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Abstract. Gene regulatory factors cooperatively control gene expression. We present a 
novel computational method, Loregic to identify and further characterize cooperativity of 
transcription factors (TFs) using logic circuits based on dynamic expression changes. We 
model the cooperativity of two that co-regulate a target gene as a two-input-one-output 
logic gate, and map it to 16 types of gates with scores. The high score means that two TFs 
highly likely regulate their target gene coordinated in a way of the corresponding logic 
gate. We first apply our method to yeast data, and find that the previously identified high-
ly cooperative TFs have higher scores of cooperative logic gates than non-cooperative 
ones. Moreover, the yeast TFs of cooperative logic gates are found to have significantly 
larger expression fold-changes in TF deletion experiments. We further identify logic op-
erations among human TFs by integrating human ChIP-seq and RNA-seq data from 
ENCODE for two cell lines K562 (erythroleukemic) and GM12878 (lymphoblastoid). 
Finally, we compare network positions of cooperative vs. non-cooperative TFs in gene 
regulatory hierarchical network, and find that the transcription factors between top and 
middle levels work more cooperatively than others. In summary, our method provides a 
valuable integrated framework to reveal complex gene regulator mechanisms, and can be 
also extended to analyze cooperativity among other regulatory elements such as enhancers 
and non-coding RNAs. 



Introduction 

Regulatory factors (RFs) coordinately control gene expression through multiple dimen-
sions including both space and time. For example, multiple transcription factors bind to 
the promoter region of their target gene in a spatial dimension. The gene regulatory net-
work controls gene expression during embryo development in a temporal dimension. 
Moreover, gene expression is regulated in ways at the genomic levels from DNA, tran-
scriptome to proteome. Multi-dimensional gene regulatory factors work cooperatively, 
rather than independently to determine correct gene expressions in various cell types. For 
example, gene expression at the transcription level is controlled by transcription factors 
(TFs), histone modifications, activators, repressors, enhancers, and non-coding RNAs. 
Among them, transcription factors play key roles in transcriptional regulation, and have 
been found by various experimental and computational approaches to normally work to-
gether. Those approaches study collaborations among TFs from various aspects such as 
protein-protein interactions, sequence motifs in TF binding sites in cis-regulatory mod-
ules, co-associations of TFs in binding sites, and co-expressions of TF target genes [1-3]. 
Also, TFs coordinate with other factors such as with microRNAs to co-regulate gene ex-
pression [4, 5]. Although RFs appear to cooperate, previous efforts have not further char-
acterized how RFs co-regulate the target genes. 

Regulatory factors control gene expression in a discrete way in many cases so that log-
ic processing broadly exists in gene regulation [6-13]. As perturbation experiments such 
as TF knock-out provide Boolean regulatory data – the on and off of the TF, the Boolean 
model has been used to capture this logic processing, especially for logic combinatorial 
effects of different regulatory factors. The simple binary operations in the Boolean model 
only need a limit size of data, which is very computationally efficient. However, previous 
studies only focused on a small set of genes, which lack genome-wide identification and 
characterization of logic operations in gene regulation. Moreover, because the hierarchical 
structure in gene regulatory networks provide a system point of view of the cooperativity 
of RFs on genome wide [5, 14-17], it is necessary to better characterize gene regulatory 
cooperativity based on network structure by using proper computational models.   

In this paper, we developed a novel computational method, referred to as Loregic, 
which integrate gene expression and regulatory data, to characterize the cooperativity of 
gene regulatory factors on genome wide using logic-circuit models (Fig. 1). We apply our 
method to transcription factors in yeast and human, and characterize the cooperativity of 
TFs to different target genes, and also across different levels in gene regulatory hierar-
chical network.  
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Materials and Methods 

Overview 

Loregic is a novel computational method based on logic-circuit models to characterize 
the cooperativity of regulatory factors using gene regulation and expression datasets. In 
this paper, we demonstrate Loregic by analyzing transcription factors and their target 
genes of yeast and human. Loregic consists of the following steps: 

Step 1: converting gene expression values to Boolean values based on their dynamic 
changes across conditions; 

Step 2: as for every TF pairs that co-regulate a target gene (TF-TF-target triplet), map-
ping and scoring it using 16 two-input-one-output logic gates base on Boolean values; 

Step 3: testing score significances to remove random effects; 
Step 4: characterize the cooperativity of two TFs in the triplet using the logic gate(s) 

with significantly high score(s). 

