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ABSTRACT 
Summary: Alternative splicing is important in development and evolution, and can be 
studied genome-wide utilizing RNA-Seq. With comparative RNA-Seq experiments, 
signatures that distinguish conditions resulting from differential gene regulation, 
including differential alternative splicing can be detected. However, challenges in 
statistical inference from short-read technology still preclude reliable identification of 
alternative splicing signatures that can be prioritized for further biological investigation. 
[[Most published methods do not provide localized, unambiguous regions in genes that 
undergo differential alternative splicing.]] To enable robust discovery of differential 
alternative splicing, we developed a pipeline that identifies unambiguous local events of 
alternative splicing, quantifies their abundance using maximum likelihood estimation, 
and tests significance of alternative splicing changes between different conditions. We 
demonstrated the utility of this pipeline through two case studies relevant to human 
variation and evolution. Using an RNA-Seq dataset of lymphoblastoid cell lines in two 
human populations and an RNA-Seq dataset of several tissues in human and rhesus 
macaque, we identified hundreds of population- and lineage-differential alternative 
splicing events respectively.  
Availability: The LESSeq pipeline is implemented in C++ and R, and is available at 
https://code.google.com/p/lesseq.  
Contact: pi@gersteinlab.org 
 
1. INTRODUCTION 
Alternative splicing of precursor messenger RNA (pre-mRNA) generates multiple 
transcripts, or isoforms from a single gene locus that may differ in localization, function 
or other biological features. Alternative isoform usage is thought to be a major source of 
biological complexity during development and evolution (Nilsen and Graveley, 2010). In 
humans, alternative splicing variations have been implicated in differential disease 
associations and drug responses (Lu, et al., 2012), highlighting the need for deeper 
understanding of the associations, or even causal relationships between alternative 
splicing and human biological variations. During evolution, alternative splicing leads to 
the expansion of transcriptome, and sometimes proteome in organisms through 
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differential inclusion and exclusion of exonic sequences, and could underlie lineage-
specific phenotypic traits. 
 
Over the past few years, high-throughput RNA sequencing, or RNA-Seq (Wang, et al., 
2009) has dramatically expanded our knowledge of alternative splicing. It was discovered 
that almost all human multi-exonic pre-mRNAs undergo alternative splicing, and that 
tissue-specific regulation of alternative splicing maybe pervasive (Wang, et al., 2008), 
suggesting the functional relevance of alternative isoform usage. However, it has also 
been shown that noisy products from alternative splicing are extensive (Pickrell, et al., 
2010), emphasizing the need to distinguish biologically important alternative splicing 
events from those of no functional consequences, which could be achieved in part 
through comparative RNA-Seq experimental designs that include multiple biological 
conditions.  
 
On the informatics side of RNA-Seq research, many computational methods have been 
developed to assemble and quantify transcripts utilizing RNA-Seq data. Since the 
transciptome of a given condition is unlikely to be fully captured by any reference 
annotation, it is desirable to assemble the transcripts for a specific study leveraging the 
RNA-Seq data. Expression levels of the newly assembled transcripts can then be 
calculated, followed by downstream analysis (e.g. differential transcript usage detection 
between two conditions). However, there are many challenges in such transcript-based 
inference. First, assembling correct isoforms utilizing short-read data for the sample(s) of 
study is very difficult, especially for mammalian genomes such as the human (Steijger, et 
al., 2013). In most transcript assembly methods designed for mammalian genomes, RNA-
Seq reads are first mapped to the reference genome. The resulting exonic and spliced 
reads are subsequently used (sometimes in conjunction with a reference transcriptome 
annotation) to construct a splicing graph for each gene locus, which is then used to derive 
isoform structures according to a specific graph-traversing algorithm. Because short-read 
technology does not provide full connectivity of different regions in the splicing graph, 
the strategy for traversing such graphs varies wildly across methods (i.e. some generate 
the most parsimonious set, some output all possible ones, and the others lie between these 
two extremes), and none was shown to yield satisfactory full-transcript annotation in 
human (Steijger, et al., 2013). Second, even if the “correct” transcriptome annotation is 
provided, it is not straightforward to calculate transcript expression levels (Pachter, 
2011), as short-read technology necessitates probabilistic estimation of the transcript 
abundances. Most transcript quantification tools calculate the Maximum Likelihood 
Estimate (MLE) of transcript abundances based on a specific objective function, whose 
form and complexity differ across methods and are dependent on the modeling of RNA-
Seq process. In reality, transcript quantification algorithms based on similar ideas can 
generate different results (Steijger, et al., 2013), with the agreement generally decreasing 
as the number of isoforms of a gene increases (Du, et al., 2012). Moreover, the assembly 
and quantification steps are tightly linked, as incorrect transcript annotation exacerbates 
the quantification problem (Du, et al., 2012). Combined, the inaccuracies and 
uncertainties in both transcript assembly and quantification make transcript-based 
comparative study extremely challenging. 
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We thus propose to step back from the transcript-based RNA-Seq inference problem, and 
devised a local event-based analytical approach that focuses on localized regions in genes 
where isoform structures diverge (e.g. one skipped exon encompassed by two constitutive 
exons) (Katz, et al., 2010; Wang, et al., 2008). By assessing local alternative splicing 
events, we can bypass several aspects of uncertainty in transcript-based analysis and 
generate more robust results. Local alternative splicing events are essentially local parts 
of splicing graphs that contain diverging paths, and analyzing such regions abrogates the 
need to assemble full-length transcripts. Since transcript assembly methods output 
different transcripts even with the same underlying splicing graph, circumventing the step 
of whole transcript assembly bypasses the errors produced from it. In addition, the 
number of local events in a given gene is never greater than that of all the isoforms of a 
gene, thus yielding more robust quantification results - as has been shown previously 
(Du, et al., 2012), fewer isoforms per gene lead to more consistent quantification results 
between methods. Moreover, in the implementation of our pipeline, focusing on defined 
simple patterns of local events yield regions that are guaranteed to be computationally 
identifiable (Hiller, et al., 2009), which is not always true for transcript-level inference. 
 
