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1. Overview 
FunSVPT is an integrative tool to first build an organized data context from various 
resources and then prioritize somatic variants from cancer whole-genome sequencing. 
Supplementary Table 1 shows the comparison of different tools.  
 
 
 Haploreg  RegulomeDB ANNOVAR GEMINI FunciSNP VEP FunSVPT 

Rare/novel variants   ✓ ✓ ✓  ✓ ✓ 
Conservation ✓  ✓   ✓ ✓ 
Motif gain ✓      ✓ 
Motif breaking ✓ ✓     ✓ 
Functional 
annotations 

✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Non-coding 
association to genes  

      ✓ 

Network analysis       ✓ 
Scoring scheme  ✓ ✓    ✓ 
Recurrent analysis       ✓ 
Gene prioritization       ✓ 
Differential gene 
expression analysis 

      ✓ 

Web server ✓ ✓    ✓ ✓ 

 
Supplementary Table 1. Comparison of various tools. 

 
 
2. Material and Methods 

Variants in functional annotations and conserved regions 
User-input variants are first filtered against polymorphisms based on user-defined MAF 
(minor allele frequency) threshold. In current data context, polymorphisms are from 1000 
Genomes Phase1 data and all coordinates are based on hg19. Currently, only SNVs will 
be analyzed (indels and SVs will be filtered out).  
 
Whole genome GERP scores (Cooper, et al., 2005), ultra-conserved regions (Bejerano, et 
al., 2004) and sensitive/ultra-sensitive regions (Khurana, et al., 2013) are collected to 
examine whether a variant occurred in conserved regions. Each variant will be annotated 
with GERP score, in ultra-conserved or sensitive/ultra-sensitive regions.  We also provide 
the scripts for users to define novel sensitive/ultra-sensitive regions (see Building data 
context). 
 
We compiled transcription factor binding, DNase1 hypersensitive sites (Thurman, et al., 
2012) and enhancer data (Ernst and Kellis, 2012; Hoffman, et al., 2012; Hoffman, et al., 
2013; Yip, et al., 2012) from recent ENCODE release (Consortium, et al., 2012) together 
with GENCODE annotations to define functional regions. Hot regions (highly occupied 
by transcription factors) are obtained from (Yip, et al., 2012). Variants are intersected and 
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annotated with these functional annotations.  
 

Association between regulatory elements and genes  
Associating regulatory elements to genes provides a rich resource to interpret likely 
functional impact of noncoding variants. FunSVPT defines both proximal and distal 
associations to genes. For proximal associations, we assign variants in gene promoters (-
2.5kb) to their nearby genes. For distal associations, in addition to the ones identified in 
(Yip, et al., 2012), we further expanded the method to all ENCODE non-coding elements 
and identified ~769K regulatory elements associated with ~17K genes (see ‘Correlating 
histone marks with gene-expression data to identify likely target genes of distal 
regulatory elements’).  

Correlating histone marks with gene-expression data to identify likely target genes 
of distal regulatory elements 
1. Definition of distal regulatory modules (DRMs) 
We started with a list of regulatory regions from three different types, namely 
transcription factor binding peaks (TFP), DNase hypersensitive sites (DHS) and 
Segway/ChromHMM-predicted enhancers. All regulatory regions at least 1kb from the 
closest gene according to the Gencode v7 annotation (Harrow, et al., 2012) were defined 
as a distal regulatory module (DRM). 
 
2. Identifying potential regulatory targets of each DRMs 
We grouped different transcripts of a gene sharing the same transcription start site as a 
transcription start site expression unit (tssEU). For each DRM, we first considered all 
tssEUs within 1Mb from it as its candidate targets. We then correlated some 
activity/inactivity signals at a DRM and the expression of its candidate target tssEUs, and 
called the ones with significant correlation values as potential DRM-target pairs as 
follows. 
 
At the DRMs, we considered the enhancer marks H3K4me1 and H3K27ac as two types 
of activity signals, and DNA methylation as an inactivity signal. The activity level of 
each DRM was defined as the number of sequencing reads aligned to the DRM from the 
corresponding ChIP-seq experiments. The methylation level of a DRM was defined as 
follows. For each CpG site 𝑖 within a DRM, we counted the number of reads that support 
the methylation of it (𝑚!), and the total number of reads covering it (𝑛!). The methylation 
level of the DRM was then defined as the ratio of their sums across all CpG sites in the 
DRM, !!!

!!!
 . For each tssEU, we defined its expression level as the number of RNA-seq 

reads aligned to the [TSS-50, TSS+50] window. Both the activity signal levels and gene 
expression levels were normalized by the total reads, then multiplied by one million to 
keep them within an easily readable range of values. 
 
