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Specific Aims 
Prioritizing noncoding variants is a subject ripe for exploration with the new noncoding annotation from the 
ENCODE project as well as the many new population-scale functional genomics datasets (e.g. Geuvadis RNA-
seq data). Most of the prioritization up until this point has focused on GWAS SNPs.  Here we focus on a 
different type of variant, rare ones not in linkage with other variants, which often have much stronger effects 
than GWAS SNPs. In particular, we look at rare, germline SNPs (and some deletions and insertions) 
associated with cancer, trying to prioritize the non-coding variants most associated with disease.  This work will 
be carried out by a team of a computational biologist and an experimental cancer genomicist that have worked 
together for the past 10 years. 
  
Aim 1. Our first aim is to convert the FunSeq pipeline we previously constructed for prioritizing somatic 
variants into one for rare germline variants and then to significantly extend its functionality.  The FunSeq 
pipeline defines the notion of a mutationally "sensitive" region based on population-genetic analysis.  It also 
prioritizes hubs in the regulatory network and variants that disrupt transcription-factor binding sites.  Here we 
will add new features to FunSeq. (1) We will elaborate its analysis of binding sites, now including gain-of-
function mutations as well as disruptive loss-of-function ones. (2) We will connect all the binding sites, 
including those in distal enhancers, to target genes and then prioritize these sites based on their target's 
network connectivity (e.g. hubbiness or bottleneckness) and differential expression in cancer. (3) In addition to 
binding sites, we will add noncoding RNA into the pipeline and prioritize it similarly -- based on defining 
sensitive elements, structure-disrupting mutations and network centrality. (4) Next, we will prioritize both 
ncRNAs and binding sites based on their allelic activity, how sensitive their activity is to sequence differences, 
between maternal and paternal alleles. (5) Finally we will develop weighting schemes to combine all of the 
features coherently together. 
  
Aim 2. In the second aim we will develop a large pool of rare variants and then run our elaborated FunSeq 
pipeline to prioritize them.  Our large pool of rare variants will result from calling all the available germline 
variants in TCGA and ICGC whole genome sequences (est. to >2000 during the grant).  We will develop a 
practical and efficient implementation of FunSeq to do such a large-scale compute. Our implementation will 
allow us to modularize the complex-to-regenerate data context (the annotation from many sources), separating 
it from the actual production runs on variant sets. We will also develop a special recurrence module (LARVA) 
to look at the degree to which the rare variants tend to recur within the same element (compared to a whole-
genome background model) as well as their tendency to be in the same element that has somatic mutations in 
different individuals. Running the elaborated pipeline on the germline variants will allow us to develop lists of 
prioritized variants for aim 3. 
  
Aim 3. In the final aim we will validate ~100 prioritized variants. We will first validate by association studies. In 
a separate large-scale cohort (of >5000 individuals), we will look at how these rare variants segregate with 
cancerous individuals versus a control. We will also look at how they are associated with downstream 
differential expression in large-scale RNA-seq.  Then we will select a smaller pool of germline variants from 
this first stage of validation (~25) and subject them to detailed functional characterization.  This will involve the 
use of reporter assays (e.g. luciferase) and also the use of the CRISPR/Cas system to generate endogenous 
mutations and determine their effect on biological functions. 
 

B Significance 
In this proposal we aim to prioritize rare, non-coding variants associated with cancer. Here we explain why this 
is significant. This work represents a collaboration between a computational scientist (Mark Gerstein) and an 
experimental cancer genomicist (Mark Rubin).  Gerstein and Rubin have worked together for most of the last 
decade, co-publishing many papers during that period.  
B-1 Much recent progress in annotating the non-coding genome, making it ripe for 
variant annotation  
The Encyclopedia of DNA Elements (ENCODE) Project provides a comprehensive catalogue covering much of 
the entire human genome, which is further utilized to understand the genetic landscape of human diseases 
\cite{22955616}. In addition, the model organism ENCODE (modENCODE) Project presents an extensive 
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genomic annotation of Drosophila \cite{21177974} and C. elegans \cite{21177976} by systematically mapping 
chromatin organization, transcriptome profile and nucleosomal properties across their developmental cycle. In 
addition, the Geuvadis project applies large-scale mRNA and microRNA sequencing to a subset of 1000 
Genome Project datasets to decipher the functional landscape of regulatory variations in the human genome 
\cite{24037378}. Similar efforts have been also directed toward annotating human epigenomic data to 
investigate underlying mechanism of various diseases \cite{23482391}. 
B-2 Non-coding variants, most of which are regulatory, are significant to the study of 
diseases such as cancer  
Noncoding variants are important in cancer. Numerous studies have been conducted on mutations to coding 
portions of the genome and their relation to cancer but relatively little effort has been invested into the 
noncoding portions of the genome. Studies of noncoding cancer disruptions can reveal mutation in regulatory 
features such as promoters, enhancers, and suppressors, leading to the discovery of new targets for potential 
cancer therapies. 99% of somatic mutations are in non-coding regions (funseq ref + other XXX refs). Much of 
the non-coding variation is also contributed by regulatory variants, where cis- and trans-acting variation in the 
human genome can modulate gene expression \cite{19636342}. Many variants implicated in cancer and 
diseases have been found to be related to changes in gene expression 
\cite{23348506,23348503,7663520,19165925,18971308}. As such, there is immense relevance and utility in 
integrating them into an annotation pipeline designed to prioritize disease-causing variants in the human non-
coding genome. 
B-3 Rare variants are significant to study of cancer & disease in general 
Genome-wide association studies (GWAS) have provided only limited insight into causal variants associated 
with specific common diseases \cite{18987709}. Moreover, growing evidence suggests that rare variants in 
particular may act as primary drivers of various human diseases, including cancers \cite{11404818}. For 
instance, bioinformatic and biochemical analyses indicate that rare germline variants in the CHEK2 gene 
\cite{16982735} and PALB2 gene enhance the risk of breast cancer  \cite{22241545}. In addition, a rare variant 
(rs138212197) on the HBOX gene \cite{22236224} and a rare SNP (rs188140481) in the telomeric region of 
8q24 locus were found to be associated with prostate cancer \cite{23104005}. Similarly, a rare germline variant 
(rs78378222) was also implicated in the basal cell carcinoma (BCC) \cite{21946351}. In addition, somatic 
variations among several genes were identified as playing a key role in uterine serous carcinoma (USC) 
\cite{23359684}. 
B-4 Rare variants in cancer patients with similar elements to somatic ones may be 
associated with disease risk 
Prior studies have emphasized primarily on identification of somatic variants compared to germline variants in 
cancer - e.g. the current TCGA callset does not even contain official germline calls. However, rare germline 
and somatic variants have been often observed in the same genetic element across multiple individuals. We 
propose that the reciprocity between germline and somatic variants may increase the risk of cancer in such 
individuals and we plan to identify these elements in dataset taken from large population. There are multiple 
experimental observations that support our proposed hypothesis. Germline and somatic mutations in the 
promoter region of the telomerase reverse transcriptase (TERT) gene have already been observed in the 
cutaneous melanoma \cite{23348503}. Similarly, many somatic and germline mutations in the T53 gene and 
GALNT12 coding exons were implicated in Sonic-Hedgehog medulloblastoma (SHH-MB) tumors 
\cite{22265402} and colon cancers \cite{19617566}, respectively. The interplay between somatic and germline 
variants in hMSH6 and hMSH3 genes has been shown to be associated with gastrointestinal cancer 
\cite{11470537}. A similar association was discovered between two germline SNPs and somatic mutations in 
the EGFR signaling pathway in colorectal cancer \cite{24152305}. 
 