2. METHODS 
Below we describe the four major steps of the LESSeq pipeline. 
 
2.1 Refine gene models using RNA-Seq 
This first step of the pipeline aims to derive comprehensive splicing annotations for the 
specific sample(s) of study. For species with a reference annotation, this step is optional 
but strongly recommended, because alternative splicing is highly tissue-specific and there 
may exist splicing events in the condition of interest which are not annotated in a 
reference transcriptome. The current pipeline employs Cufflinks (Trapnell, et al., 2010) 
for this purpose, and we recommend using reference annotation based transcript (RABT) 
assembly for well annotated organisms such as human. In the RABT method, faux-reads 
that tile the reference transcripts are used together with the RNA-Seq reads to assemble 
transcripts. However, alternatives to Cufflinks can also be used. For species that do not 
have a reference genome and/or reference transcriptome annotation, de novo methods to 
build gene models are available (Garber, et al., 2011), and users should substitute their 
own preferred approach for the current implementation in LESSeq, while the remainder 
of the pipeline still applies. 
 
2.2 Build splicing graphs and define local events  
In this step, the pipeline builds a splicing graph for each gene locus utilizing assembled 
transcripts from the previous step. The locally diverged parts in the graphs are identified, 
and termed as “local events” (Figure XXX). As illustrated in the two scenarios in XXX, 
the definition of local events is conservative, and in strict terms means that such local 
graphs should have the numbers of both in-edges to the leftmost node and out-edges from 
the rightmost node equal to that of the total number of isoforms in this gene. In the 
implementation of the pipeline, the shortest local graphs that satisfy such criteria are 
taken. Because the local events for some genes can still be very complex, and suffer 
similar quantification difficulties as those in transcript-based analysis, the pipeline 
provides filtering steps that generate pre-defined simple events for which all isoforms of Jing Leng� 1/4/14 1:25 AM
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a gene can be grouped into either of the two forms as shown in Figure XXX. Of note, the 
events selected according to such criteria are restrictive, so that the downstream analyses 
yield robust results. [[Mention we provide a resource for human GENCODE annotation]] 
 
2.3 Count reads compatible with local events and estimate their relative expression 
levels  
A metric to quantify isoform usage is the relative expression level of an isoform, with 
each isoform’s expression level divided by the total expression from all isoforms of a 
given gene. As such, the relative expression level represents isoform abundance relative 
to other isoforms of a given gene, with the sum of all isoforms’ relative expression levels 
for a gene being 1. This metric is useful if one aims to compare alternative isoform usage 
independent of gene expression level changes. For the local events identified from the 
previous step, such concept leads to the natural definition of relative expression levels of 
each local event (Figure XXX). For each event type shown in Figure XXX, there are two 
fractional values representing the relative expression level of either of the two possible 
forms of a local event. Such metric provides a quantitative measurement of the extent of 
alternative splicing at each given locus, and the values concatenated for all local events 
can be used as a feature vector for each sample, which can then be used to perform 
downstream analysis such as clustering (Figure XXX). 
 