We collected all bisulfite sequencing, ChIP-seq and RNA-seq data from the Roadmap 
Epigenomics project website (Bernstein, et al., 2010) (EDACC release 91). We 
considered 19 tissue types with data for both the activity signals and gene expression, and 
20 tissue types with data for both the inactivity signal and gene expression. For RNA-seq, 
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we used the paired-end 100bp Poly-A enriched data sets. For experiments with replicates, 
we used the mean value across the replicates as the expression level of a gene. 
 
For each DRM-candidate target pair, we computed the correlations of their 
activity/inactivity and expression levels across the different tissue types. We computed 
both value-based Pearson correlation and rank-based Spearman correlation. The 
statistical significance of each correlation value was evaluated by computing a p-value 
based on one-tailed tests using the built-in functions in R. Briefly, for Pearson 
correlation, the correlation values would follow a 𝑡 distribution with 𝑛 − 2 degrees of 
freedom (where n is the number of tissue types) if the samples were drawn independently 
from normal distributions. The Fisher’s Z transformation was used to compute the p-
values. For Spearman correlation, the p-value was computed based on a procedure 
proposed by Hollander and Wolfe (Wolfe, 1973). For activity signals, we considered the 
right-tail, which means we looked for correlations significantly more positive than would 
be expected by chance. For inactivity signals, we considered the left-tail, which means 
we looked for correlations significantly more negative (i.e., strong anti-correlations) than 
would be expected by chance. All p-values were then adjusted for multiple hypothesis 
testing using the Bonferroni, Holm, Benjamini-Hochberg (BH) or Benjamini-Yekutieli 
(BY) methods. 
 
3. Software pipeline (see Building data context) 
We have packaged our computer programs as a software pipeline for users to define 
DRMs and identify their potential targets according to the above procedure on their own 
data files. The pipeline involves the following three main steps: 
a. Read user-defined regulatory regions, annotation file, tssEU expression, and meta-data 
of the data files (file names, total reads, etc.).  
b. Calculate activity and inactivity levels at the DRMs based on the Roadmap 
Epigenomics data.  
c. Correlate the activity/inactivity levels with the tssEU expression levels and determine 
their statistical significance, either using the pre-computed values or to compute the 
significance values on the fly based on the user-defined regulatory regions.  
 
Detect differentially expressed genes  
We incorporated a module to detect differentially expressed genes in cancer samples 
(relative to normal samples) from RNA-Seq data. When provided with gene expression 
files, our module calls NOISeq (Tarazona, et al., 2011) when having RPKMs and DESeq 
(Anders and Huber, 2010) with raw read counts from reads-mapping tools to detect 
differentially expressed genes. Genes that are up- or down- regulated with FDR < 0.05 
(with biological replicates) and FDR < 0.1 (without replicates) in cancer samples are 
identified and annotated in the output.  
 
Network analysis of variants associated with genes 
For each variant associated with genes, we examine their network properties in various 
networks, such as protein-protein interaction, regulatory and phosphorylation networks. 
For each network, we calculated the cumulative probabilities of associated genes. Genes 
that are highly connected (higher cumulative probability) in biological networks are more 
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likely to be functional important. If a variant is associated with multiple genes or the 
associated gene participate in multiple networks, the highest cumulative probability is 
used as the continuous score for network centrality. Scripts are provided to calculate 
centrality in networks (see Building data context). User can easily incorporate other 
networks in this analysis.  

Recurrence across multiple cancer samples 
One important criterion to find cancer genes is to examine their recurrence in multiple 
samples. We extended the concept to non-coding regulatory elements. FunSVPT can 
detect recurrent mutations, genes and regulatory elements in multiple samples.  
 
Running FunSVPT on 570 samples of 10 cancer types (Alexandrov, et al., 2013; Baca, et 
al., 2013; Berger, et al., 2011), we created the recurrence database for somatic mutations 
from cancer whole-genome sequencing. The summary table of the data is listed below.  
 
 

Cancer Type Sample 
Number 

Somatic Mutations 
(SNV) 

Recurrent 
Genes/Elements/Mutations 

AML 7 271~1068 1 
Breast 119 1043~67347 69140 
CLL 28 522~3338 709 
Liver 88 1348~25131 74144 
Lung Adeno 24 9284~297569 162165 
Lymphoma B cell 24 1502~37848 4233 
Medulloblastoma 100 44~47440 2793 
Pancreas 15 1096~14998 2591 
Pilocytic Astrocytoma 101 2~926 58 
Prostate 64 1430~18225 36327 

 
Supplementary Table 2. Summary of currently collected cancer types 

 

High-impact variants in motifs: Nucleotide resolution effects 
1. Motif breaking 
When variants hit transcription factor binding motifs in ENCODE Chip-Seq peak, we 
examined their motif breaking or conserving effect using position weight matrixes (PWM) 
(Mu, et al., 2011). Motif breaking events are defined as variants decreasing the PWM 
score. For somatic mutations, mutated allele is compared to the reference allele. We also 
provide the option for germline or personal genomes, which compared to the ancestral 
allele, since the functional impact of the variant reflects the historical event when the 
polymorphism was first introduced in the human population. Motif breaking events are 
reported in the output with the PWM changes. Transcription factor PWMs are obtained 
from ENCODE project, consisting TRANSFAC, JASPAR and de novo motifs.  
 