 B-5 Rare variants at promoter and enhancer regions of the genome impose selectivity on transcription 
factor binding- It has been shown that a significant fraction (26%-35%) of inter-individual differences in 
transcription factor binding regions coincides with genetic variation loci and that about 5% of transcripts levels 
are associated with inherited variant states 1. Genotype-transcript associations have been reported at large for 
multiple types of inherited variants 2-6, however experimental evidence of inherited variants allele-specific effect 
on enhancer/promoter activities and transcriptional influence (short and long range) are lacking. In order to 
study the potential role of inherited genetic variants within regulatory elements in the context of hormone 
dependent human, the our laboratory performed an unbiased computational search for AR/ERα bound 
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enhancers elements containing SNPs followed by in vitro characterization of selected variants (Garritano S, 
Demichelis F, unpublished). 
 

C Innovation 
Our method will combine various large-scale genomics data to interpret rare non-coding variants associated 
with increased cancer risk. Large-scale consortia, such as the 1000 Genomes and ENCODE, have produced 
data that can be used to interpret other genomic studies. However, these resources have not been fully 
exploited to understand the functional implications of variants associated with increased cancer risk. The 
specific innovative components of our approach are listed below. 
 
C-1 Identification and interpretation of non-coding rare variants associated with 
increased disease risk 
The GWAS catalog contains many common variants associated with diseases. However, as discussed in 
Section XXX, many rare variants increase cancer susceptibility. Currently, no standard methods exist to 
functionally interpret such variants, especially in non-coding regions. Thus, our approach will be the amongst 
the first for functional interpretation of these variants. 
C-2 Using population-scale genetic variants 
The 1000 Genomes consortium has created a deep catalog of genetic variation across many populations. Our 
approach will use the allele frequencies of variants in ~2,500 individuals from 1000 Genomes data to 
understand which genomic regions are tolerant to common mutations without conferring disease risk. We will 
then use this knowledge to identify rare variants that may be associated with increased disease risk. 
C-3 Using non-coding annotations to understand likely biological role of non-coding 
variants 
The ENCODE consortium has annotated non-coding regions of the genome. One of the major aims of these 
annotations is to help understand genetic variants that cause disease by misregulation of gene expression. 
Our approach will be innovative since it will be amongst the first methods that use ENCODE data to interpret 
variants that increase cancer susceptibility. 
 
C-4 Functional validation of rare variants  
Rare variations in regulatory regions of genome can have a paramount influence on biologic 
processes and might function as primer for recurrent somatic mutations in adjacent genomic regions 
or might contribute to long range changes in chromatin regulation. We will use highly innovative 
approach to validate functional implications of rare variants and effects thereof on biologic properties.  
  

D Approach 
D-1 Approach Aim 1 - Convert the Prototype FunSeq non-coding Somatic Variant 
Pipeline to Prioritize Germline Variants and Elaborate it with Many New Features 
D-1-a Preliminary Results for Aim 1  
D-1-a-i We have extensive experience annotating non-coding regulatory regions of the genome 

We have made extensive contributions in the analysis of the noncoding genome. To more effectively 
utilize the ChIP-seq data for network construction, we developed a method called PeakSeq \cite{19122651} to 
define the binding peaks of TFs. In addition, we have also proposed a probabilistic model, referred to as target 
identification from profiles (TIP), that identifies a given TF’s target genes based on ChIP-seq data 
\cite{22039215}. Furthermore, we have developed machine-learning methods that integrate ChIP-seq, 
chromatin, conservation, sequence and gene annotation data to identify gene-distal regulatory regions (DRM) 
\cite{20126643}. As published in \cite{22950945}, we have validated some of our DRM results by experiments, 
which show a fairly high predictive accuracy. 

Using the machine-learning approaches we developed for identifying individual proximal and distal 
edges together with miRNA target prediction (and other) algorithms, we have completed the highly ambitious 
goal of constructing highly integrated regulatory networks for humans and model organisms based on the 
ENCODE \cite{22955619} and modENCODE datasets \cite{21430782}. In addition to analyzing the topology of 
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gene-regulatory networks, we developed methods to determine the hierarchical organization of regulatory 
networks and applied them to analyze the regulatory networks of a variety of species from yeast to human, 
including networks constructed from ENCODE, modENCODE and MCF7 data 
\cite{22125477,22955619,21177976,20439753}. 

We have developed statistical models of open chromatin associated with gene-expression 
\cite{21926158,22060676}We have also conducted extensive studies of the relationship between ChIP-Seq 
data for localization of transcription factors and histone modifications and gene expression through RNA-Seq 
\cite{22955619,22955978}.   
D-1-a-ii We have extensive experience processing RNA-Seq data and annotating ncRNAs 
We have developed a ncRNA-finder \cite{21177971}. For general RNA-Seq analysis, we have developed 
RSEQtools, a computational package that enables expression quantification of annotated RNAs and 
identification of splice sites and gene models \cite{21134889}. In addition, we have developed IQseq, a 
computationally efficient method to quantify isoforms for alternatively spliced transcripts \cite{22238592}. 
Comparisons between RNA-Seq samples, and to other genome-wide data, are facilitated in part with our 
Aggregation and Correlation Toolbox (ACT), which is a general-purpose tool for comparing genome signal 
tracks \cite{21349863}. We also have extensive experience conducting integrated analyses of large sets of 
RNA-Seq data, such as through the ENCODE project \cite{22955616}. We played a leading role in the analysis 
of model organisms (C.Elegans) and human transcriptome studies within the ENCODE consortium, two of the 
largest RNA-Seq studies to date \cite{22955620;21177976}. 
D-1-a-iii We have extensive experience in Allelic Analysis 

A specific class of regulatory variants is one that is related to allele-specific events. These are cis-
regulatory variants that are associated with allele-specific binding (ASB), particularly of transcription factors or 
DNA-binding proteins and allele-specific expression (ASE). \cite{ 20567245,20846943} We have previously 
developed a tool, AlleleSeq, \cite{21811232} exclusively for the detection of candidate variants associated with 
ASB and ASE events. The tool takes in as input: (1) the variants from an individual and (2) sequence reads 
from the ChIP-seq and RNA-seq experiments performed on the same individual. It first constructs a diploid 
personal genome using the individual’s variants and phases it into its haplotypes. Subsequently, it maps the 
ChIP-seq and RNA-seq reads to this newly constructed personal genome. Detection of variants with ASB and 
ASE behavior will only be apparent at heterozygous loci, i.e. sites with two different alleles. Hence, AlleleSeq 
statistically infers whether there is a differential read count (from ChIP-seq or RNA-seq data) between the two 
alleles at each heterozygous variant. 

