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Abstract

We present LARVA ge-scale Analysis of Recurrent Variants and Annotations),

Jmutations,may correspond to important sites of disruptions for diseases like

cancer, and therefore may be crucial for understanding how such diseases
progress, and how they may be treated. LARVA may be applied to both somatic
variants and rare germline variants, and the presence of both recurrent somatic
and germline variants in the same annotation could implicate previously
unknown disease-causing variants. In this paper, we explain the concepts of
LARVA'’s framework, and how it functions to identify recurrent mutations and
recurrently mutated genome annotations. We illustrate how LARVA may be used
to study recurrent mutation patterns in both coding regions and noncoding
regulatory elements, and sets of pathways and interaction networks. For the

purposes of determining if observed recurrent variation is statistically
significant, we introduce a Statistical Assessment Module (L. to
Aassess the statistical significance relative to recurrent variation ed under

neutral mutation processes. Starting with an existing exome model of factors
that influence the neutral mutation rate, we have developed our,model to
simulate expected variation across the entire human genome, Our model makes
use of whole genome mutation rate influencers such as DNA replication timing,
histone marks, whole genome RNA-seq signals, and SNV density. Our system also
provides an Analysis Integration Module (LARVA-AIM) for the integration of
multiple LARVA analyses, for deeper understanding of disease variation. We
have applied LARVA’s methods to sets of prostate cancer WGS data to
demonstrate its usefulness.

Introduction

Numerous cancer patients have been genome sequenced (Barbieri 2012, Baca
2013, Grasso 2012), opening up opportunities to identify the underlying genetic
causes for cancer phenotypes and develop more effective therapies targeted at
specific molecular subtypes of cancer. Most of these studies have been so far
focused on identifying mutations and defects in the protein-coding regions, or
exomes, of cancerous genomes (Baca 2013). However, this approach ignores
investigation of potential variation in important noncoding features of the
genome.

There are many noncoding genome regions that influence gene transcription.
Such features include pseudogenes, some of which are transcribed and can be
incorporated into functional transcripts (Pei 2012). There are also various

classes of noncoding RNA, such as microRNA (miRNA), small interfering RNA
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(siRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) that
bind and regulate transcripts (Esteller 2011). Furthermore, the binding sites of
transcription factors might be affected by cancer, which are important to gene
expression levels. Finally, various protein factors can bind to stretches of
genomic DNA called enhancers that promote gene transcription.

Two computational systems, HaploReg (Ward 2011) and RegulomeDB (Boyle
2012), were previously developed to determine the effect of GWAS variants on
noncoding annotations. HaploReg intersects the variants of WGS samples with a
fixed series of noncoding regulatory elements in the human genome, determines
the variants’ effects on noncoding regulatory motifs, and indicates the chromatin
state of the genomic region to which each variant maps. RegulomeDB further
develops this idea by expanding the range of genome annotations used to include
experimentally verified regulatory regions, ChIP-seq-derived transcription factor
(TF) binding sites, eQTL, and DNase footprinting.

Also important to understanding disruptive cancer mutations is the placement of
cancer-mutated genes into their systems-level contexts. Identifying the pathways
and interactions in which the products of mutated genes participate is often
crucial to seeing precisely how cellular functions are being disrupted by cancer
(Vandin 2011). Protein interaction networks have also proven useful for
characterizing cancer disruption: disrupted subnetworks of interacting proteins
have been used to more accurately classify subtypes of breast cancer in Chuang
etal (2007)

Recent computational systems that focus on the cancer pathway disruption
include cBio (Cerami 2012) and Multi-Dendrix (Leiserson 2013). cBio starts with
variant datasets, and a database of genes and their pathway membership
information. The cBio system then identifies those pathways mutated with high
coverage and high mutual exclusivity. High coverage refers to the presence of
mutations in a large proportion of samples, and high exclusivity means that
many of the highly damaging, driver mutations appear in mutually exclusive
samples, owing to the sufficiency of mutating just one part of a pathway to nullify
its function. Multi-Dendrix extends these ideas by introducing new algorithms to
find arbitrary sets of genes that exhibit high coverage and mutual exclusivity of
variants, rather than being limited to previously established pathways. GEMINI
(Paila 2013) is another general system that manages variant call sets and
genome annotation sets through an SQL database, and allows users to formulate
their own SQL-based queries over the stored data, allowing a wide range of
flexibility for exploring variant data.

Here, we present a computational system that supports the study of cohorts of
whole genome sequenced (WGS) disease patient samples. The primary function
of LARVA (Large-scale Analysis of Recurrent Variants and Annotations) is to
identify recurrent patterns of disease mutation in various genome annotations
using WGS data from multiple disease patients, and compute the statistical
significance of these findings. Our framework makes use of a relational database
system approach to organize, maintain, and operate on genome variant and
annotation data in a systematic way. LARVA allows users to investigate recurrent



variation patterns that the stored disease variant data present in the stored
genome annotation data by casting the relevant questions as SQL queries. This
framework accommodates a wide range of query types, spanning any genetic
disease, and any set of genome annotations one wishes to study.