2. Gain of motif 
We developed an automated tool to detect gain-of-motif events. Whole genome motif 
scanning generally discovers millions of motifs, of which, a large fraction are false 
positives. To restrict motif scanning, we focused on variants occurred in promoters 
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(defined as -2.5kb from transcription starting site) or regulatory regions associated with 
genes (see ‘Correlating histone marks with gene-expression data to identify likely target 
genes of distal regulatory elements’). For each variant, +/- 29bp are concatenated from 
human reference genome (motif length is generally <30bp). For each PWM, we scanned 
the 59bp sequence. For each candidate sequence encompassing the variant, we evaluated 
the sequence score with the mutated allele using TFM-Pvalue (Touzet and Varre, 2007) 
(with respect to the PWM). If the p-value of the mutated allele < 4e-8, whereas the 
reference allele is not, we define the variant creating a motif. The process is repeated for 
all PWMs. The sequence score changes are reported in the output. We applied this 
analysis to the two TERT promoter mutations and the result is in the following table 
(motif name # motif start position # motif end position # motif strand # variant position # 
alternative sequence score # reference sequence score).  
 
 
Mutation Position Gain of Motif 
chr5    1295250 Ets_known10#1295246#1295252#+#4#5.743#2.472 
chr5    1295228 Ets_known10#1295223#1295229#+#5#5.743#1.893 
 

Supplementary Table 3. Gain of motif analysis on known TERT promoter mutations. 
 

Weighted-sum scoring scheme to prioritize variants  
FunSVPT has separate scoring schemes for coding and non-coding mutations.  
	  
1. Coding scoring scheme 
Please refer to the (Khurana, et al., 2013). Here is the brief description. The effect of 
mutations occurred in coding regions (GENCODE 16 for current version. Users can 
replace this with other GENECODE annotations) are analyzed with VAT (variant 
annotation tool) (Habegger, et al., 2012). Mutations are ranked based on the following 
scheme (each criterion gets score 1): 1) non-synonymous; 2) premature stop; 3) is the 
gene under strong selection; 4) is the gene a network hub; 5) recurrent 
 
2. Non-coding scoring scheme (weighted-sum scoring scheme) 
Features used to score non-coding variants are shown in Supplementary Table 4. In 
general, features can be classified into two classes - discrete and continuous. Discrete 
features are binary, such as in ultra-conserved regions or not. Continuous features: 1. 
Gerp score of variant; 2. Motif-breaking value is the difference of relative frequencies 
between reference and mutated alleles in PWMs; 3. Motif-gaining value is the difference 
of sequence scores between mutated allele and reference allele; 4. Network centrality is 
the network position of the gene (e.g. cumulative probability of degree centrality). Note 
that for motif-gaining values, the PWMs (actually ‘relative frequency matrix’ used in this 
paper) are transformed using log likelihood and the sequence scores are calculated with 
the transformed PWMs. If variants possess multiple values of particular feature (e.g. 
participate in multiple networks), the largest value is used.   
 
We then weight each feature based on the mutation pattern observed in 1000 Genomes 
polymorphisms. Features that are frequently observed in polymorphisms are less 
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important, thus should be weighted less. We randomly selected 10% of 1000 Genomes 
Phase 1 variants (~3.7M) and run through FunSVPT. The probabilities of observing each 
feature in polymorphisms are calculated as 𝑝!. We chose to use 1- Shannon entropy (1) as 
our measure to assign weight. The value ranges from 0 to 1 and is monotonic increasing 
when the probability is between 0 and 0.5. a) For discrete features, we calculated (1) 
using the probability of observing features. b) For continuous features, taking ‘motif-
breaking’ as an example, for each motif-breaking value 𝑣 observed in 1000 Genomes, we 
calculated the probability of observing values ≥ 𝑣 then used this probability to calculate 
(1). The curve of motif-breaking values and 1-Shannon entropy reflects the uncertainly of 
observing the motif-breaking values in polymorphisms. This scheme is also applied to 
motif-gaining and network centrality features (Supplementary Figure 1). 
 
