Mosaic *PPM1D* mutations are associated with predisposition to breast and ovarian cancer

Ruark et al., Nature, 2013
Journal Club
Ekta Khurana
8 Jan 2014

Introduction

- They sequenced 507 genes involved in DNA repair in 1,150 samples
- All samples had breast cancer, 69 also had ovarian cancer
- Found that rare protein-truncating variants (PTVs) in *PPM1D* are associated with predisposition to breast cancer and ovarian cancer

Sequencing details

- Illumina HiSeq2000 sequencer that generated a minimum coverage per pool of 480X for at least 90% of the target region
- Sequence variants called using Syzygy (SNVs and indels)
- 34,564 variants identified
- Focused on 1,044 PTVs
- Stratify genes according to the number of different, rare truncating mutations present within the samples
- PPM1D showed the strongest signal
- Confirmed by sanger sequencing of 5 individuals carrying different *PPM1D* mutations – 2 of these also had ovarian cancer

Sequencing details (contd.)

- To explore the role of *PPM1D* further, case control Sanger sequencing in 13,642 individuals – 7,781 with breast and/or ovarian cancer and 5,961 controls
- All 25 PTV mutations occurred in last exon of the gene (Figure 1)

b

C

Unusual allele frequencies (mosaic mutations)

- Mutant allele considerably and consistently lower than wild type allele in lymphocyte DNA
- Chromatograms inconsistent with heterozygous (or homozygous mutations) (Fig. 2a)
- Saliva available for 2 individuals and results consistent
- Deep PCR amplicon sequencing confirmed this (Fig. 2b)
- For 2 samples, the offspring did not carry the *PPM1D* mutation at the inherited *PPM1D* maternal haplotype (Fig. 2c)

a

Sanger sequencing traces showing mutation is lower in genomic DNA (gDNA) than is typical for heterozygous mutations

Deep PCR amplicon sequencing showing BRCA1/2 variants at 50% (open dots) and PPM1D mutation at lower precentage (red dots)

Haplotype analysis in two families. The offspring of PPM1D-mutation carriers have different maternal haplotypes spanning PPM1D, but neither of them carries the mutation.

PPM1D role

 PPM1D down regulates several targets, particularly proteins associated with DNA damage response pathway, including some tumor suppressors such as p53, ATM and CHK2.

PPM1D PTVs are gain-of-function

- Clustering of mutations downstream of the phosphatase catalytic domain (Fig. 1)
- Up regulated *PPM1D* would enhance *p53* suppression
- Confirmed experimentally (Fig. 3) that PPM1D
 PTVs encode hyperactive isoforms

Figure 3 | The effect of mutant *PPM1D* isoforms on p53 activation. p53

Mystery continued (mutations absent in tumor)

- Analyzed 8 tumors from 5 individuals mutations not present in tumor (confirmed present in blood of all 5 individuals)
- Possibilities
 - Mutations needed for oncogenesis but not required or perhaps even detrimental for cancer progression
 - Or may be oncogenesis is driven by mutations in circulating blood cells
 - Or these mutations not directly involved in causing cancer but manifestation of another lesion that causes them and cancer in other cells

Summary

- All results confirm that individuals with these mutations are at increased risk of cancer
- A new class of genetic defect that lies somewhere in between inherited and somatic cancer variants
- Huge clinical implications for biomarker detectable in blood (but not inherited)