On a simple level, a mutation recurrence would be a variant at exactly the same
position in two individuals. However, this is exceedingly unlikely for rare
variants [PMID: 20981092]. Thus, we will consider mutational burden spread
over elements. These elements can be single annotations, such as exons,
pseudogenes, noncoding RNA, and regulatory features like promoters and
enhancers. On a more complex level, we will consider groups of genes related
through a common pathway, or through a protein interaction subnetwork, as a
single element, where variants from multiple patients that map anywhere in
gene group represent a recurrence.

for connections between the two sets of recurrent variants: elements that
contain recurrent somatic variants and recurrent rare germline variants imply
that the elements’ overlapping variants may be functionally connected. The
absence of common variants from these elements would serve as further
evidence for a functional connection to genetic disease.

In addition to recurrent variant identification, LARVA offers two additional
modules. Firstly, LARVA includes a Statistical Assessment Module, LARVA-SAM,
that uses a model of neutral genome evolution to determine the statistical
significance of the recurrent mutation patterns that LARVA identifies. Building
on a previously developed null model for exomes (Lawrence 2013), we introduce
a null model for whole genomes. Secondly, LARVA’s Analysis Integration Module
(LARVA-AIM) enables further exploration of a LARVA systems-level analysis.
When LARVA is used to study recurrent variation in pathways and networks,
LARVA-AIM may be employed to place recurrently mutated genes in their
pathway and network context. Recurrent gene and pathway/network data are
combined to allow one to observe the number of pathways in which a
recurrently mutated gene participates, or the number of network neighbors it
has.

We have applied LARVA to cancer data to elucidate patterns of recurrent
prostate cancer mutations in important noncoding regulatory features of the
genome. LARVA has also been used to explore recurrent mutations on a pathway
and interaction network level in this data. The following sections describe
LARVA'’s concepts, and their applications to the study of genetic disease.

LARVA Concepts
One of LARVA’s important design features is its use of a relatiena) database to

manage its data and express recurrent variant exploration as database queries.
We have implemented this using SQLite. The core module provides analysis of
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disease variant calls for patterns of recurrent variation in genome annotations.
We shall call this module LARVA-Core. This module has two primary inputs:
variant files and annotation files.

The variant files, or vfiles, are derived from genetic disease patients whose
genomes have been sequenced, and for which single nucleotide variants (SNVs)
have been called by comparing the patients’ genomes to a reference genome.
Each file corresponds to a single patient’s variant calls.

The annotation files, or afiles, are derived from a number of genome annotation
sources. Afiles we have collected for LARVA analysis include protein-coding exon,
pseudogene, and noncoding RNA data from the GENCODE project (Harrow 2012).
We also studied transcription factor binding sites derived from a number of
sources (Rozowsky 2009, Kheradpour 2012). Finally, we sought to understand
cancer variation on a system-wide level by studying recurrent variation in
metabolic pathways and protein interaction networks (Kanehisa 2000, Kanehisa
2011, Prasad 2009).

| Measures of Mutation
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of recurrent mutation. These include:

* Recurrent variants: Overlapping SNVs from multiple samples that fall into
at least one afile annotation (Fig. 1a). Such mutations may correspond to a
critical component of the annotation’s function that is important for
tumor suppression. These mutations may also be used to classify the
subtype and severity of cancer patients (Vandin 2011).

* Recurrently mutated annotations: Annotations that contain SNVs from
multiple samples that do not necessarily overlap (Fig. 1b). Such
annotations may be functionally disruptable in multiple places, and
therefore, multiple patients with the same functional disruption may
carry SNVs in different places of the same gene.

LARVA-Core’s findings are presented using three Measures of Mutation. These
are computed for each annotation, and each dfile annotation set. They are:

- Number of samples mutated: The number of samples represented by SNVs
that fall anywhere in the given annotation, or afile annotation set.

- Number of annotations recurrently mutated: The number of annotations in
an afile annotation set that are mutated in at least two samples. Not
applicable to individual annotations.

- Number of recurrent variants: The number of SNVs from multiple samples
that overlap exactly, and fall anywhere in the given annotation, or dafile
annotation set.