The criterion of ‘Gerp >2’ has been commonly used to define conserved bases 
(Consortium, et al., 2012). For Gerp score, we decided to use sigmoid transformation to 
transform the scores to range 0 and 1. The parameters we chose make the sigmoid curve 
sharp at ‘Gerp = 2’ (Supplementary Figure 1). The sigmoid transformation preserves the 
cut-off of ‘Gerp > 2’ and makes the score continuous at the same time. We calculated (1) 
regarding ‘Gerp > 2’ as a discrete feature. Then we used 
𝑤! ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  𝑣𝑎𝑙𝑢𝑒 to assign weight for continuous Gerp scores.     
 
For discrete features, the weight calculated is shown in Supplementary Table 4. For each 
user-input variant, the score is the sum-up of weights of all its features. Because some 
features are subset of other features, to avoid overweighting similar features, we 
considered the dependency structure of features when calculating the sum-up scores 
(Supplementary Table 4). When observing leaf features, the weights of root features are 
ignored. For example, when variant occurs in ultra-sensitive regions, the weights of 
‘functional annotations’ and ‘sensitive regions’ are not used in the sum-up. Other features 
are considered independent. Variants ranked on top of the output are those with higher 
scores and are most likely to be deleterious.  
 
 
𝑤! = 1+ 𝑝!𝑙𝑜𝑔!𝑝! + 1− 𝑝! 𝑙𝑜𝑔! 1− 𝑝!                                                                                                                       (1)         

 
𝑆 = 𝑤!                                                                                                                                                                                                                                             (2) 

 
𝐹𝑜𝑟  𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑝!   𝑖𝑠  𝑡ℎ𝑒  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔  𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑖;                                 
𝐹𝑜𝑟  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑝𝑖  𝑖𝑠  𝑡ℎ𝑒  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔  𝑣𝑎𝑙𝑢𝑒𝑠 ≥ 𝑣  𝑓𝑜𝑟  𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑖.     
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Dependency structure of features (leaf feature is a subset of root feature):  
Functional annotations 
 - Sensitive  
                    - Ultra-sensitive 
 
Functional annotations 
             - Motif-Breaking 
 
Functional annotations 
             - HOT regions 
 
Regulatory regions associated to genes  
             - Network centrality 
 
Regulatory regions associated to genes  
 - Motif-Gaining 
 
Gerp score (>2) 
              - Ultra-conserved  

 
Supplementary Table 4. Weighted scoring scheme 

 
 

Features Class Weight 
Functional annotations Discrete 0.18636650 

Sensitive Discrete 0.96918819 
Ultra-sensitive Discrete 0.99723918 
Motif-Breaking  Continuous - 
Motif-Gaining  Continuous - 

Network centrality  Continuous - 
Gerp score > 2  Continuous/Discrete 0.62278676 

Ultra-conserved Discrete 0.99974654 
HOT Regions Discrete 0.79753934 

Regulatory regions 
associated to genes 

Discrete 0.003531882 

Recurrent Discrete 1 
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Supplementary Figure 1. Weight assignment for continuous features 
 

3. FunSVPT manual 
FunSVPT consists of two components: building data context and variants prioritization.  
 
Building data context 
Scripts: 
 
* 0.define.proximal.distal.regions.pl 
 Generating distal/proximal regions for provided interval annotations (based on 
GENCODE data).  
 
* Define conserved annotation categories using polymorphisms data.  
 
1. Define conserved annotation categories from scratch (hg19).  
 1.1.Randomization.pl 
  The program using element-sliding method to generate null distributions 
for fraction of rare variants for each category. 
 1.2.FDR.r  
  FDR calculation for the randomization. This script can also output 
significant categories based on FDR. 
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2. Define novel conserved regions upon those defined in Khurana et al., (Science 
2013).Only applicable to small number of categories, ~ 5.  
 2.sensitive.regions.delta.increment.pl 
  The input polymorphisms used in the paper is ' 
SNP.lowcov.noncodingGENCODE7.1kgMask.bed'. 
 
* 3.gencode.process.pl 
 This script processes GENCDOE gtf file to obtain 'promoter','cds','intron' and 'utr' 
region files, which are used by variants prioritization part.  
 
* 4.network.analysis.r 
 This script generates network centralities for input network (degree or 
betweenness). 
 
* 5.PWM.score.cut.pl 
 This script generates the 'motif.score.cut' file for the variants prioritization part. 
TFMpvalue-pv2sc in 'TFM-pvalue' package is used to generate sequence score cut-offs 
for defined p-value cut-off. The file 'motif.score.cut' is used to speed up the gain-of-motif 
analysis. 
 
Variants prioritization 
FunSVPT code consists four parts. 1) The analysis module is 
“FUNSVPT/lib/FunSVPT.pm” containing all of the subroutines. 2) The executable file 
“FunSVPT” accepts the input parameters and passes it onto 3) “FunSVPT.pl”, which 
stores the data path and organizes the modules in “FunSVPT.pm” to the pipeline. 4) 
“differential_gene_expression.r” is an R script detecting differentially expressed genes 
between cancer and benign samples.  
 