Gene expression and transcription factors datasets 

The gene expression datasets in yeast cell cycle have been well studied. Moreover, the 
systematic gene regulatory relationship in yeast was revealed. Thus, for yeast, we use the 
gene expression microarray data of the mitotic cell cycle with 17 time points at 0, 10, 
20,…, 160 minutes in [18], and transcription factors (TFs) with their target genes identi-
fied by ChIP-chip from [19]. After yeast, we further apply Loregic to the human gene 
expression and regulatory data generated by next generation sequencing techniques. For 
human, we use the latest gene expression data (RPKM values in RNA-seq) for two cell 
lines, K562 (10 samples, erythroleukemic) and GM12878 (8 samples, lymphoblastoid), 
and their TFs with target genes found by ChIP-seq in ENCODE [5, 20, 21]. 

Converting gene expression changes over conditions to Boolean values 

Previous Boolean models normally converted the gene expression to 1 or 0 based on 
whether its expression values are greater than a threshold (-> 1) or not (-> 0). This kind of 
conversion methods, however, is difficult to come up with a reasonable threshold, which 
may vary for genes or datasets. Moreover, the gene expression varies dynamically over 
conditions if their regulators express differently. Actually, in design of logic circuits, out-
put signals are normally triggered by dynamic changes of input signals such as Edge-
triggered latches [22]. Thus, we converted gene expressions to Boolean values (1 or 0) as 
follows. Given a gene’s n expression values {ei, i=1,2,…,n}, where ei is its expression 
value at ith condition/time point, this gene’s Boolean values are given by {bi=1 if ei+1>ei, 
and bi=1 if ei+1≤ei, i=1,2,…,n-1} for time-series gene expression data, and {bi,j=1 if ej>ei, 
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and bi,j=1 if ej≤ei, (i,j)∈(1,2,..n)} for non-time-series gene expression data. Our conversion 
method captures dynamic changes of gene expressions between two adjacent time points 
or two condition pairs if no temporal order implied. 

Mapping and scoring a TF-TF-target triplet to 16 logic gates based on their Boolean 
values (Figure 2) 

A logic gate with two-input (X, Y) and one-output (Z) can be determined by a combi-
nation of four (X, Y, Z) binary vectors, (X=0, Y=0, Z), (X=0, Y=1, Z), (X=1, Y=0, Z), 
and (X=1, Y=1, Z) with specific Z values, also known as truth table. With 2^4 different 
combinations of Z values, we can obtain 16 different logic gates in Figure 2. Given a TF-
TF-target triplet with two transcription factors X and Y along with their target gene, Z, we 
model it using a logic gate, and obtain their Boolean values after conversion so that we 
have m (X, Y, Z) binary vectors (m=n-1 for time series data, m=n(n-1)/2 for non-time-
series data). In this step, we need to map these m vectors to 16 logic gates, and find which 
logic gate(s) have most vectors mapped. For example in Fig. 2, suppose a TF-TF-target 
triplet, (X, Y, Z) has m=20 binary vectors. 17 out of 20 vectors highlighted by solids lines 
can be mapped to the AND gate, Z=X*Y; i.e., both X and Y must present to activate Z to 
express. 10 out of 20 vectors highlighted by dash lines can be mapped to the OR gate, 
Z=X+Y; i.e., either X or Y presents to activate Z to express. Thus, we suspect that the 
cooperativity between X and Y in this example may be more likely to be the AND type 
than OR.  

We propose a quantitative method to give scores for 16 logic gates for a triplet of (X, 
Y, Z), and thus, the logic gates with high scores imply the cooperative type of TFs X and 
Y. In Fig. 3, we build a matrix with 4 rows and 2 columns. The matrix elements cover all 
8 different (X, Y, Z) binary vectors. The two elements at the same row share the same X 
and Y values (1st row: X=0, Y=0; 2nd row: X=0, Y=1; 3rd row: X=1, Y=0; 4th row: X=1, 
Y=1), and the four elements at the same column share the same Z value (1st column: Z=0; 
2nd column: Z=1). For the element at ith row, jth column, we count its appearances out of m 
(X, Y, Z) binary vectors, and denote as ci,j. If it happens that both elements at the same 
row miss, i,e., ci,1=ci,2=0, we assume that both elements are possible so that we reinforce 
ci,1=ci,2=1. Any one of 16 logic gates corresponds to a unique pathway from 1st row to 4th 
row that have 4 elements from different rows. For example, the AND gate is marked as 
the solid pathway, and the OR gate is the dashed one in Fig. 3. We assign a weight, w to 
each logic gate, which is product of four elements’ counts on the corresponding pathway, 
which represents the number of realizations of the logic gate in the triplet; e.g., w(AND)= 
c1,1* c2,1* c3,1* c4,2, and w(OR)= c1,1* c2,2* c3,2* c4,2 (See all logic gates in Table 1). The 
score, s to a logic gate is then defined as its weight over the summation of weights of all 
16 logic gates; i.e., s(Gk)= w(Gk)/(w(G1)+ w(G2)+…+ w(G16)) for the kth logic gate, Gk. 
The high scores suggest that the corresponding logic gates appear more frequently than 
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others in the triplet, so that the two TFs are more likely to cooperate in the way that the 
logic gates imply.   