LARVA Statistical Assessment Module (LARVA-SAM)
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[t is important to determine whether the recurrently mutated annotations and
recurrent variants of LARVA-Core are statistically significant, in that these
patterns are not the result of random, neutral mutation processes. To that end,
LARVA has a module for randomly generating sets of cancer variants similar to
the actual datasets, and running LARVA-Core on these random datasets to gather
information on recurrently mutated annotations and variants that would occur
by chance. Hence, a random distribution of the Measures of Mutation is
generated, and compared to the actual, observed Measures of Mutation to
determine whether the mutation patterns of the actual datasets are statistically
significant.

Random variant generation for exome datasets W \4/ % (
ra

When LARVA-SAM is used on exome variant datasets, the dom variant
datasets are derived by simulating the distribution of variants expected for a
neutrally evolving exome. Our neutral mutation “null model” is defined as a
weight distribution over all genes, where the weight is based on a number of
factors that influence their neutral mutation rate (Lawrence 2013). These factors
include:

- Expression level: More highly expressed genes have higher levels of
transcription-coupled repair.

- DNA replication time: Early in the DNA replication process, there are more
free nucleotides available for DNA repair. As the process continues, this
nucleotide pool is depleted, and portions of the genome that are
replicated at a late phase are more likely to pick up mutations (Chen
2010).

- Chromatin state: Genome regions with open chromatin are less likely to
be mutated than regions with closed chromatin (Schuster-Béckler 2012).

- Length: Longer genes will pick up more variants by chance than shorter
genes.

These factors are used to produce a weight for a gene g using the following
function:

weight(g)
= w,log (1 - CDF(expression(g))) + w,log (CDF(reptiming(g)))

+ w;log(1 — CDF (chromatin_state(g))) + w,log (CDF(length(g)))

where

* expression(g) is the expression level of gene g, according to the Cancer
Cell Line Encyclopedia’s (CCLE) RNA-Seq data (Barretina 2012). This is an
average of the expression across all CCLE cancers.

* reptiming(g) is the replication timing of gene g, according to Chen et al.
(2010).

* chromatin_state(g) is a measure of how open or closed the chromatin is at
gene g, according to Lieberman-Aiden et al. (2009).

* length(g) is the length of gene g.
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Once the gene to place the random variant in has been chosen, the gene’s exon
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Random variant generation for whole genome datasets

When LARVA-SAM is used on whole genome variant datasets, LARVA’s whole
genome neutral mutation null model is used. Our whole genome weight function
assigns weight to discrete partitions of the entire genome, rather than genes. The
factors used in our whole genome model include:
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weight(r)
= w,log (CDF(reptiming(r))) + w,log (1 - CDF(H3K4mel(r)))
+ wslog (1 — CDF(H3K4me3(r))) + w,log (1 — CDF(expression(r)))
+ wslog (CDF(SNV_d.e‘nsity(r)))v

where

* risa100,000-bp-long block of the human genome (hg19 build).

* reptiming(r) is the replication timing of region r, according to Chen et al.
(2010)

*  H3K4mel(r) is the level of histone H3K4 mono-methylation of region r,
according to ENCODE GM12878 Peak-seq experiments (Dunham 2012),

* H3K4me3(r) is the level of histone H3K4 tri-methylation of region r,
according to ENCODE GM12878 Peak-seq experiments (Dunham 2012).,

* expression(r) is the expression level of region r, according to the
ENCODE’s GM12878 RNA-seq track (Dunham 2012).

* SNV _density(r) is the number of SNVs in region r, according to the 1000
Genomes Project (Durbin 2010).

e w1 .. wsare the weights assigned to each variable to represent differing
contribution levels. These can be adjusted to fit the model to the observed
contributions of each factor.

Additional whole genome signals that influence genome-wide mutation rates will
be iteratively incorporated in followup work. As with the exome null model, the
exact variant position is determined by randomly choosing a position in the
selected region with uniform probability. This whole genome method of random
variant placement represents an extension of Lawrence et al.’s (2013) methods
to account for the systemic biases in effect on the human genome’s neutral
mutation rate.

LARVA-Core runs and Normal distribution fitting

After the random variant generation step, LARVA-SAM will have generated

nrand random variant datasets. These datasets are used as input for LARVA-Core,
generating nrand datapoints approximating the expected distribution of each
Measure of Mutation. These datapoints are fit to a Normal distribution, and
compared to the corresponding Measure of Mutation from the actual vfile data to
produce a p-value, for significance testing.

LARVA Analysis Integration Module (LARVA-AIM)

LARVA-Core may be used for numerous types of analyses, the results of which
can be integrated for better understanding of disease variation. To this end, we
have developed the LARVA Analysis Integration Module (LARVA-AIM), designed
to facilitate the integration of multiple analyses after significance testing. Our
collaborating cancer researchers find this module’s features very helpful.
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To assist in the systems-level analysis of disease variant files, LARVA-AIM may
be used to integrate a LARVA-Core gene analysis and a LARVA-Core pathway
analysis. LARVA-AIM can take a list of recurrently mutated genes and place them
in the pathways in which those genes participate. Additionally, LARVA-AIM can
be used to understand recurrently mutated genes in the context of their protein
products’ interactions. The AIM module can bring recurrently mutated gene
analysis data and protein interaction network data together, so users can see the
number of interaction partners for each recurrently mutated gene. This enables
the identification of potential disease-related network hubs.