1. Dependencies  
The proper execution of FunSVPT depends on the following tools.  
 
1. bedtools (http://code.google.com/p/bedtools/downloads/list) 
    For intersection analysis and sequence retrieval.   
2. tabix (http://sourceforge.net/projects/samtools/files/tabix/)  
3. VAT (variant annotation tool - snpMapper Module) (http://vat.gersteinlab.org/index.php) 
     If you are only interested in non-coding variants, you don't need to install VAT. But 
remember to use '-nc' option. 
4. TFMpvalue-sc2pv (http://bioinfo.lifl.fr/TFM/TFMpvalue/) 
    Calculate p value of motif scores regarding to its PWM. 
5. bigWigAverageOverBed (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/) 
    Retrieve gerp scores. Note that gerp data file is huge. If you are not interested in gerp 
scores, gerp file and bigWigAverageOverBed are not needed.  
6. R (http://www.r-project.org) 
    Only needed for differential gene expression analysis.  
7. Perl package Parallel::ForkManager (http://search.cpan.org/~szabgab/Parallel-ForkManager-
1.03/lib/Parallel/ForkManager.pm) 
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     Required for parallel running.   
    Please make sure you have Perl 5 and up. 
 
2. FunSVPT tool installation 
FunSVPT is a PERL- and Linux/UNIX-based tool. At the command-line prompt, unzip 
the tool and type the following. The purpose is to write path of FunSVPT.pm to your 
environment.  

$ cd FunSVPT-0.2/  
$ cd FUNSVPT/ 
$ perl Makefile.PL 
$ make  
$ make test 
$ make install 
 
3. Required data files 
Please download the following data files from ‘http://FunSVPT.gersteinlab.org’ and put 
them in the folder ‘$FunSVPT-0.2/data/ ’. If you use ‘wget’, please use ‘wget 
http://FunSVPT.gersteinlab.org/static/data/data.tar.gz’.  If you plan to use your own data, 
please prepare them following the described format. All data are based on hg19.  
 
1. 1kg.phase1.snp.bed.gz (bed format) 
    Contents: 1000 Genomes Phase I data with minor allele frequency in bed format.   
    Columns: chromosome, start position (0-based), end position, MAF (minor allele frequency)   
    Purpose: to filter out input SNVs based on user-defined allele-frequency threshold.   
2. All_hg19_RS.bw 
    Contents: binary file containing base-wise gerp score. Downloaded from 
http://hgdownload.cse.ucsc. edu/gbdb/hg19/bbi/All_hg19_RS.bw 
    * Note: This file is ~7G. If you don’t want to retrieve gerp score for variants, then no need to 
download this file.  
3. HOT_region.bed (bed format) 
    Contents: highly occupied region from Yip et al., (Yip, et al., 2012) 
    Columns: chromosome, start position, end position, cell line info 
    Purpose: to examine whether variants occur in hot regions.  
4. ENCODE.annotation.gz (bed format)   
    Contents: compiled annotation files from ENCODE, GENCODE v7 and others, including 
Dnase I hypersensitive sites, transcription factor binding peak, pseudo-genes, non-coding RNAs, 
enhancer regions (chromhmm, segway and distal regulatory modules (Yip, et al., 2012)).   
    Columns: chromosome, start position, end position, annotation.   
    Purpose: to annotate SNVs in ENCODE regions.   
5. ENCODE.tf.bound.union.bed (bed format)  
     Contents: transcription factor (TF) binding motifs under peak regions.  
     Columns: chromosome, start position, end position, motif name, , strand, TF name   
    Purpose: used for motif breaking analysis  
6. gencode.v7.cds.bed (bed format)  
     Contents: extracted CDS information from GENCODE v7.   
    Columns: chromosome, start position, end position  
     Purpose: locate coding SNVs.  
7. gencode.v7.promoter.bed (bed format)   
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    Contents: promoter regions, defined as -2.5kb from transcription start site (TSS)  
     Columns: chromosome, start position, end position, gene.  
     Purpose: to associate promoter SNVs with genes   
8. gencode.v7.annotation.GRCh37.cds.gtpc.ttpc.interval   
    Purpose: used by variant annotation tool (VAT).   
9. gencode.v7.annotation.GRCh37.cds.gtpc.ttpc.fa   
    Purpose: used by variant annotation tool (VAT).   
10. drm.gene.bed (bed format) 
     Contents: distal regulatory module linked to genes.   
    Columns: chromosome, start position, end position, gene, p-value, cell-lines 
    Purpose: to associate enhancer SNVs with genes   
11. motif.PFM   
    Contents: position frequency matrix (PFM) for ENCODE TFs. 
     Purpose: used for motif breaking and gain of motif calculation   
12. PPI.hubs.txt   
    Purpose: defined hub genes in protein-protein interaction network   
13. REG.hubs.txt   
    Purpose: defined hub genes in regulatory network   
14. GENE.strong_selection.txt   
   Purpose: genes under strong negative selection (fraction of rare SNVs among non-synonymous 
variants).   
15. human_ancestor_GRCh37_e59.fa  
    Contents: contains human ancestral allele in hg19, Ch37.   
   Purpose: for motif breaking calculation in personal or germline genome.   
   * Note: for somatic analysis, this file is not needed.   
16. human_g1k_v37.fasta 
    Contents: human reference genome 
    Purpose: for gain-of-motif analysis 
17. sensitive.nc.bed (bed format) 
    Contents: coordinates of sensitive/ultra-sensitive regions.  
    Purpose: to find SNVs in sensitive/ultra-sensitive regions.   
18. ultra.conserved.hg19.bed 
    Contents: ultra-conserved region in (Bejerano, et al., 2004). 
19. motif.score.cut 
    Contents: pre-calculated PWM scores corresponding to 4e-8.  
    Purpose: to speed up the gain-of-motif analysis 
20. regulatory.network 
    Contents: human regulatory network from (Gerstein, et al., 2012) 
21. cancer.genes 
    Contents: cancer genes from Cancer Gene Census (Futreal, et al., 2004) 
22. actionable.gene 
    Contents: actionable genes from (Wagle, et al., 2012) 
 