Testing score significances of triplets by replacing their target genes by random 
genes 

Due to the sample size limit in gene expression data, the random effects may bias the 
predicted scores. In order to overcome the random effects, given a triplet of (X, Y, Z), we 
calculate its significances of 16 logic gates’ scores as follows. For the kth logic gate, Gk, 
we replace the target gene, Z by a randomly selected gene, obtain a score for Gk, and after 
repeating N times (e.g., N=1000), define its significance level, p(Gk)=Prob(Gk>N random 
scores). We obtain the score significances for all 16 logic gates. Therefore, the random 
effects may drive the insignificant logic gates.  

Constructing gene regulatory hierarchical network 

The gene regulatory network is structured in a hierarchical way [5, 15, 16]. The tran-
scription factors from different hierarchical levels may play different roles in gene regula-
tion. We are interested to look at the characteristic cooperativity among different hierar-
chical levels. We construct the gene regulatory hierarchical network using the feed-
forward loops, a particular type of TF-TF-target triplets in which the first transcription 
factor X also regulates the second transcription factor Y. The transcription factors from 
FFLs are assigned to three levels (top, middle, bottom) in hierarchy using the simulated 
annealing method in [5]. We characterized the cooperativities for all FFLs in the network 
using Loregic, and analyzed the network positions of different cooperative types (e.g., 
AND vs. OR FFLs) among hierarchical levels. We summarized the numbers of FFLs and 
TFs at different hierarchical levels in Table 2. 

Results 

Previously known cooperative TFs are predicted with higher scores on cooperative 
logic gates 

There were 31 TF pairs that were identified to significantly cooperate in gene regula-
tion [1] in yeast’s cell cycle. The cell cycle expressions of the target genes regulated by 
both TFs of a cooperative pairs were found to correlate significantly higher than ones 
regulated by one of two TFs only. We predicted the logic relationships of those coopera-
tive TF pairs using Loregic, and identified the logic gate with the highest score (s>0.1, 
p<0.1) for each TF pair. Out of those highest-score logic gates, we found that the coopera-
tive logic gates are significantly more than non-cooperative ones (t-test p-value<0.05) 
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(Fig. 4). Moreover, among cooperative logic gates, we found that the AND gates were the 
most abundant, in which that both TFs have to be present to activate their target gene to 
express. But, we also found that the highest-score logic gates varied in different target 
genes even for a same cooperative TF pair. Therefore, our algorithm further characterized 
the target-gene-specific cooperativity of TFs, rather than the overall cooperativity meas-
urement based on correlations among their target genes in [1]. 

Cooperative relationships of TFs are consistent to target genes 

The cooperative TFs identified by the expression correlations of their target genes in 
[1] were not able to give the cooperativity measurement for individual target genes. Since 
Loregic scores the cooperativity of individual TF-TF-target triplet to 16 logic gates, it can 
further classify the cooperativity of TFs according to their different target genes, and iden-
tify target-gene-specific cooperativity. For example in Fig. 5, we show that two coopera-
tive TFs, SWI4 and SWI6, who forms a complex to control the transition from G1 to S 
phases in cell cycle [23], have high scores (darker colors) on AND gate to most of their 
target genes, though some targets genes have high scores on other types of logic gates. 

Deleting TFs with cooperative logic gates gives rise to significantly higher fold 
changes of target gene expression 

The TF knockout experiments gave us the fold changes of gene expression after delet-
ing single TF in yeast [24, 25]. If a target gene is regulated by two cooperative TFs such 
as AND relationship, deletion of either TF may corrupt the cooperativity so that eventual-
ly it impacts gene expression. As contrast, the target genes regulated by non-cooperative 
TFs such as OR relationship may not be affected by deleting one of TFs since either TF 
can initiate their expressions. We compared the expression fold changes of target genes of 
cooperative TFs with ones of non-cooperative TFs. We identified two groups of TFs from 
the AND and OR logic gates with significant scores (s>0.1, p<0.05). We found that delet-
ing AND TFs gave rise to significantly larger fold changes of target gene expressions than 
deleting OR TFs (t-test p-value<0.05) in Fig. 6. Thus, this reveals that any one of coopera-
tive TFs identified by Loregic is essential to maintain their target gene expressions, and a 
lack of one of them will potentially significantly change target gene expressions. For 
those non-cooperative TFs, their target gene expression may not be changed much if one 
of TFs absent.   