To calculate the relative expression levels of each local event identified from the previous 
step, the pipeline counts reads that are compatible with either of the two local events 
(Figure XXX) at each locus, and derives the Maximum Likelihood Estimates using the 
read counts and local event annotation. To calculate the MLE, LESSeq uses the same 
strategy as a method that was developed to estimate relative transcript expression levels 
(Du, et al., 2012). In this process, RNA-Seq is modeled as a probabilistic partial sampling 
process, assuming uniform sampling of short-reads from each form of local event, and an 
Expectation-Maximization (EM) algorithm is used to infer the MLE. Hence, this step of 
LESSeq outputs the raw number of read counts compatible with each local event as well 
as the estimated relative expression levels. 
 
2.4 Test differential alternative splicing  
In this final step, the pipeline determines the statistical significance of differential 
alternative splicing between conditions. We provide parametric tests that are capable of 
handling situations when very few replicates (e.g. three replicates or fewer) are generated 
for each condition. We also provide a non-parametric test that can be utilized when there 
are many replicates per condition. The non-parametric test can be used to supplement the 
parametric tests for two purposes: to compare the abundance of significant differential 
alternative splicing events, and to derive the most confident candidates by taking the 
intersection of results from different tests.  
 
When only one replicate is generated for each condition, a parametric test based on two-
sided Fisher exact test is used. In this case, a two-way contingency table is constructed 
for each local event, with each cell’s value being the raw read-count for one local event 
form in one condition, as shown in XXX (Wang, et al., 2008). When more than one 
replicate is available in each condition, the parametric test is based on a log-linear model 
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with a Poisson link and a likelihood ratio test based on model fit, using the raw read-
counts for one local event form in one condition (Bullard, et al., 2010; Cotney, et al., 
2012; Cotney, et al., 2013). The number of reads compatible with one form p of a local 
event in sample i is denoted as !!", and is modeled as log ! !!" !.! = log!.! +
!!"(!) + !!"  , where !.!   is the total number of reads mapped in the local event for sample 
i, !!"(!) is the condition-specific splicing level for condition j, and !!"   is the replicate 
error term. For each event, p can be either of the two forms in XXX, so there are two 
tests, and therefore two p-values for each event. In this test, the raw read counts 
compatible with either of the two events in a locus are compared between conditions, 
normalizing for the total raw read counts in the entire locus, so that the effect of 
differential alternative splicing is tested, independent of total expression level changes. 
When many replicates exist in each condition, a non-parametric test can also be applied. 
The non-parametric test takes as input the relative expression levels estimated from the 
previous step, as opposed to raw read counts in the parametric test. It is to perform 
Wilcoxon rank sum test on the of relative expression level values between two 
conditions. 
 
3. APPLICATIONS  
 
3.1 Within-species variation  
Comparative RNA-Seq experiments under different conditions in a single species can be 
used to uncover alternative splicing signatures important in various aspects of the biology 
for the species of interest. For example, data from different time points during organismal 
development can yield insights to events driving developmental progression, sampling 
from different organs may identify signatures underlying tissue differentiation, and 
comparison between healthy versus disease samples facilitates discovery of aberrant 
splicing in a specific disease. 
 
One important question in human biology is the difference between individuals and 
populations, and we studied human differences in alternative splicing using a dataset 
generated by the Geuvadis Consortium (Lappalainen, et al., 2013). Messenger RNA-Seq 
data of lymphoblastoid cell lines (LCLs) in five human populations was produced 
(Lappalainen, et al., 2013). Mapped reads were downloaded 
(http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/processed/) for two human 
populations – CEU and YRI, with 91 and 89 samples respectively. After gene annotation 
refinement using RNA-Seq reads and Ensembl (V67) human annotation, 2948 local 
events were identified (each event was required to have 80nt-long exons and 50nt-long 
introns). Using the relative expression levels for all local events, individuals were 
clustered, revealing that individuals do not segregate by population with regard to 
alternative splicing (Figure XXX). Statistical tests for alternative splicing changes yield 
between 8% to 10% significant differential events between the two populations, with 174 
events detected by both parametric and non-parametric methods (BHP cutoff at 0.05, 
Figure XXX).  
 
The original research paper showed that the populations cluster by genotype, but not 
exon-level expression (Lappalainen, et al., 2013). Exon-level expression value is a 
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combined product of gene expression level and alternative splicing, and is not 
informative for assessing the two aspects of gene regulation separately. Our clustering 
result using local event relative expression levels revealed that, when the effects of 
alternative splicing alone is examined, the individuals do not cluster by population 
(Figure XXX). The original research paper also attempted to identify population-
differential alternative splicing events. Using Gencode annotation, Transcript-based 
(FluxCapacitor for transcript quantification and Wilcoxn for significance testing) and 
exon-based (DEXSeq) analyses were conducted, yielding around 20% and 50% 
significant genes in each case. The methodologies bear several shortages. In the first 
place, using a reference annotation while deep transcriptome sequencing data is available 
ignores the specific splicing structures present in this large number of LCL samples. As 
such, the downstream calculations are not reliable since the correct exon and splicing 
annotation are missed. The problem with transcript-based approach is further exacerbated 
by the transcript quantification step – as discussed in the introduction section, and the 
exon-based method compare less favorably to the local event-based approach – as 
mentioned in the discussion section.  
 