We have spearheaded allele-specific analyses in several major consortia publications, including 
ENCODE and the 1000 Genomes Project. \cite{22955620, 22955619, 24092746} We showed that allele-
specific variants are more likely to be rare variants \cite{24092746}. We have also shown that there is a 
substantial number of genomic elements associated with ASB and ASE in the human genome - for example, 
about 18% of genes exhibit ASE. \cite{22955620} We demonstrated that many transcription factors (TFs) act in 
a parent-of-origin-specific manner and those exhibiting such allele-specific binding behavior are more likely to 
have more target genes, i.e. more promiscuous in their activities. By constructing regulatory networks based 
on ASB of TFs and ASE of their target genes, we further revealed substantial coordination between allele-
specific binding and expression. \cite{22955619} These analyses are performed only on a cell line derived from 
an individual of northwestern Caucasian ancestry, GM12878, which has a deeply sequenced diploid genome 
and extensive RNA-seq and ChIP-seq experiments performed on this same cell line at the time of the 
publications. 

Furthermore, we have provided the AlleleSeq tool, lists of detected AS variants from the publications 
and the constructed personal genome and transcriptome of NA12878 on our website 
(alleleseq.gersteinlab.org). Since then, we updated our AlleleSeq tool, and the resource has been used a bit in 
the scientific community, as exemplified by the number of citations and publications using our data as 
references. \cite{23569280,24371156}.  
D-1-a-iv We have extensive experience in relating annotation to variation and based on this 
experience have developed the prototype FunSeq pipeline for Somatic Variants 

We have extensively analyzed patterns of variants in non-coding regions along with their coding targets 
\cite{21596777,22950945,22955619}. We used metrics such as diversity and fraction of rare variants to 
characterize selection pressures of various classes and subclasses of functional annotations \cite{21596777}. 
In addition, we have also defined variants that are disruptive to a TF-binding motif in a regulatory region in 
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ENCODE \cite{22955616}. Further studies by our group showed relations between selection pressures and 
protein network structures, e.g. hubs and periphery \cite{18077332,23505346}. 

In a recent FunSeq study \cite{24092746}, we further extended and integrated these methods to 
develop the notion of sensitive and ultra-sensitive regions, i.e. those annotations under strong selection 
pressure as determined by human population variation, network connectivity, and disruptive non-coding 
mutations. In particular, by contrasting patterns of inherited polymorphisms from 1092 humans with somatic 
variants from cancer patients, we developed a scheme and a software tool (FunSeq) for identification of 
candidate non-coding driver mutations \cite{24092746},. In this study, we integrated large-scale data from 
various resources, including ENCODE and 1000 Genomes Project, with cancer genomics data. Using FunSeq, 
we identified ~100 non-coding candidate drivers in ~90 WGS medulloblastoma, breast and prostate cancer 
samples. It identifies deleterious variants in various non-coding functional elements, including: transcription-
factor (TF) binding sites, their higher resolution motifs, regions of active chromatin corresponding to enhancer 
elements and regions of open chromatin corresponding to DNase I hypersensitivity sites. 
D-1-b Research Plan for Aim 1 
We plan to extend the current FunSeq scheme to be more comprehensive for identification of rare variants 
associated with complex traits. We will do some simple improvements (i.e. incorporating GERP scores and 
ultra-conserved regions for identifying conserved regions between species) while some major changes are 
outlined below. 
D-1-b-i Loss-of-function and gain-of-function for transcription factor binding sites 
Loss-of-function variants are more likely to cause deleterious impact \cite{24092746, 21177971}(Kheradpour, 
et al., 2013). When variants occur in transcription factor binding motifs, the change in position-weight matrix 
(PWM) can be calculated. Variants decreasing the PWM scores could potentially alter the binding strength of 
transcription factors, or even cause loss-of-motif events. Many studies have shown that gain of new binding 
sites caused by somatic mutations can constitute driver events (Horn, et al., 2013; Huang, et al., 2013; Killela, 
et al., 2013; Vinagre, et al., 2013). However, an automated tool to detect such events in whole genomes is not 
available. Such events in germline genomes might also be associated with increased disease risk. We will 
create a gain-of-motif scheme to scan and statistically evaluate (Touzet and Varre, 2007) all possible motifs 
created by variants compared to human reference genome. Gain-of-motif events are identified as those that 
give sequence score with mutated allele in PWMs significantly higher than the background (p < 4e-8). Note 
that in these analyses, determining the ancestral allele of the variant is essential to resolving between loss-of-
function or gain-of-function since the functional impact of the variant reflects the historical event when the 
polymorphism was first introduced in the human population. 
D-1-b-ii Identifying likely target genes of distal regulatory elements and then assessing impact of 
variants on network connectivity 

To interpret likely functional consequences of noncoding variants, we will comprehensively define 
associations between regulatory elements and genes through correlating various epigenetic modifications (e.g. 
H3K27ac and DNA methylation) with expression levels of genes. We will consider the enhancer marks 
H3K4me1 and H3K27ac as two types of activity signals, and DNA methylation as an inactivity signal. We will 
collect all bisulfite sequencing, ChIP-seq and RNA-seq data from the Roadmap Epigenomics project. For each 
regulatory element-candidate target pair, we will compute the correlations of their activity/inactivity and 
expression levels across different tissue types. To incorporate the ever-increasing amounts of genomic data, 
we will offer a flexible framework for users to extend the scheme with their own data. as well as integrate gene 
expression studies in cases vs controls to increase predictive power for identification of functional variants. 

Interpretation of the functional impact of variants can be greatly enhanced if the function of its target 
protein-coding gene is known. We will incorporate prior knowledge of genes, such as known cancer-driver 
genes (Futreal, et al., 2004) and actionable genes (‘druggable’ genes) (Wagle, et al., 2012) into our annotation 
scheme. Differential expression of target genes is indicative of potential effect of noncoding variants. We will 
provide a “differential gene expression analysis” module to detect differentially expressed genes in cancer 
samples from RNA-Seq data. 