 
4. Running FunSVPT 
To display the usage of FunSVPT, type “./FunSVPT”. It will show the following 
instructions.  
_______________________________________________________________________ 
* Usage: ./FunSVPT –f file -maf MAF -m <1/2> -inf <bed/vcf> -outf <bed/vcf> -nc -o path -g file -exp file 
-cls file -exf <rpkm/raw> 
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Options:  
 -f  User Input SNVs File 
 -maf   Minor Allele Frequency Threshold to filter 1KG SNVs 
 -m  1 - Somatic Genome; 2 - Germline or Personal Genome 
 -inf   input format - BED or VCF 
 -outf   output format - BED or VCF 
 -nc  [Optional] Only do non-coding analysis, no need of VAT (variant annotation 
tool) 
 -o  [Optional] Output path, default is the directory 'out' 
 -g  [Optional] gene list, only output variants associated with selected genes.   
 -exp  [Optional] gene expression matrix 
 -cls  [Optional] class file for samples in gene expression matrix 
 -exf  [Optional] gene expression format - rpkm / raw 
 
Default Options: -maf 0 -m 1 -outf vcf -o out 
 
 
* Multiple Genomes with Recurrent Output  
 

Option 1: Separate multiple files by ',' 
 Example: ./FunSVPT -f file1,file2,file3,... -maf MAF -m <1/2> -inf <bed/vcf> -outf <bed/vcf>… 
  
 Option 2: Use the 6th column of BED file to specify samples 
 Example: ./FunSVPT -f file -maf MAF -m <1/2> -inf bed -outf <bed/vcf> … 
 
NOTE: Please make sure you have sufficient memory, at least 3G.  
_______________________________________________________________________ 

Options:   
      -maf : should be a number between 0~1 
      -nc : when using this option, users don’t need to install VAT (variant annotation tool) 
      -exp, -cls, -exf : if used, should be specified together.  
       
5. Input format 
3.5.1 User input file (-f): could be either BED format or VCF format.  
         * BED format  

 In addition to the three required BED fields, please prepare your file as follows (5 
required fields, tab delimited; the 6th column is reserved for sample names, do not put 
other information there): chromosome, start position, end position, reference allele, and 
alternative allele. 

Chromosome - name of the chromosome (e.g. chr3, chrX) 
Start position - start position of variants. (0-based) 
End position - ending position of variants. (end exclusive) 
       e.g., chr1   0     100  spanning bases numbered 0-99 
Reference allele - reference allele of variants 
Alternative allele - alternative allele of variants 
 

        * VCF format 
 The header line names the 8 fixed, mandatory columns. These columns are as 

follows (tab-delimited):  #CHROM POS ID REF ALT QUAL FILTER INFO 
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* Recurrent analysis input format 
Option 1: separate files for each genome (BED or VCF). Use “-f file1, file2, file3” separated 
by comma. 
Option 2: put all variants in one file (only for BED format, use the 6th column labeling 
sample names). Use “-f file”. 
 
3.5.2 Gene list format (-g): If you are interested in particular set of genes, you can put 
your genes in one file (one gene per row) and use “-g file” to instruct the program to only 
analyze variants in or linked to those genes. Please use gene symbols. 
 