3.2 Cross-species variation  
Comparative RNA-Seq experiments across species can help to better understand 
organismal evolution in terms of whole transcriptome variation, and to identify 
candidates exhibiting differential gene regulation that could drive phenotypic evolution 
(i.e. differential expression and/or differential alternative splicing).  
 
To study the evolution of alternative splicing between human and other primates, we 
utilized a messenger RNA-Seq dataset that profiled six organs (brain, cerebellum, heart, 
kidney, liver and testis) in ten species (Brawand, et al., 2011). Fastq files were 
downloaded for all six organs for human and rhesus macaque. LiftOver tool 
(http://genome.ucsc.edu/) was used to match orthologous exon coordinates between the 
two species (Ensembl V67 annotation for both species were used), yielding 1683 
“skipped exon” local events at 0.9 reciprocal mapping rates. Using relative expression 
levels as well as total expression levels (measured by RPKM values) at all events, 
hierarchical clustering was performed, revealing that alternative splicing patterns cluster 
by species whereas total expression levels cluster by tissues. Lineage-differential 
alternative splicing events were also identified (XXX).  
 
The original research paper revealed that there is strong selection pressure for expression 
level in organs (Brawand, et al., 2011). Our study confirms this by showing that the 
expression levels at local events cluster by organs. Additionally, we find that the relative 
expression levels cluster by species. This observation agrees with two recent studies that 
also found faster evolutionary changes in alternative splicing compared to expression 
level (Barbosa-Morais, et al., 2012; Merkin, et al., 2012). However, the extent to which 
this is due to neutral evolution or selection is unknown. In a more recent analysis (Reyes, 
et al., 2013), it was shown that most exon expression level exhibit weak cross-tissue 
difference and large interspecies variability, indicating neutral drift; while only a minority 
show conserved tissue-specific usage patterns. Our study tackles the problem from a 
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different perspective – by identifying lineage-differential alternative splicing events, we 
are the first to identify candidates for lineage-specific phenotypes. 
 
4. DISCUSSION 
We developed a pipeline for comparative alternative splicing study with RNA-seq. Our 
method aims to provide robust differential alternative splicing detection by using a local-
event based approach, and it uncovers localized candidate regions in genes that exhibit 
differential alternative splicing. By pinpointing specific loci of interest, the method can 
ease the design of mechanistic studies such as mini-gene assay. It also allows 
unambiguous design of PCR primers and microarray probes for large-scale applications 
(e.g. healthy versus disease state biomarkers). We applied the pipeline to two RNA-Seq 
dataset for studying human variation and evolution, and were able to identify population- 
and lineage-differential alternative splicing events 
 
LESSeq employs a local event-based analysis strategy, and is thus more robust to 
transcript annotation errors compared to transcript-based methods. A few other methods 
are also built around similar “local event” ideas. For example, DEXSeq (Anders, et al., 
2012) is a method that tests differential exon usage. However, compared to LESSeq, 
DEXSeq loses information on local connectivity of exons, and does not define the 
differential usage of exons as results of different mechanisms, as shown in XXX. 
DEXSeq also does not provide the relative expression level estimation of each event, or 
exon as a metric to assess the degree of alternative splicing. Most importantly, the 
estimation of each exon in DEXSeq maybe confounded by other alternative splicing 
events in the same gene – unlike LESSeq, in which the estimation is not affected by other 
events due to the strict definition of what type of events should be included XXX. 
DiffSplice is a method that both quantifies and tests for differential local events, or 
“alternative splicing modules”(Hu, et al., 2013). Compared to LESSeq, DiffSplice does 
not filter out very complex local events. The results of analyzing these complex events 
could be very unreliable. For instance, some complex local events are still unidentifiable 
using short-read data (Hiller, et al., 2009). Furthermore, DiffSplice only provides a 
permutation-based test and is not applicable when there are fewer than three replicates 
per condition. In such situations, LESSeq provides a parametric test for studies that have 
very few replicates. When many replicates are available, LESSeq’s parametric and non-
parametric tests can both be applied, and the most confident candidates can be identified 
as the intersection (Soneson and Delorenzi, 2013). [[The statistical tests are conducted in 
the R framework (http://cran.us.r-project.org/), and can be further supplemented with 
tests from other R packages.]] 
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