We will also use the target genes to connect the non-coding elements into a variety of networks. In 
particular, for all the noncoding variants passing other filters, we will examine the network centralities of the 
associated genes in various networks, since disruption of highly connected genes or their regulatory elements 
is more likely to be deleterious (Khurana, et al., 2013; Kim, et al., 2007). We will make the scheme flexible so it 
can integrate user networks in addition to the pre-collected networks such as protein-protein interaction, 
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regulatory and phosphorylation networks. In addition to hubs, we will also prioritize based on bottlenecks and 
positions at the top of heirarchies [PMID XXX & XXX] 
D-1-b-iii Detailed Variant Prioritization for ncRNAs 
The original FunSeq focused on TF binding sites. Here, we will expand FunSeq to better prioritze variants in 
ncRNAs, in parallel to as we have for binding sites. We will first prioritize ncRNAs based on their within-human 
selection pressure and conservation across multiple species, and identify sensitive regions. For within-human 
selection, we will prioritize annotations showing higher nucleotide diversity and fraction of rare variants 
\cite{21596777}. We will look at GERP scores \cite{20354513} for inter-species conservation. 

We will further divide ncRNA annotations according to their subcategories, expression levels, and 
specificity of expression in cell lines. We will take into account ncRNA subcategories including transfer RNAs, 
miRNAs, 5S ribosomal RNAs, small nucleolar RNAs, small nuclear RNAs, and long non-coding RNA. 
Expression levels of ncRNAs will be obtained from ENCODE 
(http://genome.crg.es/encode_RNA_dashboard/hg19/) where RNAseq was performed on dozens of cell lines. 
We will prioritize ncRNAs that have higher expression levels and those that are ubiquitously expressed in 
multiple cell lines. 

Furthermore, we will annotate genomic variants against secondary structures of ncRNAs. Our 
preliminary data have shown that more rigid structures, such as stem regions, are under stronger selection 
pressure, and that those variants that incur a larger free energy change of the structures tend to be rarer in the 
human population. To better characterize variants in the context of structures, we define variants that disrupt 
secondary structures of ncRNAs as those that no longer form a complementary base-pairing or a wobble base-
pairing when mutated. RNA secondary structures will be predicted using RNAshapes \cite{16357029}. We will 
also quantify the effect a mutation stabilizes or destabilizes the RNA structure by computing the difference in 
folding free energy changes of the RNA before and after the introduction of the mutation. (Again the correct 
identification of the ancestral allele will be important here.) 

Finally, we will explore the relationship of ncRNAs with network connectivity by associating ncRNAs 
with canonical genes through expression levels, sequence complementarity, etc. miRNA, for instance, are 
known to regulate the expression level of its target genes. We will identify coding genes associated with 
miRNAs by correlating their expression levels based on RNAseq data. In addition, we will also search for 
potential miRNA binding target by examining sequence complementarity in 3’UTR regions of coding genes to 
the seed regions, i.e. the first 2-7 bp of the mature miRNAs, using TargetScan \cite{17612493}. We will then 
examine the selection pressure in ncRNAs that are associated with genes in network hubs vs. periphery. 
 D-1-b-iv Variant Prioritization Based on Allelic Activity and Association with EQTLs (AlleleDB module) 
The direct interrogation of allelic imbalance of reads (either ChIP- or RNA-seq) at each heterozygous locus in 
the genome forms the basis of allele-specific (AS) analyses. Even though epigenetic factors such as imprinting 
\cite{18308616}, histone marks \cite{21812971} and random monoallelic expression events \cite{18006746} 
can confound the causality between genotype and the allele-specific behavior, this still allows us to identify 
specifically which variants are associated with allele-specific events. Their regulatory roles assert their 
usefulness in the prioritization of functional variants. However, currently, there is no prioritization scheme that 
integrates both allele-specific binding (ASB) and expression (ASE) regulatory variants. Further, as mentioned, 
most ASB and ASE analyses are focused on a single individual, GM12878. Thus, an enrichment of rare 
variants among AS variants implies that there are many uncovered variants associated with ASB and ASE. A 
direct overlap of variants in a prioritization pipeline will not be applicable here. 

Therefore, to further enable the incorporation of allele-specific variants into the annotation pipeline, we 
define what we term ‘allelic’ genomic elements.. ‘Allelicity’is defined as the degree of how allele-specific a 
particular genomic element or a category of elements is, as opposed to ‘allele-specific’ being relatively more 
defined of having evidence of allelic imbalance. For example, an ‘allelic’ class of transcription factor binding 
site (TFBS) might possess more allele-specific binding (ASB) variants, or a particular class of elements such 
as enhancers and promoters might be more allelic than another. 

To enable us to define an ‘allelic’ element, we plan to extend AS analyses to a diversity of individuals. 
There has been an increasing number of large-scale ChIP-seq and RNA-seq experiments performed on the 
genomes from the 1000 Genomes Project \cite{23128226}, in which we are active members. These datasets 
are found in various publications \cite{20220756, 20220758, 21173033, 24136359, 24136358, 24136355} and 
consortia, notably ENCODE \cite{22955616} and gEUVADIS \cite{24037378}. Our intent is to amass these 
datasets and detect allele-specific variations found in these ~500 individuals via the AlleleSeq tool, based on 
their variants found in the 1000 Genomes Project and corresponding functional genomics assays. The 
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hypothesis is that allelic elements (that exhibit allele-specific behavior) should be similar in most, if not all, 
individuals. So, even though each individual will have a private set of AS variants, more AS variants 
(aggregated from across the individuals) should be found in these allelic elements. Consequently, within the 
context of the prioritization scheme, we can capture and up-weight variants found in a more allelic element, as 
it will more likely have a functional role. 

The aggregation of allele-specific variations in multiple individuals has several advantages. First, it 
endows the statistical power to detect categories of genomic elements such as enhancers and promoters that 
are highly enriched in allele-specific variants. Since many of the rare disease variants are not expected to 
overlap, defining “allele-specific” categories allows us to annotate the possible functionality of the variant within 
the context of a genomic element. Second, it facilitates the survey of the characteristics of allele-specific 
variants in various dimensions: analyses can be variant-based, element-based or based on a class of 
categories; analyses can also be population-based since the ancestries of the various individuals are provided. 
In addition, analyses can be based on transcription-factor-of-origin for ASB-associated variants.Third, the 
availability of trio families will allow the investigation of Mendelian inheritance of allele-specific events, both on 
a per-variation and per-element basis. Fourth, it allows the study of degree of coordination of ASB and ASE, 
whether such is consistent across multiple individuals. 