3.5.3 Gene expression format (-exp): Users can also upload gene expression data for the 
program to detect differentially expressed genes between cancer and benign samples and 
highlight variants linked to these genes. The gene expression data should be prepared as a 
matrix with first column stores gene names (use gene symbols) and first row as sample 
names. Other fields are gene expression data either in rpkm or raw read counts. Tab 
delimited.  
e.g.,  
 

Gene Sample1 Sample2 Sample3 Sample4 … 
A1BG 1 5 40 0 … 
A1CF 20 9 0 23 … 
… … … … … … 

 
 
3.5.4 Sample class format (-cls): In addition to the expression data, users need to upload 
annotations of samples as “cancer” or “benign” (only two classes “cancer” or “benign”). 
The number of samples in this file should equal to that in expression data. And sample 
names should match.  
e.g., 
 

Sample1 benign 
Sample2 cancer 
Sample3 cancer 
Sample4 benign 
… … 

 
6. Output file 
FunSVPT will generate four outputs: 1) “FunSVPT.Output.format”, 2) 
“FunSVPT.recur.Summary”, 3) “FunSVPT.candidates.Summary” and 4) “FunSVPT.err”.  
FunSVPT.Output.format: stores detail results from all samples; FunSVPT.recur.Summary: the 
recurrent elements with sample information; FunSVPT. candidates.Summary: brief output of 
potential candidates (coding nonsynonymous/prematurestop mutations, non-coding 
mutations with score >= 5 and mutations in or linked to known cancer genes); 
“FunSVPT.err” stores the error information. For a single genome, the 
“FunSVPT.recur.Summary” is empty.  
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When providing gene_expression data, FunSVPT produces two additional files - 
“DE.gene.txt” is the differentially expression genes from RNA-Seq analysis and “DE.pdf” is 
the differential gene expression plot.  
3.6.1 Sample BED format output 
Header:  
chr     start   end     ref     alt     sample  
gerp;cds;variant.annotation.cds;network.hub;gene.under.negative.selection;ENCODE.annotated;hot.region;motif.anal
ysis;sensitive;ultra.sensitive;ultra.conserved;target.gene[known_cancer_gene/TF_regulating_known_cancer_gene;diff
erential_expressed_in_cancer;actionable_gene];coding.score;noncoding.score;noncoding.recurrent 
 
Coding variants: 
chr1    36205041        36205042        C       A       PR2832  5.6;Yes;VA=1:CLSPN:ENSG00000092853.8:-
:prematureStop:4/5:CLSPN-001:ENST00000251195.5:3999_3232_1078_E->*:CLSPN-
005:ENST00000318121.3:4020_3232_1078_E->*:CLSPN-003:ENST00000373220.3:3828_3040_1014_E-
>*:CLSPN-004:ENST00000520551.1:3861_3073_1025_E->*;PPI;Yes;.;.;.;.;.;.;CLSPN;4;.;. 
 
Non-coding variants: 
chr1    48306315        48306316        T       G       PR1783  
4.53;No;.;PPI&REG(TAL1);.;Enhancer(drm|chr1:48305900-48307500),TFP(HDAC2|chr1:48306080-
48307045),TFP(HNF4A|chr1:48306228-48306944);.;.;.;.;.;TAL1(DRM)[known_cancer_gene];.;3;. 
 
3.6.2 Sample VCF format output 
Header:  
##fileformat=VCFv4.0 
##INFO=<ID=OTHER,Number=.,Type=String, Description = "Other Information From Original File"> 
##INFO=<ID=SAMPLE,Number=.,Type=String,Description="Sample id"> 
##INFO=<ID=CDS,Number=.,Type=String,Description="Coding Variants or not"> 
##INFO=<ID=VA,Number=.,Type=String,Description="Coding Variant Annotation"> 
##INFO=<ID=HUB,Number=.,Type=String,Description="Network Hubs, PPI (protein protein interaction network), 
REG (regulatory network)"> 
##INFO=<ID=GNEG,Number=.,Type=String,Description="Gene Under Negative Selection"> 
##INFO=<ID=GERP,Number=.,Type=String,Description="Gerp Score"> 
##INFO=<ID=NCENC,Number=.,Type=String,Description="NonCoding ENCODE Annotation"> 
##INFO=<ID=HOT,Number=.,Type=String,Description="Highly Occupied Target Region"> 
##INFO=<ID=MOTIFBR,Number=.,Type=String,Description="Motif Breaking"> 
##INFO=<ID=MOTIFG,Number=.,Type=String,Description="Motif Gain"> 
##INFO=<ID=SEN,Number=.,Type=String,Description="In Sensitive Region"> 
##INFO=<ID=USEN,Number=.,Type=String,Description="In Ultra-Sensitive Region"> 
##INFO=<ID=UCONS,Number=.,Type=String,Description="In Ultra-Conserved Region"> 
##INFO=<ID=GENE,Number=.,Type=String,Description="Target Gene (For coding - directly affected genes ; For 
non-coding - promoter or distal regulatory module)"> 
##INFO=<ID=CANG,Number=.,Type=String,Description="Cancer related info 
[known_cancer_gene/TF_regulating_known_cancer_gene;differential_expressed_in_cancer;actionable_gene]"; 
##INFO=<ID=CDSS,Number=.,Type=String,Description="FunSVPT Coding Score"> 
##INFO=<ID=NCDS,Number=.,Type=String,Description="FunSVPT NonCoding Score"> 
##INFO=<ID=RECUR,Number=.,Type=String,Description="Recurrent elements / variants"> 
#CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO 
 
