentioned cohorts. From the Capture-Seq experiments, we will identify the top 
100 recurring variants and subsequently perform TaqMan assays on a further 4,000 cases to see if the precise 
variants recur in a larger cohort. From this group, we will select top third of the variants (~33), based on recur-
rence, that we will follow up for detailed functional screening, to be discussed below. This functional screening 
will be through various reporter assays (e.g. luciferase) looking for the effect on the target gene and also from 
using the CRISPR/Cas system.  For controls, we will utilize deeply sequenced control cohorts (individuals with 
no cancer) that are already available, including deeply sequenced trios from the 1000 Genomes Project , 500 
individuals with Complete Genomics sequencing also from 1000 Genomes  and non-cancerous individual from 
the UK10K project \cite{http://www.uk10k.org/}. 

D-3-b-ii Targeted sequencing & Genotyping 
We will conduct the hybrid capture technology (as described in preliminary results) to sequence the top-ranking 
~100 elements in 400 samples with high coverage. Custom capture will be performed using the NimbleGen 
SeqCap EZ library kit followed by paired-end sequencing (2x75bp) using Illumina HiSeq 2500. 
  Then we will utilize robust Taqman genotyping assays for screening ~100 nominated variants associat-
ed with the top-ranked elements in a cohort of 4000 individuals (Tyrol + EDRN, as described above).  Superior 
allelic discrimination is achieved in these assays as they utilize TaqMan minor groove-binding (MGB) probes. 
This technique generates a low signal to noise ratio and affords a greater flexibility. The Taqman probes are 
functionally tested to first ensure assay amplification and optimization for amplification conditions. 
Methods: Genomic DNA will be extracted from the blood cellular-EDTA samples in a high-throughput fashion 
using the QIAamp 96 DNA Blood Kit (Qiagen). All DNAs are evaluated by NanoDrop spectrophotometer 
(NanoDrop, Thermo Scientific) and gel electrophoresis (2% agarose). For TaqMan Real-Time Quantitative 
PCR, each DNA sample will be diluted to 10 ng/ml with nuclease-free water. 

D-3-b-iii Evaluation of functional consequence of variants 
Based on the Taqman results, we will pick the top third of the variants (~33) for functional follow up.  
D-3-b-iii-1 Functional consequences: RNA-seq 
First, we will use RNA-seq. We have RNA-seq data for many members of the cohort. To fill out the dataset, 
further RNA sequencing will be done on the cases where we see recurrent variants (on up to ~160 individuals). 
The RNA-seq will be done according to the protocols in [130]. This analysis will inform us if a SNP (in promoter 
or enhancer regions) has any effect on transcription of target gene. This analysis will provide a comprehensive 
list of SNPs that might correlate with loss or gain of expression. Recurrent rare SNPs will be further validated 
by PCR assays using primers that can amplify the genomic region encompassing the SNP. PCR will be fol-
lowed by direct sequencing of amplicon using an ABI 3730 DNA Sequence Analyzer on a subset of tumor-
normal pairs to verify the individual promoter/enhancer mutations for further confirmation. 
D-3-b-iii-2 Functional consequences: Reporter Assays 
Reporter assays that employ either LUC or next generation reporter vectors can provide direct insight to func-
tional relevance of SNPs on target gene. GeneCopoeia offers Gaussia-luciferase (GLuc), eGFP,or mCherry 
based lentiviral or non-viral promoter reporter clones. In addition, we can also purchase Gluc vectors that are 
efficient tools to study transcription regulation. Minimal essential promoter region for each WT target gene will 
be subcloned from germline DNA using TOPO cloning kit (Invitrogen). If patient sample that harbors the muta-
tion is available, we will amplify the corresponding mutant promoter sequence from the genomic DNA of the 
patient. PCR products will be cloned upstream to pGL-3-LUC promoter reporter plasmid or upstream to Gluc 
vectors. For each WT DNA Target gene-promoter plasmid a corresponding MT DNA Target gene-promoter 
plasmid will be generated using site directed mutagenesis utilizing QuikChange Lightning (Agilent). In this way 
we will have 33 WT promoter plasmids and 33 MT promoter plasmids in both PGL-3 LUC and Gluc back-
ground. We will utilize a panel of adherent cell lines. Cells will be seeded in 6 well plates and transfected with 
promoter reporter WT and mutant plasmid constructs. 48 hrs after transfection promoter activity will be meas-
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ured following manufacturer’s instructions. Assay values will be normalized using internal renilla luciferase as 
control. 

Our expectation is that in vitro promoter LUC assays will inform us if a particular mutation had any ef-
fect on transcription. 
D-3-b-iii-3 Functional consequences: CRISPR/CAS system 
We will utilize the newly discovered CRISPR/CAS system \cite{http://www.crispr-cas.org/} to generate endoge-
nous mutations in target genes in a panel of cell lines. This unique system will provide us an opportunity to di-
rectly modulate endogenous genes and minimize artifacts due to the transfection based reporter assays. Using 
CRISPR/CAS mediated genome-engineering method [131] we will directly generate mutations within promot-
er/enhancers of target genes. Theoretically we generate 33 individual SNPs in each cell line and will study 
functional relevance of these changes compared to WT. In case of rare mutations, which occur within both 
promoter and enhancer regions of the same gene, we will develop cell lines having these combinatorial muta-
tions. Mutations within regulatory regions like promoter and enhancer regions might contribute to one or more 
biological effects as described in the schematic. In ad-
dition to loss or gain of cognate coding transcript, it is 
quite conceivable that the SNPs might alter expression 
of non-coding transcript. To capture the complete in-
fluence of rare nominated SNPs at genomic and tran-
scriptomic level we will perform RNA seq. The sche-
matic shown represents representative iterations of 
plausible genomic changes that will be captured in this 
validation.  

Our expectation is that mutant and WT cell 
lines generated using CRISPR/CAS system will be 
monitored for a) phenoytypic changes by confocal mi-
croscopy and actin staining to determine effects of mu-
tation on cytoskeletal reorganization b) Influence on proliferation by MTT and CellTiter-Glo® Luminescent Cell 
Viability Assay (Promega) c) Influence on invasive and migratory potential using, matrigel coated invasion and 
boyden chambers in 24 well format d) senescence by Bgal staining e) apoptosis by tunnel assay 
D-3-b-iii-4 Functional consequences: Effect of the mutation on TF binding  
In vitro EMSAs will confirm specific binding to WT or mutant sequence by a particular transcription factor. 
EMSA (electrophoretic mobility shift assay) is a common technique employed to study protein-DNA interaction.  
We will use the WT and the MT sequences to determine binding to a transcription factor predicted to be pre-
sent at the site of mutation. 

Chromatin immuno-precipitation (ChIP) assays for TFs overlapping the variant will be conducted to de-
termine if the variant can distort TF binding. This would help validate the variants that are predicted to be motif 
breakers. Alternatively for the SNVs predicted to create a new motifs, ChIP experiments will help validate bind-
ing. 

 
Timeline   
 

Year I Aim 1: Development of extended Funseq pipeline for annotating noncoding variants  
Aim 2: Optimization & beginning of variant calling  
Aim 3: development of validation assays  

Year II Aim 2: Germline variants called from ICGC/TCGA data  
Aim 2: Prioritization of most variants for validation experiments  
Aim 3: Begin functional validation experiments 

Year III Aim 2: Finishing prioritization of variants  
Aim 3: Functional annotation of prioritized variants  
Aim 2: Interpreting validation results in light of prioritization 
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