The results will be housed in a central repository, which we called the AlleleDB, which will provide a 
catalog of allele-specific variations and the elements they are found in. This is especially useful for researchers 
interested in the genetics of gene expression variation in complex diseases, e.g. in genome-wide association 
studies (GWAS) or cancer. For example, loci identified for differential gene expression profiles in a case-
control study can simply be queried in AlleleDB, thereby providing a potential link between a phenotype and a 
genetic variant or region associated with allele-specific behavior, and ultimately a molecular mechanism. 
Additionally, the database can act as a benchmarking reference for allele-specific tool development. For the 
purpose of a prioritization pipeline, the lists of allelic genomic elements can be used in the weighting scheme to 
rank variants according to their existence in allelic elements. 
D-2 Approach Aim 2 - Develop Efficient, Extensible and Easy to Use Pipeline and Run 
on all the Germline Variants in TCGA 
D-2-a Preliminary Results in Pipeline Development & Variant Calling 
The Gerstein lab has much experience in developing tools for bioinformatics research. Our tools take the form 
of open source programs, or databases and web applications which are hosted on Amazon Web Services 
Elastic Compute Cloud (AWS-EC2). For instance, to extract knowledge from high-throughput genomic 
experiments we have developed RSEQtools \cite{21134889} to quantify RNA expression, IQSeq 
\cite{563456243} to identify alternative splicing, Fusion-seq \cite{363456856} to identify fusion transcripts, and 
BreakSeq \cite{234645647} to identify copy-number variation. To provide insights in the field of structural 
genomics we have developed the Database of Macromolecular Movements \cite{23414235} to catalog protein 
dynamics, HingeMaster \cite{4142563436} for normal mode hinge prediction, and RigidFinder \cite{23452653} 
for finding ridge blocks in macromolecules. To use networks for mining functional genomics experiments we 
have developed TopNet-like Yale Network Analyzer (tYNA) \cite{35234263} for managing, comparing and 
mining multiple networks, and YeastHub \cite{124235364} to apply semantic web technologies  to more 
efficiently query life sciences data and meta-data.  

We have much experience in large-scale germline variant calling through being active members of the 
1000 Genomes Consortium, especially the Analysis Group and SV subgroup where majority of the variant 
calling tools are developed \cite{21787423;21293372;20981092;23128226}[[refs XXX & XXX]]. We will use 
GATK for variant calling, which we have already extensively used previouly [[FunSeq ref XXX]]. For rare 
variants, we will define them as those not in 1000 Genomes (phase 1 or pilot) -- the “outersect” with 1000G -- 
as was done previously  [[refs to XXX ENCODE production & Funseq]]. Also, we will consider SVs, which are 
important contributors to human polymorphism. [[SVs are common \cite{17122850} and usually have high 
impact.]] Moreover, many SVs have high functional impacts and are associated with diseases [[inherent 
diseases or disease susceptibility]] \cite{23311762,22621759,8822366}. Characterizing SVs, especially 
accurately locating breakpoints, is a critical yet challenging task. [[We have demonstrated that precise SV 
location information provides insightful understanding of the genome \cite{20037582}.]] We have developed a 
number of novel SV calling algorithms, including BreakSeq [[, to facilitate the detecting of SVs ]] by comparing 
raw reads with a breakpoints library (junction mapping) \cite{20037582}, CNVnator by measuring read depths 
\cite{21324876}, AGE by refined local alignment \cite{21233167}, array-based approaches \cite{19037015} and 
a sequencing-based bayesian model \cite{21034510}. 
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D-2-b Research Plan for Aim 2 
D-2-b-i Do SNP & a limited amount of SV calling for all Germline Variants in TCGA and ICGC 
We currently have access to a combined ~600 whole genome (WG) sequences from the Sanger Institute, and 
from prostate cancer sequencing projects. We anticipate access to another ~2000 WG sequences from the 
International Cancer Genome Consortium (ICGC)\cite{20393554} and The Cancer Genome Atlas (TCGA) 
\cite{24084870}. We plan to call variants from this data for use in our variant pipelines. 

We have already developed a prototype pipeline for calling germline and somatic changes using the 
Broad’s Genome Analysis Toolkit (GATK)\cite{21478889}. Basically, we will run GATK with standard 
parameters and then filter the results. We will use this pipeline to call the variants in the ICGC and TCGA 
cancers. We estimate that this will take 3 months. Additionally, we will employ our CNVnator software on this 
data to identify copy number variants. We will filter against 1000 Genomes Phase 1 to define rare variants. 
We	  plan	  to	  generate	  a	  pool	  of	  rare,	  diseased	  variants	  to	  prioritize	  and	  validate	  the	  disease-‐causing	  
variants.	  We	  are	  considering	  a	  couple	  of	  strategies	  for	  generating	  this	  variant	  pool. We estimate that within 
a single whole genome sequence’s total variant set of roughly 3 million, there will be some 10,000 somatic 
variants, and some 100,000 rare variants. 
D-2-b-ii Analysis of Recurrence of Germline & Somatic Variants (LARVA module)  
We will develop a model to study the recurrence of both germline variants and somatic mutations across 
multiple cancer patients. We will aim to see if there are prioritized germline variants that affect the same 
element as somatic ones (in different individuals). 

On a simple level, recurrence would be a variant at exactly the same position in two individuals. 
However, this is exceedingly unlikely for rare variants \cite{20981092}. Thus, we will consider variant burden 
spread over elements. These elements can be single annotations, such as exons, pseudogenes, noncoding 
RNA, and regulatory features like promoters and enhancers. On a more complex level, we will consider groups 
of genes related through a common pathway, or through a protein interaction subnetwork, as a single element, 
where variants from multiple patients that map anywhere in the gene group represent a recurrence. 

Recurrences in the somatic variants are indicative of the elements that are disrupted in cancer, and are 
important in driving cancer progression. If these elements are also recurrently mutated in the set of rare 
germline variants, then the rare germline variants that overlap these elements may have a role in cancer as 
well. These germline variants may serve as a precursor to the development of cancer characteristics, or 
indicate a predisposition to cancer. 

We’re going to do the recurrence in staged fashion: (1) find somatic recur. (2) find rare germline (3) 
inter-relate these 2 and then also see if there’s common variants . The most deleterious case would be rare 
variants in some indiv. that overlap in the same element with somatic varisants in another indiv & there is no 
common variants in the element at all. 

We have developed a computational framework for identifying these types of recurrent variation, named 
Large-scale Analysis of Recurrent Variants and Annotations (LARVA). Given a set of cancer patient whole 
genome variant calls, and a set of genome annotations, LARVA will pick out the recurrent variants and 
recurrently mutated annotations that result from overlapping the variants with the annotations. 

In the extreme, studying recurrent variation in the context of metabolic and signalling pathways would 
increase our understanding of the systems-level disruption of cancer. This line of thinking can be extended to 
the investigation of subnetworks of interacting proteins: their corresponding genes may contain mutations 
spread across multiple samples in an arrangement that would not implicate individual genes for recurrent 
variation, but would indicate the subnetwork as a whole is recurrently mutated. 

LARVA also has a module for computing the statistical significance of its results by simulating the 
creation of whole genome variant calls with randomized variant positions. These random datasets, which 
otherwise contain the same number of samples and variants, are used to determine the null distribution of 
variants across the annotation set for comparison with the actual variant data. LARVA also features a number 
of utility scripts for postprocessing the results. 