Cooperativity of TFs in human K562 and GM12878 cell lines 

We characterized cooperativities of TFs in human K562 and GM12878 cell lines, and 
identify the logic gates with highest scores (s>0.1) for TF-TF-target triplets (90256 in 
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K562, 14480 in GM12878). We found that four types of logic gates, AND, OR, Z=X, and 
Z=Y have most high scores, as Fig. 7 indicates that they take ~85% in K562 and ~78% in 
GM12878.   

Network positions of cooperative vs. non-cooperative TFs on gene regulatory 
hierarchical network 

Hierarchical structure has been found in gene regulatory network. The transcription 
factors tend to regulate the genome at different hierarchical levels, and the ones at middle 
levels are found to play key regulatory roles [5, 15, 16]. We are interested to characterize 
the cooperativities among TFs at different levels, and identify network positional prefer-
ences for cooperative and non-cooperative TFs. Here, we constructed the hierarchical 
network using feed-forward loops (FFLs) [11], and assigned TFs to three hierarchical 
levels, top, middle and bottom [5]. For each logic gate, we identified the network edges 
associated with the FFLs that have significant scores (s>0.1, p<0.05) on it. For yeast (Fig. 
8A), we found that 24.7% of AND edges were between top and middle levels, but none of 
OR edges were found. For two human cell lines (Figs. 8B and 8C) between top and mid-
dle levels, fractions of AND edges were also more than OR edges (K562: 35.5% vs. 
22.5%, GM12878: 66.7% vs. 33.3%). The OR edges involving TFs at the bottom levels 
including both top-bottom and middle-bottom, however, took more fractions than the 
AND ones (yeast: 100% vs. 75.4%, human K562: 77.5% vs. 64.5%, human GM12878: 
63.6% vs. 33.3%). Those observations suggest that the TFs between top and middle levels 
work more cooperatively than the ones between top/middle and bottom levels. Because 
the TFs at top and middle levels play core roles in gene regulatory system, they must work 
more coordinately to have genome run normally.  

Discussion 

Loregic is a computational approach to characterize the gene regulatory cooperativity 
using logic circuits model by integrating the gene expression and regulatory information. 
In this paper, we mainly focus on the cooperativity of transcription factors, and their net-
work characteristics in gene regulatory network. We can also extend Loregic in future to 
study the regulatory coordination among other regulatory factors (RFs) such as enhancers, 
non-coding RNAs including miRNAs and pseudogenes since next generation sequencing 
technologies provide us more fruitful and accurate expression (e.g., RNA-seq, small 
RNA-seq), and regulation (e.g., Chip-seq, DNase-seq) datasets for them. 

We demonstrated Loregic using TF-TF-target triplets that includes two transcription 
factors and one target, but we should point out that Loregic could be also used to analyze 
the regulatory modules with multiple TF/RFs and multiple target genes as long as enough 
expression data support. For those regulatory modules with N1 TFs and N2 targets, we only 
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need to expand the scoring matrix to the one with 2N1 rows and 2N2 columns, fill the ma-
trix elements with all (N1+ N2)-dimension binary vectors, and calculate the scores of 
pathways associated with corresponding logic gates with N1-input and N2-output. 

We converted the gene expression to Boolean values by comparing expression numeri-
cal values of every two samples. For noisy expression data like microarrays in yeast, we 
may still obtain Boolean values even for noisy values, thus our step of testing significance 
is also designed to remove this effect.  If we have enough size of data samples in future, in 
order to obtain more robust Boolean values, we can use Boolean values only coming from 
fold-changes between two samples greater than certain thresholds.  

We also found that some triplets didn’t have significant high scores for any logic gates, 
which may be caused by that the regulatory cooperativity for their TFs and targets might 
be random processes or driven by other stochastic biological activities, rather than deter-
ministic ones.  

To our knowledge, Loregic is the first approach to systematically characterize the regu-
latory cooperativity using logic-circuits model.  It will have a widely variety of applica-
tions to study the regulatory mechanisms of increasing genomic elements such as ones 
annotated in ENCODE, and help to build the gene regulatory panoramagram. 
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