Coding variants: 
chr1    36205042        .       C       A       .       .       
SAMPLE=PR2832;GERP=5.6;CDS=Yes;VA=1:CLSPN:ENSG00000092853.8:-:prematureStop:4/5:CLSPN-
001:ENST00000251195.5:3999_3232_1078_E->*:CLSPN-005:ENST00000318121.3:4020_3232_1078_E-
>*:CLSPN-003:ENST00000373220.3:3828_3040_1014_E->*:CLSPN-
004:ENST00000520551.1:3861_3073_1025_E->*;HUB=PPI;GNEG=Yes;GENE=CLSPN;CDSS=4 
 
Non-coding variants: 
chr1    48306316        .       T       G       .       .       
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SAMPLE=PR1783;GERP=4.53;CDS=No;HUB=PPI&REG(TAL1);NCENC=Enhancer(drm|chr1:48305900-
48307500),TFP(HDAC2|chr1:48306080-48307045),TFP(HNF4A|chr1:48306228-
48306944);GENE=TAL1(DRM);CANG=TAL1(DRM)[known_cancer_gene];NCDS=3 
 
3.6.3 Output description (VCF format as an example) 

* VA (variants annotation) 
This is the output produced from VAT (variant annotation tool) for coding variations. 

* NCENC (Non-coding ENCODE annotation) 
This is formatted as “category(element_name|chromosome:position)” (0-based, end exclusive).  

TFP - transcription factor binding peak.  
 TFM - transcription factor bound motifs in peak regions.  
 DHS - DNase1 hypersensitive sites, with number of cell lines (MCV, total 125 cell 

lines).   
ncRNA - non-coding RNA   
Pseudogene  
 Enhancer - chmm/segway (genome segmentation), drm (distal regulatory module)   

* MOTIFBR 
This field is a hash-delimited tag, defined as follows:  TF name # motif name # motif start # 
motif end # motif strand # mutation position # alternative allele frequency in PFM # reference allele 
frequency in PFM . (0-based, end exclusive) 
e.g., MOTIFBR=TAF1#TATA_known1_8mer#85913478#85913493#+#3#0.02#0.4 

* MOTIFG 
 Hash-delimited.  motif name # motif start # motif end # motif strand # mutation position # motif PWM 
score with alternative allele # motif PWM score with reference allele 
e.g., MOTIFG=HNF4_known6#49357253#49357259#-#1#4.893#0.606 

* HOT (highly occupied region) 
If a mutation occurs in HOT regions, the corresponding cell lines (5 in total) are shown.  

* CANG (cancer related information) 
This field stores all the cancer related information. Five possible tags: 

[known_cancer_gene]: the gene have been annotated as an cancer gene. 
[TF_regulating_known_cancer_gene]: the gene is a transcription factor regulating known 

cancer genes. 
[actionable_gene]: the gene is potentially actionable (“druggable”).  
[up_regulated]: the gene is up-regulated in cancers, if providing RNA-Seq gene 

expression data. 
[down_regulated]: the gene is down-regulated in cancers, if providing RNA-Seq gene 

expression data.   

* RECUR (recurrent genes, regulatory elements and mutations) 
If a mutation occurs in recurrent genes or regulatory elements, it is annotated as 
“gene/regulatory element name: recurrent samples (mutations in corresponding samples (position is 1-
based))”.  If it is a recurrent mutation, “*” is tagged.  
e.g., RECUR=Pseudogene(ENST00000467115.1|chr1:568914-
569121):PR1783(chr1:568941,chr1:569004*),PR2832(chr1:569004*) 
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4. FunSVPT webserver 
FunSVPT is implemented as a webserver using django web framework. The screenshot is 
shown in Supplementary Figure 2. User can download the results or browser them in 
interactive tables (Supplementary Figure 3). 
 
 
 

 
 

Supplementary Figure 2. Web interface. 
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Supplementary Figure 3. Interactive table for results.  
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