LARVA determines the positions of variants for its random variant datasets using a null mutation model 
designed to reflect the expected differences in the neutral mutation rates of different genome regions. The 
expected neutral mutation rate of the exome is influenced by a number of factors \cite{23770567}. Genes with 
higher expression undergo more transcription-coupled repair, resulting in lower mutation rates. DNA replication 
timing during S phase also influences mutation rates: later replicating genes have fewer free nucleotides to 
draw on, which leads to higher error rates. Finally, the state of a gene’s chromatin can make it more or less 
susceptible to mutation processes. We use these factors in a weight function defined over genes, where higher 
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weight is assigned to genes with higher mutation rates. This weight function is defined as follows for each gene 
g: 

 
 weight(g) = log(1-CDF(g.expression)) + log(CDF(g.replication_timing)) + log(1-CDF(g.chromatin_state)) + 
log(CDF(g.length)) 
Individual variant positions are selected by first choosing a gene according to this weight function, then picking 
a position within that gene with uniform probability.  

LARVA’s whole genome null mutation model uses the genome-wide DNA replication timings, and 
histone marks for H3K4me1 and H3K4me3, which are anti-correlated with SNV density \cite{22820252}. It also 
includes whole genome RNA-seq data from the ENCODE project \cite{22955616} and SNV density data from 
the 1000 Genomes Project \cite{20981092}. The whole genome weight function is defined over discrete 
regions of the genome, rather than genes, and is defined as follows for each region r: 
  
weight(r) = log(CDF(r.replication_timing)) + log(1-CDF(r.H3K4me1)) + log(1-CDF(r.H3K4me3)) + log(1-
CDF(r.expression)) + log(CDF(r.SNV_density)) 
D-2-b-iii We will implement FunSeq on a large scale & then run on all the variants to produce a 
shortlist of prioritized variants 
D-2-b-iii-1 - split it into data context and production runs and then further subsplit into modules 
We will develop a practical implementation of all of the FunSeq modules and then integrate them within 
FunSeq. Some of the modules may be useful as stand alone programs.We’re going to make funseq into a 
useful tool. It’ll downloadable s/f, website, cloud inst. We’re going to try to split it into data context and 
production runs and then further subsplit into modules… For instance, one submodule might be.For instance, 
for AlleleDB, the results will both be integrated into the pipeline and also housed in the AlleleDB database. 
AlleleDB can be navigated via a user-friendly interface for data mining and the casual user. It will also generate 
flat files for their queries and can be subsequently downloaded by the users for further analyses. Hence, 
AlleleDB will serve as a valuable resource for both bioinformatics and non-informatics users who are interested 
in allele-specific variants or regulatory variants in general. 

We will integrate large-scale publicly available data resources to build the data context. It will contain 
polymorphisms from 1000 Genomes project (Genomes Project, et al., 2012), conservation data from (Bejerano, 
et al., 2004; Cooper, et al., 2005), functional genomics data from ENCODE (Maher, 2012) and REMC 
(Bernstein, et al., 2010), gene function (Futreal, et al., 2004; Wagle, et al., 2012) and networks data.  
D-2-b-iii-2 - we’re going to develop a uniform weighting system for all the features and modules 
(including recurrence) 
An integral part of the modular nature of FunSeq, will be the weighted scoring system….We will develop a 
scoring scheme where each continuous feature (e.g. motif-breaking scores) will be normalized on a scale of 0 
to 1 using different methods (e.g. sigmoid transformation). We will also develop a weighted-sum scoring 
scheme, based on the mutation pattern observed in 1000 Genomes polymorphisms. The frequencies of 
observing each feature in polymorphisms data would be calculated. We would then use the entropy measure 
to define the weight, where features with higher entropy would be assigned a lower weight. We will also 
consider the dependency structure of features when calculating the scores. 
D-2-b-iii-3 3 - we’re going to let it rip -- ie we’ll run it and generate shortlist 
Our first possible strategy involves collecting the rare variant set of a single personal genome. We will run 
these variants through our Funseq pipeline, identify the top 20 variants for further investigation, and pass these 
variants along to the lab of Prof. Mark Rubin for validation. Our second possible strategy involves collecting the 
rare variant set of 500 WGS cancer patients, producing a pool of 50 million rare variants, which we would then 
run through the same validation pipeline. However, this variant pool is significantly larger, and therefore would 
be more compute-intensive to analyze. 
D-2-b-iv We will run FunSeq & Larva on all the variants & prioritize them 
Given the 100K germline +10K somatic var per person for 2K indiv We’ll run funseq. to get a prioritized list… 
We’re expecting that the most time consuming step will be the LARVA recurrence analysis against the null 
model … this will take some 50 CPU years. However, we are working on strategies to process this 
computation more efficiently. In addition to algorithmic optimizations, we will make use of cloud computing 
resources and parallelization to speed up LARVA’s computations. 

The prioritization of the variants in aim 2 will generate a number of long list prioritized variants, which 
will fall into three basic groups.  1. A general list of prioritized rare variants based on all of the variants from the 



10 

individuals with cancer.  2. A subset of that list where the prioritized rare variant also occurs within the same 
element as a recurrent somatic variation.  3. A further subset of those variants, which are associated with 
prostate cancer.   
D-3 Approach Aim 3 - Validate the Prioritized Variants 
[(MG-to-Mark-R: Your validation sect. should be 3.5pg)]] 
 
 
D-3-a Preliminary Results Related to Validation  
 
Low-frequency functionally active intronic and intergenic inherited variants predisposing to prostate cancer 
Emerging insights into the genetics of constitutional disease etiology demonstrate that germline polymorphisms 
are associated with a variety of diseases including Alzheimer’s, Parkinson’s, mental retardation, autism, 
schizophrenia 7 and cancer 8,9. Relevant to this proposal our group recently performed a large scale profiling 

study for 2,000 individuals from the Tyrol Early 
Prostate Cancer Detection Program 10,11 cohort. 
This cohort is part of a population-based prostate 
cancer screening program started in 1993 and 
intended to evaluate the utility of intensive PSA 
screening in reducing prostate cancer specific 

death. By genotyping DNA extracted from 
peripheral blood samples, we annotated the 
cohort on more than 5,000 CNVs and 900,000 

SNPs and then queried inherited low frequency deletions variants 12 for their impact in driving prostate cancer 
13 and the more aggressive form of the disease 14. We reported on coding and non-coding functionally active 
risk variants. Among the top hits of the case-control study, an intronic variant in the Alpha-1,3-mannosyl-
glycoprotein 4-beta-N-acetylglucosaminyltransferase C (MGAT4C) demonstrated transcript abundance 
association with genotype states both in prostate and in lymphoblastoid cells, significant increase in cell  
 and migration upon overexpression in benign and cancer prostate cell lines, and significant decrease in 
proliferation upon knock down of MGAT4C expression with siRNA. In addition, we suggested that intergenic 

PCA risk variants affect gene 
regulation through modified 
transcription factor binding activity of 
the Activator Protein 1 (AP-1) 1,5. 
Altogether, we demonstrated that 
inherited variants may directly or 
indirectly modulate the transcriptome 
machinery of known oncogenic 
pathways in prostate cancer 
facilitating carcinogenesis. 
 