Example Workflows of applications using LARVA

By plugging a genetic disease cohort’s variant calls into LARVA'’s vfiles parameter,
and using different settings of LARVA's afiles parameter, one may use LARVA to
study a cancer cohort’s patterns of recurrent variation over many genome
annytations of interest. We illustrate this flexibility with the following examples.

pathways. Here, one may define an afile for each pathway
in the KEGG database (Kanehisa 2000, 2011), each containing the
pathway members. Under this arrangement, one may study a genetic
disease cohort’s recurrently mutated pathways using LARVA’s annotation
set Measures of Mutation. Once pathways worth closer investigation are
identified at this higher level of analysis, one may drill down into the
annotation Measures of Mutation for those pathways to investigate
further.

3) dfiles = Transcription factor binding peaks. Using data on the binding
sites of transcription factors from ENCODE Peak-seq experiments
(Rozowsky 2009), one may use LARVA to identify recurrent mutations
that may lead to expression dysregulation in a genetic disease cohort. By
defining an dfile for each transcription factor, each containing that factor’s
sites, one may identify both factors and sites that should be studied
further.

LARVA Applications to Cancer

We have applied LARVA to studying recurrent variants and recurrently
annotations in a number of prostate cancer datasets (Berger 2012,
Weischenfeldt 2013, Barbieri 2012, Baca 2013). Our findings have pfoduced new
insights into potential noncoding disruptions.i cancers.

LARVA'’s source code is available to download through Github, at
steinlab/larvay, and is also available as a web server ht
ach has their Advantages and target audiences.

<larva.gersteinlab.org>
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The Github version is best suited for a large analysis on dedicated servers. The
target audience for this version is experienced bioinformaticians knowledgeable
in installing the required dependencies, and with access to large servers,
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LARVA is designed to be used to explore a broad range of genome annotations to
uncover the ones that are mutated across many samples, making it possible to
predict putative drivers of genetic disease, and prioritize these predicted drivers
for more rigorous downstream analysis. This may lead to faster identification of
important targets that may be used to suppress disease in therapies and drugs.

Using a relational database design, LARVA is easily adaptable to many different
types of analyses. It may be used to study recurrent mutation patterns across
genes, pseudogenes, noncoding RNA, and various noncoding regulatory elements.
This ability to study noncoding mutation serves as an important supplement to
the many exome-focused studies that have been conducted so far on genetic
diseases, such as cancer. LARVA may also be used to study genetic diseases at a
systems level, with analyses on pathways and interaction networks possible.

Furthermore, we have developed LARVA-SAM, a module designed to compare
observed variant file recurrent mutation patterns to a simulated distribution of
variants generated from a neutrally evolving genome model. This comparison
allows users to identify genome annotations that are mutated in a higher number
of samples, or have a higher number of recurrent variants, than expected under
neutral evolution, indicating possible cancer involvement. Finally, we have
created LARVA-AIM, a module with the purpose of bringing together recurrent
mutation data from multiple types of analyses to shed deeper understanding on
features with probable connections to cancer disruption processes.

LARVA Computational Efficiency and Parallelization

Due to the large number of simulated LARVA-Core runs that LARVA-SAM
executes, LARVA-SAM is very compute intensive. Therefore, we have developed a
parallel version of LARVA-SAM that leverages multi-core CPUs. Users may
specify the number of CPU cores on their machines that LARVA should use.
LARVA-SAM will automatically split its LARVA-Core runs across the specified



number of cores evenly, and process each batch in parallel. This allows the
system to run as efficiently as the available hardware allows. We have shown
that this parallel implementation greatly speeds up the running time for a large
number of LARVA-Core runs.

Future Work

In addition to recurrence information, functional annotation is important to
assessing a variant’s likelihood of disease association (Khurana 2013). In the
future, we plan to add functional annotation capabilities to LARVA, enabling the
filtering of results for recurrent variants and recurrently mutated annotations
more relevant to diseases. We will also continue to improve LARVA’s algorithms
and LARVA’s user interface. As the amount of genetic data increases, it will be
important to further optimize LARVA’s computational efficiency, and therefore
we are investigating these issues for future iterations of LARVA. Also, we will
continue to gain insights by applying LARVA to additional cancer types and
subtypes. In the long term, we envision LARVA becoming increasingly useful for
elucidating important insights and understanding about all types of genetic
diseases.
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