The Tyrol Early Prostate Cancer 
Detection Program cohort The Tyrol 
Early Prostate Cancer Detection 
Program cohort is a well 
characterized cohort with centralized 
data collection that ensures proper 
patients’ follow-up annotations and 
availability of well-preserved tissues 
and blood samples. The cohort 
currently includes more than 3,000 
men. As part of our Trento-

Innsbruck-Cornell collaboration, we further studied the genetics of prostate cancer individuals coupling serum 

 
Table XX: SNPs from the human genome that intersect regulatory 
regions bound by AR and/or ERα. 

 
Figure XX. Validation AR-responsiveness and impact of SNPs within identified 
putative enhancer elements. Left panel) Cells cotrasfected with pCMV_EMPTY 
vector and the different pGl4.26 constructs. Only pGl4.26_locus 1_rs12242193_G/A 
reaches as much as 4 fold change. Center panel) Cells cotrasfected with pCMV_AR 
vector and pGl4.26_locus 1_rs12242193_G/A. Results show that the SNP has a role 
in the transcription regulation when cells are supplemented with 100nM DHT 
(p=0.028, determined by Student’s t-test). Right panel) Cells cotrasfected with 
pCMV_AR vector and pGl4.26_locus 2_rs9521825_G/A. When cells are 
supplemented with 100nM DHT the construct reaches as much as 80 fold hinting at 
its strong enhancer role. All experiments were performed from three biological 
replicate, each one consisting of three technical replicates. Error bars indicates 
standard deviation of the mean (SD). 
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AR responsive enhancer elements upon in silico selection

 H3K4me1 
H3K4me1 

+ 
H3K3me3 

H3K27ac H3K9ac DNase FAIRE UNION 

AR 373 (136) 183 (55) 283 (98) 258 (83) 127 (39) 52 (16) 418 (148) 
ER 386 (102) 221 (60) 317 (82) 339 (90) 232 (56) 127 (32) 431 (113) 
AR+ER 17 (7) 9 (4) 14 (7) 17 (7) 6 (2) 3 (1) 22 (8) 
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levels and genomics data. Specifically, we studied the impact of genetic variants relevant to the metabolism of 
Dihydrotestosterone 15 (DHT), the most potent form of androgen, and investigated the incidence of common 
genomic rearrangements with respect to PSA levels and age at diagnosis 16.  
In vitro characterization of SNPs within enhancer elements bound by AR and/or ERα. It has been shown that a 
significant fraction (26%-35%) of inter-individual differences in transcription factor binding regions coincides 
with genetic variation loci and that about 5% of transcripts levels are associated with inherited variant states 1. 

Genotype-transcript associations have been reported at large 
for multiple types of inherited variants 2-6, however 
experimental evidence of inherited variants allele-specific 
effect on enhancer activity are lacking. In order to study the 
potential role of inherited genetic variants within regulatory 
elements in the context of hormone dependent human, the 
Demichelis laboratory performed an unbiased computational 
search for AR/ERα bound enhancers elements containing 
SNPs followed by in vitro characterization of selected 
variants. Table XX shows counts of SNPs from the dbsnp137 
set within AR 17 and/or ERα (D. Chakravarty, submitted) 
binding sites that intersect peak ENCODE data 18 generated 
from 20 cell-lines and ChIP-seq experiments for H3K4m1, 

H3K4me1+H3K4me3, H3K9ac, H3K27ac, 
Dnase-seq and FAIRE-seq. For each marker 
the consensus was generated as the merge of 
all the regions that are present in at least 2 cell 
lines and comply with a set of filters. Figure XX 
shows examples of AR-responsiveness and 
SNPs impact on putative enhancer elements in 
MCF7 cells (Garritano S, Demichelis F, 
unpublished). 

Reporter luciferase assays confirm validity of insilico 
Transcription factor binding sites.  Using and insilico 
approach we determined genome wide distribution of 
ERα in prostate cancer. Intriguingly, we observed a 
robust recruitment to non-coding genome and identified 
several intergenic sites that correlated with high ERα 

occupancy. Analysis of recruitment vs transcript profiles 
confirmed that ERα recruitment was associated with productive transcription of long noncoding RNA. 

Fig 2- Promoter luciferase assay were performed 
using promoter reporter vectors encompassing 
ERα binding regions upstream of NEAT1. 
Luciferase assays confirmed ERα is recruited 
and drives transcriptional output from NEAT1 
promoter 

	  

Fig 3- Promoter luciferase assay confirm NEAT1-ERα axis is 
involved in regulation of PSMA, a key prostate cancer gene. 

	   	  

Fig 4: NEAT1 is a driver of oncogenic cascade 
(a) Cell proliferation assays were performed in VCaP and 
VCaP ERα expressing cells transfected with control or 
NEAT1 siRNA and estrogen treatment (10nM). (b) (left) 
Quantitative bar chart for depicting the relative cell counts 
obtained at the completion of the invasion assay performed in 
VCaP ERα control and NEAT1 shRNA expressing cells, (**) p 
< 0.01. (right) Soft agar assays were performed with VCaP 
control and NEAT1 expressing cells. Quantitative bar-plot 
analysis of stained colonies at 21 days are shown), (***) p < 
0.001.  

A 

B 
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Recruitment of ERα upstream of NEAT1 lncRNA was addressed in greater details. Reporter assays using 
promoter luciferase constructs encompassing upstream regulatory regions of NEAT1 and corresponding to two 
ERα binding sites are described in Fig 2.  
Interestingly, we discovered that NEAT1 is associated with chromatin and regulates transcription of key 
prostate cancer genes. Recruitment of NEAT1 was evaluated by ChIP assay and influence on key target 
genes like PSMA was validated using ChIP and reporter assays (Fig 3). Functional validation of NEAT1 
functions revealed a predominant tumorigenic role as overexpression of NEAT1 was sufficient to augment 
proliferation, invasion and migratory behavior of prostate cancer cells (Fig 4).  
The above results clearly establish our laboratory to validate key insilico findings in search of biologic 
functions. 
 
 
D-3-b Research Plan Related to Validation 
We will take the highest prioritized variants then subject them to validation.  Overall we plan to start the 
validation pipeline with about a hundred variants.  First we would perform an initial screen to determine 
whether any of the variants are associated with cancer in a different cohort of individuals or are associated with 
differential gene expression and RNA-seq.  We will use both the Tyrol cohort (described above) and the Early 
Detection Research Network (EDRN) (http://edrn.nci.nih.gov/) prostate cancer cohort with thousands of 
prostate cancer individuals as well as normal controls.  The prostate cancer cohort include men enrolled at 
three sites as part of the Prostate Cancer Clinical Validation Center that prospectively enroll individuals at risk 
for prostate cancer at Beth Israel Deaconess Medical Center (Harvard), at the University of Michigan 
(Michigan) and at Weill Cornell Medical College (Cornell). Cases are defined as men diagnosed with prostate 
cancer and controls are men who have undergone prostate needle biopsy without any detectable prostate 
cancer and no prior history of prostate cancer.   
This will give rise to a smaller subset of variants, approximately 30, that we will follow up for detailed functional 
screening.  This functional screening will be through various reporter assays (e.g. luciferase) looking for the 
effect on the target gene and also from using the CRISPR/Cas system.  

We plan to integrally feed back some of the results from the validation into refining the pipeline though 
obviously the number of things being validated is not large enough for large-scale statistical parameterization. 
D-3-b-i Genotyping 
We will utilize robust Taqman genotyping assays for screening 100 nominated rare variants in a cohort of 4000 
individuals.  Superior allelic discrimination is achieved in these assays as they utilize TaqMan minor groove-
binding (MGB) probes. This technique generates a low signal to noise ratio and affords a greater flexibility. The 
Taqman probes are functionally tested to first ensure assay amplification and optimization for amplification 
conditions. 
Methods: Genomic DNA will be extracted from the blood cellular-EDTA samples in a high-throughput fashion 
using the QIAamp 96 DNA Blood Kit (Qiagen). All DNAs are evaluated by NanoDrop spectrophotometer 
(NanoDrop, Thermo Scientific) and gel electrophoresis (2% agarose). For TaqMan Real-Time Quantitative 
PCR, each DNA sample is diluted to 10 ng/µl with nuclease-free water. 
 
D-3-b-ii RNA-seq 
SNPs that are recurrent amongst the 100 nominated rare variants will be studied further. RNA seq analysis will 
inform us if SNP (in promoter or enhancer regions) has any direct effect on transcription of target gene. This 
analysis will provide a comprehensive list of SNPs that might correlate with loss or gain of expression. 
Recurrent rare SNPs will be further validated by PCR assays using primers that can amplify the genomic 
region encompassing the SNP. PCR will be followed by direct sequencing of amplicon using an ABI 3730 DNA 
Sequence Analyzer on a subset of tumor-normal pairs to verify the individual promoter/enhancer mutations for 
further confirmation. 
 
D-3-b-iii Evaluation of functional consequence of variants 
D-3-b-iii-(1) Functional consequences: Reporter Assays 
Reporter assays that employ either (LUC or next generation reporter vectors can provide direct insight to 
functional relevance of SNPs on target gene. GeneCopoeia offers Gaussia-luciferase (GLuc), eGFP,or 

Mark Gerstein
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Invivo generation of key SNPs using CRISPR/CAS genome-engineering tools. WT is parental cell line while 
MT1 and MT2 are mutant cell lines harboring specific SNPs. Comparative transcriptomic analysis between three
cell lines representing single or multiple effects of SNPS will be evaluated by RNA-seq (coding and non-coding 
transcriptome)

WT

MT2MT1

RNA-‐seq

mCherry based lentiviral or non-viral promoter reporter clones. In addition we can also purchase Gluc vectors 
that are efficient tools to study transcription regulation. Minimal essential promoter region for each WT target 
gene will be subcloned from germline DNA using TOPO cloning kit (Invitrogen). If patient sample that harbors 
the mutation is available, we will amplify the corresponding mutant promoter sequence from the genomic DNA 
of the patient. PCR products will be cloned upstream to pGL-3-LUC promoter reporter plasmid or upstream to 
Gluc vectors. For each WT DNA Target gene-promoter plasmid a corresponding MT DNA Target gene-
promoter plasmid will be generated using site directed mutagenesis utilizing QuikChange Lightning (Agilent). In 
this way we will have 30 WT promoter plasmids and 30 MT promoter plasmids in both PGL-3 LUC and Gluc 
background. We will utilize a panel of adherent cell lines. Cells will be seeded in 6 well plates and transfected 
with promoter reporter WT and mutant plasmid constructs. 48 hrs after transfection promoter activity will be 
measured following manufacturer’s instructions. Assay values will be normalized using internal renilla 
luciferase as control. 
 
D-3-b-iii-(2) Functional consequences: using CRISPR/CAS system 
We will utilize the newly discovered CRISPR/CAS system (http://www.crispr-cas.org/) to generate endogenous 
mutations in target genes in a panel of cell lines. This unique system will provide us an opportunity to directly 
modulate endogenous genes and minimize artifacts due to the transfection based reporter assays. Using 
CRISPR/CAS mediated genome-engineering method 
(http://zlab.mit.edu/assets/reprints/Wang_H_Cell_2013.pdf) we will directly generate mutations within 
promoter/enhancers of target genes. Theoretically we generate 30 individual SNPs in each cell line and will 
study functional relevance of these changes compared to WT. In case of rare mutations which occur within 
both promoter and enhancer regions of the same gene we will develop cell lines having these combinatorial 
mutations. Mutations within 
regulatory regions like 
promoter and enhancer 
regions might contribute to 
one or more biological 
effects as described in the 
schematic. In addition to 
loss or gain of cognate 
coding transcript, it is quite 
conceivable that the SNPs 
might alter expression of 
non-coding transcript. To 
capture the complete 
influence of rare 
nominated SNPs at 
genomic and 
transcriptomic level we will 
perform RNA seq. The 
schematic shown 
represents representative 
iterations of plausible 
genomic changes that will be captured in this validation.  
 Expectations for the influence of variants on biologic functions 

1.Mutant and WT cell lines generated using CRISPR/CAS system will be monitored for a) phenoytypic 
changes by confocal microscopy and actin staining to determine effects of mutation on cytoskeletal 
reorganization b) Influence on proliferation by MTT and CellTiter-Glo® Luminescent Cell Viability Assay 
(Promega) c) Influence on invasive and migratory potential using, matrigel coated invasion and boyden 
chambers in 24 well format d) senescence by Bgal staining e) apoptosis by tunnel assay  
2.Invitro promoter luc assays will inform us if a particular mutation had any effect on transcription. 
3.Promoter/Enhancer analysis using Transfac and other database will provide a comprehensive view of 
transcription factors that can bind the WT and mutant sequence. 
4.Invitro EMSAs will confirm specific binding to WT or mutant sequence by a particular transcription factor. 

Mark Gerstein
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EMSA(electrophoretic mobility shift assay) is a common technique employed to study protein-DNA interaction.  
We will use the WT and the MT sequences to determine binding to a transcription factor predicted to be 
present at the site of mutation. 
5.Chromatin immune precipitation assays for transcription factors overlapping the SNV will be conducted to 
determine if the SNV can distort TF binding. This would help validate the SNVs that are predicted to be motif 
breakers. Alternatively for the SNVs predicted to create a new motif ChIP experiments will help validate binding. 
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